slab.h 18.9 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2 3
 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
 *
C
Christoph Lameter 已提交
4
 * (C) SGI 2006, Christoph Lameter
5 6
 * 	Cleaned up and restructured to ease the addition of alternative
 * 	implementations of SLAB allocators.
7 8
 * (C) Linux Foundation 2008-2013
 *      Unified interface for all slab allocators
L
Linus Torvalds 已提交
9 10 11 12 13
 */

#ifndef _LINUX_SLAB_H
#define	_LINUX_SLAB_H

14 15
#include <linux/gfp.h>
#include <linux/types.h>
G
Glauber Costa 已提交
16 17
#include <linux/workqueue.h>

L
Linus Torvalds 已提交
18

19 20
/*
 * Flags to pass to kmem_cache_create().
21
 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
L
Linus Torvalds 已提交
22
 */
C
Christoph Lameter 已提交
23 24 25 26
#define SLAB_DEBUG_FREE		0x00000100UL	/* DEBUG: Perform (expensive) checks on free */
#define SLAB_RED_ZONE		0x00000400UL	/* DEBUG: Red zone objs in a cache */
#define SLAB_POISON		0x00000800UL	/* DEBUG: Poison objects */
#define SLAB_HWCACHE_ALIGN	0x00002000UL	/* Align objs on cache lines */
27 28 29
#define SLAB_CACHE_DMA		0x00004000UL	/* Use GFP_DMA memory */
#define SLAB_STORE_USER		0x00010000UL	/* DEBUG: Store the last owner for bug hunting */
#define SLAB_PANIC		0x00040000UL	/* Panic if kmem_cache_create() fails */
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
/*
 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
 *
 * This delays freeing the SLAB page by a grace period, it does _NOT_
 * delay object freeing. This means that if you do kmem_cache_free()
 * that memory location is free to be reused at any time. Thus it may
 * be possible to see another object there in the same RCU grace period.
 *
 * This feature only ensures the memory location backing the object
 * stays valid, the trick to using this is relying on an independent
 * object validation pass. Something like:
 *
 *  rcu_read_lock()
 * again:
 *  obj = lockless_lookup(key);
 *  if (obj) {
 *    if (!try_get_ref(obj)) // might fail for free objects
 *      goto again;
 *
 *    if (obj->key != key) { // not the object we expected
 *      put_ref(obj);
 *      goto again;
 *    }
 *  }
 *  rcu_read_unlock();
 *
56 57 58 59 60 61 62 63
 * This is useful if we need to approach a kernel structure obliquely,
 * from its address obtained without the usual locking. We can lock
 * the structure to stabilize it and check it's still at the given address,
 * only if we can be sure that the memory has not been meanwhile reused
 * for some other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
64
 */
65
#define SLAB_DESTROY_BY_RCU	0x00080000UL	/* Defer freeing slabs to RCU */
66
#define SLAB_MEM_SPREAD		0x00100000UL	/* Spread some memory over cpuset */
C
Christoph Lameter 已提交
67
#define SLAB_TRACE		0x00200000UL	/* Trace allocations and frees */
L
Linus Torvalds 已提交
68

69 70 71 72 73 74 75
/* Flag to prevent checks on free */
#ifdef CONFIG_DEBUG_OBJECTS
# define SLAB_DEBUG_OBJECTS	0x00400000UL
#else
# define SLAB_DEBUG_OBJECTS	0x00000000UL
#endif

76 77
#define SLAB_NOLEAKTRACE	0x00800000UL	/* Avoid kmemleak tracing */

V
Vegard Nossum 已提交
78 79 80 81 82 83
/* Don't track use of uninitialized memory */
#ifdef CONFIG_KMEMCHECK
# define SLAB_NOTRACK		0x01000000UL
#else
# define SLAB_NOTRACK		0x00000000UL
#endif
84 85 86 87 88
#ifdef CONFIG_FAILSLAB
# define SLAB_FAILSLAB		0x02000000UL	/* Fault injection mark */
#else
# define SLAB_FAILSLAB		0x00000000UL
#endif
89
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
V
Vladimir Davydov 已提交
90 91 92 93
# define SLAB_ACCOUNT		0x04000000UL	/* Account to memcg */
#else
# define SLAB_ACCOUNT		0x00000000UL
#endif
V
Vegard Nossum 已提交
94

95 96 97
/* The following flags affect the page allocator grouping pages by mobility */
#define SLAB_RECLAIM_ACCOUNT	0x00020000UL		/* Objects are reclaimable */
#define SLAB_TEMPORARY		SLAB_RECLAIM_ACCOUNT	/* Objects are short-lived */
98 99 100 101 102 103 104 105 106 107
/*
 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
 *
 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
 *
 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
 * Both make kfree a no-op.
 */
#define ZERO_SIZE_PTR ((void *)16)

108
#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
109 110
				(unsigned long)ZERO_SIZE_PTR)

111
#include <linux/kmemleak.h>
112
#include <linux/kasan.h>
113

114
struct mem_cgroup;
115 116 117 118
/*
 * struct kmem_cache related prototypes
 */
void __init kmem_cache_init(void);
119
bool slab_is_available(void);
L
Linus Torvalds 已提交
120

121
struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
122
			unsigned long,
123
			void (*)(void *));
124 125
void kmem_cache_destroy(struct kmem_cache *);
int kmem_cache_shrink(struct kmem_cache *);
126 127 128 129

void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *);
void memcg_deactivate_kmem_caches(struct mem_cgroup *);
void memcg_destroy_kmem_caches(struct mem_cgroup *);
130

131 132 133 134 135 136 137 138 139 140
/*
 * Please use this macro to create slab caches. Simply specify the
 * name of the structure and maybe some flags that are listed above.
 *
 * The alignment of the struct determines object alignment. If you
 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
 * then the objects will be properly aligned in SMP configurations.
 */
#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
		sizeof(struct __struct), __alignof__(struct __struct),\
141
		(__flags), NULL)
142

143 144 145 146 147 148 149 150 151
/*
 * Common kmalloc functions provided by all allocators
 */
void * __must_check __krealloc(const void *, size_t, gfp_t);
void * __must_check krealloc(const void *, size_t, gfp_t);
void kfree(const void *);
void kzfree(const void *);
size_t ksize(const void *);

152 153 154 155 156 157 158 159 160 161 162 163 164
/*
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 * alignment larger than the alignment of a 64-bit integer.
 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
 */
#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
#else
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
#endif

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
/*
 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
 * Intended for arches that get misalignment faults even for 64 bit integer
 * aligned buffers.
 */
#ifndef ARCH_SLAB_MINALIGN
#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
#endif

/*
 * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned
 * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN
 * aligned pointers.
 */
#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
#define __assume_page_alignment __assume_aligned(PAGE_SIZE)

183
/*
184 185 186 187 188 189
 * Kmalloc array related definitions
 */

#ifdef CONFIG_SLAB
/*
 * The largest kmalloc size supported by the SLAB allocators is
190 191 192 193 194 195 196
 * 32 megabyte (2^25) or the maximum allocatable page order if that is
 * less than 32 MB.
 *
 * WARNING: Its not easy to increase this value since the allocators have
 * to do various tricks to work around compiler limitations in order to
 * ensure proper constant folding.
 */
197 198
#define KMALLOC_SHIFT_HIGH	((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
				(MAX_ORDER + PAGE_SHIFT - 1) : 25)
199
#define KMALLOC_SHIFT_MAX	KMALLOC_SHIFT_HIGH
200
#ifndef KMALLOC_SHIFT_LOW
201
#define KMALLOC_SHIFT_LOW	5
202
#endif
203 204 205
#endif

#ifdef CONFIG_SLUB
206
/*
207 208
 * SLUB directly allocates requests fitting in to an order-1 page
 * (PAGE_SIZE*2).  Larger requests are passed to the page allocator.
209 210 211
 */
#define KMALLOC_SHIFT_HIGH	(PAGE_SHIFT + 1)
#define KMALLOC_SHIFT_MAX	(MAX_ORDER + PAGE_SHIFT)
212
#ifndef KMALLOC_SHIFT_LOW
213 214
#define KMALLOC_SHIFT_LOW	3
#endif
215
#endif
216

217 218
#ifdef CONFIG_SLOB
/*
219
 * SLOB passes all requests larger than one page to the page allocator.
220 221 222 223
 * No kmalloc array is necessary since objects of different sizes can
 * be allocated from the same page.
 */
#define KMALLOC_SHIFT_HIGH	PAGE_SHIFT
224
#define KMALLOC_SHIFT_MAX	30
225 226 227 228 229
#ifndef KMALLOC_SHIFT_LOW
#define KMALLOC_SHIFT_LOW	3
#endif
#endif

230 231 232 233 234 235
/* Maximum allocatable size */
#define KMALLOC_MAX_SIZE	(1UL << KMALLOC_SHIFT_MAX)
/* Maximum size for which we actually use a slab cache */
#define KMALLOC_MAX_CACHE_SIZE	(1UL << KMALLOC_SHIFT_HIGH)
/* Maximum order allocatable via the slab allocagtor */
#define KMALLOC_MAX_ORDER	(KMALLOC_SHIFT_MAX - PAGE_SHIFT)
236

237 238 239
/*
 * Kmalloc subsystem.
 */
240
#ifndef KMALLOC_MIN_SIZE
241
#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
242 243
#endif

J
Joonsoo Kim 已提交
244 245 246 247 248 249 250 251 252 253 254
/*
 * This restriction comes from byte sized index implementation.
 * Page size is normally 2^12 bytes and, in this case, if we want to use
 * byte sized index which can represent 2^8 entries, the size of the object
 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
 * If minimum size of kmalloc is less than 16, we use it as minimum object
 * size and give up to use byte sized index.
 */
#define SLAB_OBJ_MIN_SIZE      (KMALLOC_MIN_SIZE < 16 ? \
                               (KMALLOC_MIN_SIZE) : 16)

255
#ifndef CONFIG_SLOB
256 257 258 259 260
extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
#ifdef CONFIG_ZONE_DMA
extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
#endif

261 262 263 264 265
/*
 * Figure out which kmalloc slab an allocation of a certain size
 * belongs to.
 * 0 = zero alloc
 * 1 =  65 .. 96 bytes
266 267
 * 2 = 129 .. 192 bytes
 * n = 2^(n-1)+1 .. 2^n
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
 */
static __always_inline int kmalloc_index(size_t size)
{
	if (!size)
		return 0;

	if (size <= KMALLOC_MIN_SIZE)
		return KMALLOC_SHIFT_LOW;

	if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
		return 1;
	if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
		return 2;
	if (size <=          8) return 3;
	if (size <=         16) return 4;
	if (size <=         32) return 5;
	if (size <=         64) return 6;
	if (size <=        128) return 7;
	if (size <=        256) return 8;
	if (size <=        512) return 9;
	if (size <=       1024) return 10;
	if (size <=   2 * 1024) return 11;
	if (size <=   4 * 1024) return 12;
	if (size <=   8 * 1024) return 13;
	if (size <=  16 * 1024) return 14;
	if (size <=  32 * 1024) return 15;
	if (size <=  64 * 1024) return 16;
	if (size <= 128 * 1024) return 17;
	if (size <= 256 * 1024) return 18;
	if (size <= 512 * 1024) return 19;
	if (size <= 1024 * 1024) return 20;
	if (size <=  2 * 1024 * 1024) return 21;
	if (size <=  4 * 1024 * 1024) return 22;
	if (size <=  8 * 1024 * 1024) return 23;
	if (size <=  16 * 1024 * 1024) return 24;
	if (size <=  32 * 1024 * 1024) return 25;
	if (size <=  64 * 1024 * 1024) return 26;
	BUG();

	/* Will never be reached. Needed because the compiler may complain */
	return -1;
}
310
#endif /* !CONFIG_SLOB */
311

312 313
void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment;
void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment;
314
void kmem_cache_free(struct kmem_cache *, void *);
315

316 317 318 319 320 321 322 323
/*
 * Bulk allocation and freeing operations. These are accellerated in an
 * allocator specific way to avoid taking locks repeatedly or building
 * metadata structures unnecessarily.
 *
 * Note that interrupts must be enabled when calling these functions.
 */
void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
324
int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
325

326
#ifdef CONFIG_NUMA
327 328
void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment;
void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment;
329 330 331 332 333 334 335 336 337 338 339 340 341
#else
static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __kmalloc(size, flags);
}

static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
{
	return kmem_cache_alloc(s, flags);
}
#endif

#ifdef CONFIG_TRACING
342
extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment;
343 344 345 346

#ifdef CONFIG_NUMA
extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
					   gfp_t gfpflags,
347
					   int node, size_t size) __assume_slab_alignment;
348 349 350 351 352 353 354 355 356 357 358 359 360 361
#else
static __always_inline void *
kmem_cache_alloc_node_trace(struct kmem_cache *s,
			      gfp_t gfpflags,
			      int node, size_t size)
{
	return kmem_cache_alloc_trace(s, gfpflags, size);
}
#endif /* CONFIG_NUMA */

#else /* CONFIG_TRACING */
static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
		gfp_t flags, size_t size)
{
362 363 364 365
	void *ret = kmem_cache_alloc(s, flags);

	kasan_kmalloc(s, ret, size);
	return ret;
366 367 368 369 370 371 372
}

static __always_inline void *
kmem_cache_alloc_node_trace(struct kmem_cache *s,
			      gfp_t gfpflags,
			      int node, size_t size)
{
373 374 375 376
	void *ret = kmem_cache_alloc_node(s, gfpflags, node);

	kasan_kmalloc(s, ret, size);
	return ret;
377 378 379
}
#endif /* CONFIG_TRACING */

380
extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment;
381 382

#ifdef CONFIG_TRACING
383
extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment;
384 385 386 387 388 389
#else
static __always_inline void *
kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
	return kmalloc_order(size, flags, order);
}
390 391
#endif

392 393 394 395 396 397 398 399 400
static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
{
	unsigned int order = get_order(size);
	return kmalloc_order_trace(size, flags, order);
}

/**
 * kmalloc - allocate memory
 * @size: how many bytes of memory are required.
401
 * @flags: the type of memory to allocate.
402 403 404
 *
 * kmalloc is the normal method of allocating memory
 * for objects smaller than page size in the kernel.
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
 *
 * The @flags argument may be one of:
 *
 * %GFP_USER - Allocate memory on behalf of user.  May sleep.
 *
 * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
 *
 * %GFP_ATOMIC - Allocation will not sleep.  May use emergency pools.
 *   For example, use this inside interrupt handlers.
 *
 * %GFP_HIGHUSER - Allocate pages from high memory.
 *
 * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
 *
 * %GFP_NOFS - Do not make any fs calls while trying to get memory.
 *
 * %GFP_NOWAIT - Allocation will not sleep.
 *
423
 * %__GFP_THISNODE - Allocate node-local memory only.
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
 *
 * %GFP_DMA - Allocation suitable for DMA.
 *   Should only be used for kmalloc() caches. Otherwise, use a
 *   slab created with SLAB_DMA.
 *
 * Also it is possible to set different flags by OR'ing
 * in one or more of the following additional @flags:
 *
 * %__GFP_COLD - Request cache-cold pages instead of
 *   trying to return cache-warm pages.
 *
 * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
 *
 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
 *   (think twice before using).
 *
 * %__GFP_NORETRY - If memory is not immediately available,
 *   then give up at once.
 *
 * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
 *
 * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
 *
 * There are other flags available as well, but these are not intended
 * for general use, and so are not documented here. For a full list of
 * potential flags, always refer to linux/gfp.h.
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
 */
static __always_inline void *kmalloc(size_t size, gfp_t flags)
{
	if (__builtin_constant_p(size)) {
		if (size > KMALLOC_MAX_CACHE_SIZE)
			return kmalloc_large(size, flags);
#ifndef CONFIG_SLOB
		if (!(flags & GFP_DMA)) {
			int index = kmalloc_index(size);

			if (!index)
				return ZERO_SIZE_PTR;

			return kmem_cache_alloc_trace(kmalloc_caches[index],
					flags, size);
		}
#endif
	}
	return __kmalloc(size, flags);
}

471 472 473 474 475 476 477
/*
 * Determine size used for the nth kmalloc cache.
 * return size or 0 if a kmalloc cache for that
 * size does not exist
 */
static __always_inline int kmalloc_size(int n)
{
478
#ifndef CONFIG_SLOB
479 480 481 482 483 484 485 486
	if (n > 2)
		return 1 << n;

	if (n == 1 && KMALLOC_MIN_SIZE <= 32)
		return 96;

	if (n == 2 && KMALLOC_MIN_SIZE <= 64)
		return 192;
487
#endif
488 489 490
	return 0;
}

491 492 493 494
static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
{
#ifndef CONFIG_SLOB
	if (__builtin_constant_p(size) &&
495
		size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) {
496 497 498 499 500 501 502 503 504 505 506 507
		int i = kmalloc_index(size);

		if (!i)
			return ZERO_SIZE_PTR;

		return kmem_cache_alloc_node_trace(kmalloc_caches[i],
						flags, node, size);
	}
#endif
	return __kmalloc_node(size, flags, node);
}

508 509 510 511 512
struct memcg_cache_array {
	struct rcu_head rcu;
	struct kmem_cache *entries[0];
};

G
Glauber Costa 已提交
513 514 515 516
/*
 * This is the main placeholder for memcg-related information in kmem caches.
 * Both the root cache and the child caches will have it. For the root cache,
 * this will hold a dynamically allocated array large enough to hold
517 518 519
 * information about the currently limited memcgs in the system. To allow the
 * array to be accessed without taking any locks, on relocation we free the old
 * version only after a grace period.
G
Glauber Costa 已提交
520 521 522 523
 *
 * Child caches will hold extra metadata needed for its operation. Fields are:
 *
 * @memcg: pointer to the memcg this cache belongs to
524
 * @root_cache: pointer to the global, root cache, this cache was derived from
525 526 527
 *
 * Both root and child caches of the same kind are linked into a list chained
 * through @list.
G
Glauber Costa 已提交
528 529 530
 */
struct memcg_cache_params {
	bool is_root_cache;
531
	struct list_head list;
G
Glauber Costa 已提交
532
	union {
533
		struct memcg_cache_array __rcu *memcg_caches;
534 535 536 537
		struct {
			struct mem_cgroup *memcg;
			struct kmem_cache *root_cache;
		};
G
Glauber Costa 已提交
538 539 540
	};
};

541 542
int memcg_update_all_caches(int num_memcgs);

543 544 545 546 547
/**
 * kmalloc_array - allocate memory for an array.
 * @n: number of elements.
 * @size: element size.
 * @flags: the type of memory to allocate (see kmalloc).
548
 */
X
Xi Wang 已提交
549
static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
L
Linus Torvalds 已提交
550
{
X
Xi Wang 已提交
551
	if (size != 0 && n > SIZE_MAX / size)
P
Paul Mundt 已提交
552
		return NULL;
X
Xi Wang 已提交
553 554 555 556 557 558 559 560 561 562 563 564
	return __kmalloc(n * size, flags);
}

/**
 * kcalloc - allocate memory for an array. The memory is set to zero.
 * @n: number of elements.
 * @size: element size.
 * @flags: the type of memory to allocate (see kmalloc).
 */
static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
{
	return kmalloc_array(n, size, flags | __GFP_ZERO);
L
Linus Torvalds 已提交
565 566
}

567 568 569 570 571 572 573 574
/*
 * kmalloc_track_caller is a special version of kmalloc that records the
 * calling function of the routine calling it for slab leak tracking instead
 * of just the calling function (confusing, eh?).
 * It's useful when the call to kmalloc comes from a widely-used standard
 * allocator where we care about the real place the memory allocation
 * request comes from.
 */
575
extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
576
#define kmalloc_track_caller(size, flags) \
577
	__kmalloc_track_caller(size, flags, _RET_IP_)
L
Linus Torvalds 已提交
578

579
#ifdef CONFIG_NUMA
580
extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
581 582
#define kmalloc_node_track_caller(size, flags, node) \
	__kmalloc_node_track_caller(size, flags, node, \
583
			_RET_IP_)
584

585 586 587 588
#else /* CONFIG_NUMA */

#define kmalloc_node_track_caller(size, flags, node) \
	kmalloc_track_caller(size, flags)
589

P
Pascal Terjan 已提交
590
#endif /* CONFIG_NUMA */
591

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
/*
 * Shortcuts
 */
static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
{
	return kmem_cache_alloc(k, flags | __GFP_ZERO);
}

/**
 * kzalloc - allocate memory. The memory is set to zero.
 * @size: how many bytes of memory are required.
 * @flags: the type of memory to allocate (see kmalloc).
 */
static inline void *kzalloc(size_t size, gfp_t flags)
{
	return kmalloc(size, flags | __GFP_ZERO);
}

J
Jeff Layton 已提交
610 611 612 613 614 615 616 617 618 619 620
/**
 * kzalloc_node - allocate zeroed memory from a particular memory node.
 * @size: how many bytes of memory are required.
 * @flags: the type of memory to allocate (see kmalloc).
 * @node: memory node from which to allocate
 */
static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
{
	return kmalloc_node(size, flags | __GFP_ZERO, node);
}

621
unsigned int kmem_cache_size(struct kmem_cache *s);
622 623
void __init kmem_cache_init_late(void);

L
Linus Torvalds 已提交
624
#endif	/* _LINUX_SLAB_H */