inotify.txt 10.7 KB
Newer Older
1 2
				   inotify
	    a powerful yet simple file change notification system
R
Robert Love 已提交
3 4 5 6 7



Document started 15 Mar 2005 by Robert Love <rml@novell.com>

8

R
Robert Love 已提交
9 10
(i) User Interface

11 12
Inotify is controlled by a set of three system calls and normal file I/O on a
returned file descriptor.
R
Robert Love 已提交
13

14
First step in using inotify is to initialise an inotify instance:
R
Robert Love 已提交
15 16 17

	int fd = inotify_init ();

18 19
Each instance is associated with a unique, ordered queue.

R
Robert Love 已提交
20 21 22 23 24 25 26 27 28
Change events are managed by "watches".  A watch is an (object,mask) pair where
the object is a file or directory and the mask is a bit mask of one or more
inotify events that the application wishes to receive.  See <linux/inotify.h>
for valid events.  A watch is referenced by a watch descriptor, or wd.

Watches are added via a path to the file.

Watches on a directory will return events on any files inside of the directory.

29
Adding a watch is simple:
R
Robert Love 已提交
30 31 32

	int wd = inotify_add_watch (fd, path, mask);

33 34
Where "fd" is the return value from inotify_init(), path is the path to the
object to watch, and mask is the watch mask (see <linux/inotify.h>).
R
Robert Love 已提交
35 36 37

You can update an existing watch in the same manner, by passing in a new mask.

38
An existing watch is removed via
R
Robert Love 已提交
39

40
	int ret = inotify_rm_watch (fd, wd);
R
Robert Love 已提交
41 42

Events are provided in the form of an inotify_event structure that is read(2)
43 44 45
from a given inotify instance.  The filename is of dynamic length and follows
the struct. It is of size len.  The filename is padded with null bytes to
ensure proper alignment.  This padding is reflected in len.
R
Robert Love 已提交
46 47 48 49 50

You can slurp multiple events by passing a large buffer, for example

	size_t len = read (fd, buf, BUF_LEN);

51 52 53
Where "buf" is a pointer to an array of "inotify_event" structures at least
BUF_LEN bytes in size.  The above example will return as many events as are
available and fit in BUF_LEN.
R
Robert Love 已提交
54

55
Each inotify instance fd is also select()- and poll()-able.
R
Robert Love 已提交
56

57 58
You can find the size of the current event queue via the standard FIONREAD
ioctl on the fd returned by inotify_init().
R
Robert Love 已提交
59 60 61 62

All watches are destroyed and cleaned up on close.


63 64 65 66 67 68 69 70
(ii)

Prototypes:

	int inotify_init (void);
	int inotify_add_watch (int fd, const char *path, __u32 mask);
	int inotify_rm_watch (int fd, __u32 mask);

R
Robert Love 已提交
71

72
(iii) Kernel Interface
73

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
Inotify's kernel API consists a set of functions for managing watches and an
event callback.

To use the kernel API, you must first initialize an inotify instance with a set
of inotify_operations.  You are given an opaque inotify_handle, which you use
for any further calls to inotify.

    struct inotify_handle *ih = inotify_init(my_event_handler);

You must provide a function for processing events and a function for destroying
the inotify watch.

    void handle_event(struct inotify_watch *watch, u32 wd, u32 mask,
    	              u32 cookie, const char *name, struct inode *inode)

	watch - the pointer to the inotify_watch that triggered this call
	wd - the watch descriptor
	mask - describes the event that occurred
	cookie - an identifier for synchronizing events
	name - the dentry name for affected files in a directory-based event
	inode - the affected inode in a directory-based event

    void destroy_watch(struct inotify_watch *watch)

You may add watches by providing a pre-allocated and initialized inotify_watch
structure and specifying the inode to watch along with an inotify event mask.
You must pin the inode during the call.  You will likely wish to embed the
inotify_watch structure in a structure of your own which contains other
information about the watch.  Once you add an inotify watch, it is immediately
subject to removal depending on filesystem events.  You must grab a reference if
you depend on the watch hanging around after the call.

    inotify_init_watch(&my_watch->iwatch);
    inotify_get_watch(&my_watch->iwatch);	// optional
    s32 wd = inotify_add_watch(ih, &my_watch->iwatch, inode, mask);
    inotify_put_watch(&my_watch->iwatch);	// optional

You may use the watch descriptor (wd) or the address of the inotify_watch for
other inotify operations.  You must not directly read or manipulate data in the
inotify_watch.  Additionally, you must not call inotify_add_watch() more than
once for a given inotify_watch structure, unless you have first called either
inotify_rm_watch() or inotify_rm_wd().

To determine if you have already registered a watch for a given inode, you may
call inotify_find_watch(), which gives you both the wd and the watch pointer for
the inotify_watch, or an error if the watch does not exist.

    wd = inotify_find_watch(ih, inode, &watchp);

You may use container_of() on the watch pointer to access your own data
associated with a given watch.  When an existing watch is found,
inotify_find_watch() bumps the refcount before releasing its locks.  You must
put that reference with:

    put_inotify_watch(watchp);

Call inotify_find_update_watch() to update the event mask for an existing watch.
inotify_find_update_watch() returns the wd of the updated watch, or an error if
the watch does not exist.

    wd = inotify_find_update_watch(ih, inode, mask);

An existing watch may be removed by calling either inotify_rm_watch() or
inotify_rm_wd().

    int ret = inotify_rm_watch(ih, &my_watch->iwatch);
    int ret = inotify_rm_wd(ih, wd);

A watch may be removed while executing your event handler with the following:

    inotify_remove_watch_locked(ih, iwatch);

Call inotify_destroy() to remove all watches from your inotify instance and
release it.  If there are no outstanding references, inotify_destroy() will call
your destroy_watch op for each watch.

    inotify_destroy(ih);

When inotify removes a watch, it sends an IN_IGNORED event to your callback.
You may use this event as an indication to free the watch memory.  Note that
inotify may remove a watch due to filesystem events, as well as by your request.
If you use IN_ONESHOT, inotify will remove the watch after the first event, at
which point you may call the final inotify_put_watch.

(iv) Kernel Interface Prototypes

	struct inotify_handle *inotify_init(struct inotify_operations *ops);

	inotify_init_watch(struct inotify_watch *watch);

	s32 inotify_add_watch(struct inotify_handle *ih,
		              struct inotify_watch *watch,
			      struct inode *inode, u32 mask);

	s32 inotify_find_watch(struct inotify_handle *ih, struct inode *inode,
			       struct inotify_watch **watchp);

	s32 inotify_find_update_watch(struct inotify_handle *ih,
				      struct inode *inode, u32 mask);

	int inotify_rm_wd(struct inotify_handle *ih, u32 wd);

	int inotify_rm_watch(struct inotify_handle *ih,
			     struct inotify_watch *watch);

	void inotify_remove_watch_locked(struct inotify_handle *ih,
					 struct inotify_watch *watch);

	void inotify_destroy(struct inotify_handle *ih);

	void get_inotify_watch(struct inotify_watch *watch);
	void put_inotify_watch(struct inotify_watch *watch);


(v) Internal Kernel Implementation

Each inotify instance is represented by an inotify_handle structure.
Inotify's userspace consumers also have an inotify_device which is
associated with the inotify_handle, and on which events are queued.
R
Robert Love 已提交
193 194

Each watch is associated with an inotify_watch structure.  Watches are chained
195
off of each associated inotify_handle and each associated inode.
R
Robert Love 已提交
196

197
See fs/inotify.c and fs/inotify_user.c for the locking and lifetime rules.
R
Robert Love 已提交
198 199


200
(vi) Rationale
R
Robert Love 已提交
201 202 203 204 205 206 207 208

Q: What is the design decision behind not tying the watch to the open fd of
   the watched object?

A: Watches are associated with an open inotify device, not an open file.
   This solves the primary problem with dnotify: keeping the file open pins
   the file and thus, worse, pins the mount.  Dnotify is therefore infeasible
   for use on a desktop system with removable media as the media cannot be
209
   unmounted.  Watching a file should not require that it be open.
R
Robert Love 已提交
210

211
Q: What is the design decision behind using an-fd-per-instance as opposed to
R
Robert Love 已提交
212 213 214 215 216 217 218 219
   an fd-per-watch?

A: An fd-per-watch quickly consumes more file descriptors than are allowed,
   more fd's than are feasible to manage, and more fd's than are optimally
   select()-able.  Yes, root can bump the per-process fd limit and yes, users
   can use epoll, but requiring both is a silly and extraneous requirement.
   A watch consumes less memory than an open file, separating the number
   spaces is thus sensible.  The current design is what user-space developers
220 221
   want: Users initialize inotify, once, and add n watches, requiring but one
   fd and no twiddling with fd limits.  Initializing an inotify instance two
R
Robert Love 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
   thousand times is silly.  If we can implement user-space's preferences 
   cleanly--and we can, the idr layer makes stuff like this trivial--then we 
   should.

   There are other good arguments.  With a single fd, there is a single
   item to block on, which is mapped to a single queue of events.  The single
   fd returns all watch events and also any potential out-of-band data.  If
   every fd was a separate watch,

   - There would be no way to get event ordering.  Events on file foo and
     file bar would pop poll() on both fd's, but there would be no way to tell
     which happened first.  A single queue trivially gives you ordering.  Such
     ordering is crucial to existing applications such as Beagle.  Imagine
     "mv a b ; mv b a" events without ordering.

   - We'd have to maintain n fd's and n internal queues with state,
     versus just one.  It is a lot messier in the kernel.  A single, linear
     queue is the data structure that makes sense.

   - User-space developers prefer the current API.  The Beagle guys, for
     example, love it.  Trust me, I asked.  It is not a surprise: Who'd want
     to manage and block on 1000 fd's via select?

   - No way to get out of band data.

   - 1024 is still too low.  ;-)

   When you talk about designing a file change notification system that
   scales to 1000s of directories, juggling 1000s of fd's just does not seem
   the right interface.  It is too heavy.

253 254 255 256 257
   Additionally, it _is_ possible to  more than one instance  and
   juggle more than one queue and thus more than one associated fd.  There
   need not be a one-fd-per-process mapping; it is one-fd-per-queue and a
   process can easily want more than one queue.

R
Robert Love 已提交
258 259 260 261 262 263 264 265
Q: Why the system call approach?

A: The poor user-space interface is the second biggest problem with dnotify.
   Signals are a terrible, terrible interface for file notification.  Or for
   anything, for that matter.  The ideal solution, from all perspectives, is a
   file descriptor-based one that allows basic file I/O and poll/select.
   Obtaining the fd and managing the watches could have been done either via a
   device file or a family of new system calls.  We decided to implement a
266
   family of system calls because that is the preferred approach for new kernel
267 268
   interfaces.  The only real difference was whether we wanted to use open(2)
   and ioctl(2) or a couple of new system calls.  System calls beat ioctls.
R
Robert Love 已提交
269