uv_hub.h 20.0 KB
Newer Older
1 2 3 4 5 6 7
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * SGI UV architectural definitions
 *
8
 * Copyright (C) 2007-2013 Silicon Graphics, Inc. All rights reserved.
9 10
 */

11 12
#ifndef _ASM_X86_UV_UV_HUB_H
#define _ASM_X86_UV_UV_HUB_H
13

14
#ifdef CONFIG_X86_64
15 16
#include <linux/numa.h>
#include <linux/percpu.h>
17
#include <linux/timer.h>
18
#include <linux/io.h>
19 20
#include <asm/types.h>
#include <asm/percpu.h>
21
#include <asm/uv/uv_mmrs.h>
22 23
#include <asm/irq_vectors.h>
#include <asm/io_apic.h>
24 25 26 27 28


/*
 * Addressing Terminology
 *
29 30 31 32
 *	M       - The low M bits of a physical address represent the offset
 *		  into the blade local memory. RAM memory on a blade is physically
 *		  contiguous (although various IO spaces may punch holes in
 *		  it)..
33
 *
34 35
 *	N	- Number of bits in the node portion of a socket physical
 *		  address.
36
 *
37 38 39 40 41
 *	NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
 *		  routers always have low bit of 1, C/MBricks have low bit
 *		  equal to 0. Most addressing macros that target UV hub chips
 *		  right shift the NASID by 1 to exclude the always-zero bit.
 *		  NASIDs contain up to 15 bits.
42 43 44 45
 *
 *	GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
 *		  of nasids.
 *
46 47
 *	PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
 *		  of the nasid for socket usage.
48
 *
49 50 51 52 53 54 55
 *	GPA	- (global physical address) a socket physical address converted
 *		  so that it can be used by the GRU as a global address. Socket
 *		  physical addresses 1) need additional NASID (node) bits added
 *		  to the high end of the address, and 2) unaliased if the
 *		  partition does not have a physical address 0. In addition, on
 *		  UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
 *
56 57 58 59 60 61 62 63
 *
 *  NumaLink Global Physical Address Format:
 *  +--------------------------------+---------------------+
 *  |00..000|      GNODE             |      NodeOffset     |
 *  +--------------------------------+---------------------+
 *          |<-------53 - M bits --->|<--------M bits ----->
 *
 *	M - number of node offset bits (35 .. 40)
64 65 66
 *
 *
 *  Memory/UV-HUB Processor Socket Address Format:
67 68 69 70
 *  +----------------+---------------+---------------------+
 *  |00..000000000000|   PNODE       |      NodeOffset     |
 *  +----------------+---------------+---------------------+
 *                   <--- N bits --->|<--------M bits ----->
71
 *
72 73
 *	M - number of node offset bits (35 .. 40)
 *	N - number of PNODE bits (0 .. 10)
74 75 76
 *
 *		Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
 *		The actual values are configuration dependent and are set at
77 78
 *		boot time. M & N values are set by the hardware/BIOS at boot.
 *
79 80
 *
 * APICID format
81 82 83
 *	NOTE!!!!!! This is the current format of the APICID. However, code
 *	should assume that this will change in the future. Use functions
 *	in this file for all APICID bit manipulations and conversion.
84
 *
85 86
 *		1111110000000000
 *		5432109876543210
87 88 89
 *		pppppppppplc0cch	Nehalem-EX (12 bits in hdw reg)
 *		ppppppppplcc0cch	Westmere-EX (12 bits in hdw reg)
 *		pppppppppppcccch	SandyBridge (15 bits in hdw reg)
90 91
 *		sssssssssss
 *
92
 *			p  = pnode bits
93 94 95
 *			l =  socket number on board
 *			c  = core
 *			h  = hyperthread
96
 *			s  = bits that are in the SOCKET_ID CSR
97
 *
98
 *	Note: Processor may support fewer bits in the APICID register. The ACPI
99 100
 *	      tables hold all 16 bits. Software needs to be aware of this.
 *
101 102 103
 *	      Unless otherwise specified, all references to APICID refer to
 *	      the FULL value contained in ACPI tables, not the subset in the
 *	      processor APICID register.
104 105 106 107 108 109 110 111 112 113 114
 */


/*
 * Maximum number of bricks in all partitions and in all coherency domains.
 * This is the total number of bricks accessible in the numalink fabric. It
 * includes all C & M bricks. Routers are NOT included.
 *
 * This value is also the value of the maximum number of non-router NASIDs
 * in the numalink fabric.
 *
115
 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
116 117 118 119 120 121 122 123 124 125 126 127
 */
#define UV_MAX_NUMALINK_BLADES	16384

/*
 * Maximum number of C/Mbricks within a software SSI (hardware may support
 * more).
 */
#define UV_MAX_SSI_BLADES	256

/*
 * The largest possible NASID of a C or M brick (+ 2)
 */
128
#define UV_MAX_NASID_VALUE	(UV_MAX_NUMALINK_BLADES * 2)
129

130 131 132 133 134 135 136 137 138 139
struct uv_scir_s {
	struct timer_list timer;
	unsigned long	offset;
	unsigned long	last;
	unsigned long	idle_on;
	unsigned long	idle_off;
	unsigned char	state;
	unsigned char	enabled;
};

140 141 142 143 144 145
/*
 * The following defines attributes of the HUB chip. These attributes are
 * frequently referenced and are kept in the per-cpu data areas of each cpu.
 * They are kept together in a struct to minimize cache misses.
 */
struct uv_hub_info_s {
146 147
	unsigned long		global_mmr_base;
	unsigned long		gpa_mask;
148
	unsigned int		gnode_extra;
149 150
	unsigned char		hub_revision;
	unsigned char		apic_pnode_shift;
151 152
	unsigned char		m_shift;
	unsigned char		n_lshift;
153 154 155 156 157 158 159 160 161 162 163
	unsigned long		gnode_upper;
	unsigned long		lowmem_remap_top;
	unsigned long		lowmem_remap_base;
	unsigned short		pnode;
	unsigned short		pnode_mask;
	unsigned short		coherency_domain_number;
	unsigned short		numa_blade_id;
	unsigned char		blade_processor_id;
	unsigned char		m_val;
	unsigned char		n_val;
	struct uv_scir_s	scir;
164
};
165

166
DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
167
#define uv_hub_info		(&__get_cpu_var(__uv_hub_info))
168 169
#define uv_cpu_hub_info(cpu)	(&per_cpu(__uv_hub_info, cpu))

170 171 172 173 174 175 176 177
/*
 * Hub revisions less than UV2_HUB_REVISION_BASE are UV1 hubs. All UV2
 * hubs have revision numbers greater than or equal to UV2_HUB_REVISION_BASE.
 * This is a software convention - NOT the hardware revision numbers in
 * the hub chip.
 */
#define UV1_HUB_REVISION_BASE		1
#define UV2_HUB_REVISION_BASE		3
178
#define UV3_HUB_REVISION_BASE		5
179 180 181 182 183 184 185

static inline int is_uv1_hub(void)
{
	return uv_hub_info->hub_revision < UV2_HUB_REVISION_BASE;
}

static inline int is_uv2_hub(void)
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
{
	return ((uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE) &&
		(uv_hub_info->hub_revision < UV3_HUB_REVISION_BASE));
}

static inline int is_uv3_hub(void)
{
	return uv_hub_info->hub_revision >= UV3_HUB_REVISION_BASE;
}

static inline int is_uv_hub(void)
{
	return uv_hub_info->hub_revision;
}

/* code common to uv2 and uv3 only */
static inline int is_uvx_hub(void)
203 204 205 206
{
	return uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE;
}

207 208 209 210 211 212 213 214 215 216
static inline int is_uv2_1_hub(void)
{
	return uv_hub_info->hub_revision == UV2_HUB_REVISION_BASE;
}

static inline int is_uv2_2_hub(void)
{
	return uv_hub_info->hub_revision == UV2_HUB_REVISION_BASE + 1;
}

217 218 219 220 221 222 223 224 225 226 227 228
union uvh_apicid {
    unsigned long       v;
    struct uvh_apicid_s {
        unsigned long   local_apic_mask  : 24;
        unsigned long   local_apic_shift :  5;
        unsigned long   unused1          :  3;
        unsigned long   pnode_mask       : 24;
        unsigned long   pnode_shift      :  5;
        unsigned long   unused2          :  3;
    } s;
};

229 230
/*
 * Local & Global MMR space macros.
231 232 233 234 235
 *	Note: macros are intended to be used ONLY by inline functions
 *	in this file - not by other kernel code.
 *		n -  NASID (full 15-bit global nasid)
 *		g -  GNODE (full 15-bit global nasid, right shifted 1)
 *		p -  PNODE (local part of nsids, right shifted 1)
236
 */
237
#define UV_NASID_TO_PNODE(n)		(((n) >> 1) & uv_hub_info->pnode_mask)
238 239
#define UV_PNODE_TO_GNODE(p)		((p) |uv_hub_info->gnode_extra)
#define UV_PNODE_TO_NASID(p)		(UV_PNODE_TO_GNODE(p) << 1)
240

241 242 243 244 245 246 247 248 249 250
#define UV1_LOCAL_MMR_BASE		0xf4000000UL
#define UV1_GLOBAL_MMR32_BASE		0xf8000000UL
#define UV1_LOCAL_MMR_SIZE		(64UL * 1024 * 1024)
#define UV1_GLOBAL_MMR32_SIZE		(64UL * 1024 * 1024)

#define UV2_LOCAL_MMR_BASE		0xfa000000UL
#define UV2_GLOBAL_MMR32_BASE		0xfc000000UL
#define UV2_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
#define UV2_GLOBAL_MMR32_SIZE		(32UL * 1024 * 1024)

251 252 253 254 255 256 257 258 259 260 261 262 263 264
#define UV3_LOCAL_MMR_BASE		0xfa000000UL
#define UV3_GLOBAL_MMR32_BASE		0xfc000000UL
#define UV3_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
#define UV3_GLOBAL_MMR32_SIZE		(32UL * 1024 * 1024)

#define UV_LOCAL_MMR_BASE		(is_uv1_hub() ? UV1_LOCAL_MMR_BASE : \
					(is_uv2_hub() ? UV2_LOCAL_MMR_BASE : \
							UV3_LOCAL_MMR_BASE))
#define UV_GLOBAL_MMR32_BASE		(is_uv1_hub() ? UV1_GLOBAL_MMR32_BASE :\
					(is_uv2_hub() ? UV2_GLOBAL_MMR32_BASE :\
							UV3_GLOBAL_MMR32_BASE))
#define UV_LOCAL_MMR_SIZE		(is_uv1_hub() ? UV1_LOCAL_MMR_SIZE : \
					(is_uv2_hub() ? UV2_LOCAL_MMR_SIZE : \
							UV3_LOCAL_MMR_SIZE))
265
#define UV_GLOBAL_MMR32_SIZE		(is_uv1_hub() ? UV1_GLOBAL_MMR32_SIZE :\
266 267
					(is_uv2_hub() ? UV2_GLOBAL_MMR32_SIZE :\
							UV3_GLOBAL_MMR32_SIZE))
268 269
#define UV_GLOBAL_MMR64_BASE		(uv_hub_info->global_mmr_base)

270 271
#define UV_GLOBAL_GRU_MMR_BASE		0x4000000

272 273
#define UV_GLOBAL_MMR32_PNODE_SHIFT	15
#define UV_GLOBAL_MMR64_PNODE_SHIFT	26
274

275
#define UV_GLOBAL_MMR32_PNODE_BITS(p)	((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
276

277
#define UV_GLOBAL_MMR64_PNODE_BITS(p)					\
278
	(((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
279

280
#define UVH_APICID		0x002D0E00L
281 282
#define UV_APIC_PNODE_SHIFT	6

283 284
#define UV_APICID_HIBIT_MASK	0xffff0000

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
/* Local Bus from cpu's perspective */
#define LOCAL_BUS_BASE		0x1c00000
#define LOCAL_BUS_SIZE		(4 * 1024 * 1024)

/*
 * System Controller Interface Reg
 *
 * Note there are NO leds on a UV system.  This register is only
 * used by the system controller to monitor system-wide operation.
 * There are 64 regs per node.  With Nahelem cpus (2 cores per node,
 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
 * a node.
 *
 * The window is located at top of ACPI MMR space
 */
#define SCIR_WINDOW_COUNT	64
#define SCIR_LOCAL_MMR_BASE	(LOCAL_BUS_BASE + \
				 LOCAL_BUS_SIZE - \
				 SCIR_WINDOW_COUNT)

#define SCIR_CPU_HEARTBEAT	0x01	/* timer interrupt */
#define SCIR_CPU_ACTIVITY	0x02	/* not idle */
#define SCIR_CPU_HB_INTERVAL	(HZ)	/* once per second */

309 310 311 312
/* Loop through all installed blades */
#define for_each_possible_blade(bid)		\
	for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)

313 314 315
/*
 * Macros for converting between kernel virtual addresses, socket local physical
 * addresses, and UV global physical addresses.
316 317
 *	Note: use the standard __pa() & __va() macros for converting
 *	      between socket virtual and socket physical addresses.
318 319 320 321 322 323
 */

/* socket phys RAM --> UV global physical address */
static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
{
	if (paddr < uv_hub_info->lowmem_remap_top)
324
		paddr |= uv_hub_info->lowmem_remap_base;
325 326 327 328
	paddr |= uv_hub_info->gnode_upper;
	paddr = ((paddr << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
		((paddr >> uv_hub_info->m_val) << uv_hub_info->n_lshift);
	return paddr;
329 330 331 332 333 334
}


/* socket virtual --> UV global physical address */
static inline unsigned long uv_gpa(void *v)
{
335
	return uv_soc_phys_ram_to_gpa(__pa(v));
336
}
337

R
Robin Holt 已提交
338 339 340 341 342 343 344
/* Top two bits indicate the requested address is in MMR space.  */
static inline int
uv_gpa_in_mmr_space(unsigned long gpa)
{
	return (gpa >> 62) == 0x3UL;
}

345 346 347
/* UV global physical address --> socket phys RAM */
static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
{
348
	unsigned long paddr;
349 350 351
	unsigned long remap_base = uv_hub_info->lowmem_remap_base;
	unsigned long remap_top =  uv_hub_info->lowmem_remap_top;

352 353
	gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
		((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val);
354
	paddr = gpa & uv_hub_info->gpa_mask;
355 356 357 358 359 360
	if (paddr >= remap_base && paddr < remap_base + remap_top)
		paddr -= remap_base;
	return paddr;
}


361
/* gpa -> pnode */
362 363
static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
{
364
	return gpa >> uv_hub_info->n_lshift;
365 366 367 368 369 370 371 372 373
}

/* gpa -> pnode */
static inline int uv_gpa_to_pnode(unsigned long gpa)
{
	unsigned long n_mask = (1UL << uv_hub_info->n_val) - 1;

	return uv_gpa_to_gnode(gpa) & n_mask;
}
374

375 376 377 378 379 380
/* gpa -> node offset*/
static inline unsigned long uv_gpa_to_offset(unsigned long gpa)
{
	return (gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift;
}

381 382 383 384 385
/* pnode, offset --> socket virtual */
static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
{
	return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
}
386 387 388


/*
389
 * Extract a PNODE from an APICID (full apicid, not processor subset)
390
 */
391
static inline int uv_apicid_to_pnode(int apicid)
392
{
393
	return (apicid >> uv_hub_info->apic_pnode_shift);
394 395
}

396 397 398 399 400 401 402 403 404 405 406
/*
 * Convert an apicid to the socket number on the blade
 */
static inline int uv_apicid_to_socket(int apicid)
{
	if (is_uv1_hub())
		return (apicid >> (uv_hub_info->apic_pnode_shift - 1)) & 1;
	else
		return 0;
}

407 408 409 410
/*
 * Access global MMRs using the low memory MMR32 space. This region supports
 * faster MMR access but not all MMRs are accessible in this space.
 */
411
static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
412 413
{
	return __va(UV_GLOBAL_MMR32_BASE |
414
		       UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
415 416
}

417
static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
418
{
419
	writeq(val, uv_global_mmr32_address(pnode, offset));
420 421
}

422
static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
423
{
424
	return readq(uv_global_mmr32_address(pnode, offset));
425 426 427 428 429 430
}

/*
 * Access Global MMR space using the MMR space located at the top of physical
 * memory.
 */
431
static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
432 433
{
	return __va(UV_GLOBAL_MMR64_BASE |
434
		    UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
435 436
}

437
static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
438
{
439
	writeq(val, uv_global_mmr64_address(pnode, offset));
440 441
}

442
static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
443
{
444
	return readq(uv_global_mmr64_address(pnode, offset));
445 446
}

447 448 449 450 451 452
/*
 * Global MMR space addresses when referenced by the GRU. (GRU does
 * NOT use socket addressing).
 */
static inline unsigned long uv_global_gru_mmr_address(int pnode, unsigned long offset)
{
453 454
	return UV_GLOBAL_GRU_MMR_BASE | offset |
		((unsigned long)pnode << uv_hub_info->m_val);
455 456
}

457 458 459 460 461 462 463 464 465 466
static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
{
	writeb(val, uv_global_mmr64_address(pnode, offset));
}

static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
{
	return readb(uv_global_mmr64_address(pnode, offset));
}

467
/*
468
 * Access hub local MMRs. Faster than using global space but only local MMRs
469 470 471 472 473 474 475 476 477
 * are accessible.
 */
static inline unsigned long *uv_local_mmr_address(unsigned long offset)
{
	return __va(UV_LOCAL_MMR_BASE | offset);
}

static inline unsigned long uv_read_local_mmr(unsigned long offset)
{
478
	return readq(uv_local_mmr_address(offset));
479 480 481 482
}

static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
{
483
	writeq(val, uv_local_mmr_address(offset));
484 485
}

486 487
static inline unsigned char uv_read_local_mmr8(unsigned long offset)
{
488
	return readb(uv_local_mmr_address(offset));
489 490 491 492
}

static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
{
493
	writeb(val, uv_local_mmr_address(offset));
494 495
}

496
/*
497
 * Structures and definitions for converting between cpu, node, pnode, and blade
498 499 500
 * numbers.
 */
struct uv_blade_info {
501
	unsigned short	nr_possible_cpus;
502
	unsigned short	nr_online_cpus;
503
	unsigned short	pnode;
504
	short		memory_nid;
505 506
	spinlock_t	nmi_lock;	/* obsolete, see uv_hub_nmi */
	unsigned long	nmi_count;	/* obsolete, see uv_hub_nmi */
507
};
508
extern struct uv_blade_info *uv_blade_info;
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
extern short *uv_node_to_blade;
extern short *uv_cpu_to_blade;
extern short uv_possible_blades;

/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
static inline int uv_blade_processor_id(void)
{
	return uv_hub_info->blade_processor_id;
}

/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
static inline int uv_numa_blade_id(void)
{
	return uv_hub_info->numa_blade_id;
}

/* Convert a cpu number to the the UV blade number */
static inline int uv_cpu_to_blade_id(int cpu)
{
	return uv_cpu_to_blade[cpu];
}

/* Convert linux node number to the UV blade number */
static inline int uv_node_to_blade_id(int nid)
{
	return uv_node_to_blade[nid];
}

537 538
/* Convert a blade id to the PNODE of the blade */
static inline int uv_blade_to_pnode(int bid)
539
{
540
	return uv_blade_info[bid].pnode;
541 542
}

543 544 545 546 547 548
/* Nid of memory node on blade. -1 if no blade-local memory */
static inline int uv_blade_to_memory_nid(int bid)
{
	return uv_blade_info[bid].memory_nid;
}

549 550 551
/* Determine the number of possible cpus on a blade */
static inline int uv_blade_nr_possible_cpus(int bid)
{
552
	return uv_blade_info[bid].nr_possible_cpus;
553 554 555 556 557 558 559 560
}

/* Determine the number of online cpus on a blade */
static inline int uv_blade_nr_online_cpus(int bid)
{
	return uv_blade_info[bid].nr_online_cpus;
}

561 562
/* Convert a cpu id to the PNODE of the blade containing the cpu */
static inline int uv_cpu_to_pnode(int cpu)
563
{
564
	return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
565 566
}

567 568
/* Convert a linux node number to the PNODE of the blade */
static inline int uv_node_to_pnode(int nid)
569
{
570
	return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
571 572 573 574 575 576 577 578
}

/* Maximum possible number of blades */
static inline int uv_num_possible_blades(void)
{
	return uv_possible_blades;
}

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
/* Per Hub NMI support */
extern void uv_nmi_setup(void);

/* BMC sets a bit this MMR non-zero before sending an NMI */
#define UVH_NMI_MMR		UVH_SCRATCH5
#define UVH_NMI_MMR_CLEAR	UVH_SCRATCH5_ALIAS
#define UVH_NMI_MMR_SHIFT	63
#define	UVH_NMI_MMR_TYPE	"SCRATCH5"

/* Newer SMM NMI handler, not present in all systems */
#define UVH_NMI_MMRX		UVH_EVENT_OCCURRED0
#define UVH_NMI_MMRX_CLEAR	UVH_EVENT_OCCURRED0_ALIAS
#define UVH_NMI_MMRX_SHIFT	(is_uv1_hub() ? \
					UV1H_EVENT_OCCURRED0_EXTIO_INT0_SHFT :\
					UVXH_EVENT_OCCURRED0_EXTIO_INT0_SHFT)
#define	UVH_NMI_MMRX_TYPE	"EXTIO_INT0"

/* Non-zero indicates newer SMM NMI handler present */
#define UVH_NMI_MMRX_SUPPORTED	UVH_EXTIO_INT0_BROADCAST

/* Indicates to BIOS that we want to use the newer SMM NMI handler */
#define UVH_NMI_MMRX_REQ	UVH_SCRATCH5_ALIAS_2
#define UVH_NMI_MMRX_REQ_SHIFT	62

struct uv_hub_nmi_s {
	raw_spinlock_t	nmi_lock;
	atomic_t	in_nmi;		/* flag this node in UV NMI IRQ */
	atomic_t	cpu_owner;	/* last locker of this struct */
	atomic_t	read_mmr_count;	/* count of MMR reads */
	atomic_t	nmi_count;	/* count of true UV NMIs */
	unsigned long	nmi_value;	/* last value read from NMI MMR */
};

struct uv_cpu_nmi_s {
	struct uv_hub_nmi_s	*hub;
	atomic_t		state;
	atomic_t		pinging;
	int			queries;
	int			pings;
};

DECLARE_PER_CPU(struct uv_cpu_nmi_s, __uv_cpu_nmi);
#define uv_cpu_nmi			(__get_cpu_var(__uv_cpu_nmi))
#define uv_hub_nmi			(uv_cpu_nmi.hub)
#define uv_cpu_nmi_per(cpu)		(per_cpu(__uv_cpu_nmi, cpu))
#define uv_hub_nmi_per(cpu)		(uv_cpu_nmi_per(cpu).hub)

/* uv_cpu_nmi_states */
#define	UV_NMI_STATE_OUT		0
#define	UV_NMI_STATE_IN			1
#define	UV_NMI_STATE_DUMP		2
#define	UV_NMI_STATE_DUMP_DONE		3

632 633 634 635 636 637 638 639
/* Update SCIR state */
static inline void uv_set_scir_bits(unsigned char value)
{
	if (uv_hub_info->scir.state != value) {
		uv_hub_info->scir.state = value;
		uv_write_local_mmr8(uv_hub_info->scir.offset, value);
	}
}
640

641 642 643 644 645
static inline unsigned long uv_scir_offset(int apicid)
{
	return SCIR_LOCAL_MMR_BASE | (apicid & 0x3f);
}

646 647 648
static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
{
	if (uv_cpu_hub_info(cpu)->scir.state != value) {
649 650
		uv_write_global_mmr8(uv_cpu_to_pnode(cpu),
				uv_cpu_hub_info(cpu)->scir.offset, value);
651 652 653
		uv_cpu_hub_info(cpu)->scir.state = value;
	}
}
654

655
extern unsigned int uv_apicid_hibits;
656 657
static unsigned long uv_hub_ipi_value(int apicid, int vector, int mode)
{
658
	apicid |= uv_apicid_hibits;
659 660 661 662 663 664
	return (1UL << UVH_IPI_INT_SEND_SHFT) |
			((apicid) << UVH_IPI_INT_APIC_ID_SHFT) |
			(mode << UVH_IPI_INT_DELIVERY_MODE_SHFT) |
			(vector << UVH_IPI_INT_VECTOR_SHFT);
}

665 666 667
static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
{
	unsigned long val;
668 669 670 671
	unsigned long dmode = dest_Fixed;

	if (vector == NMI_VECTOR)
		dmode = dest_NMI;
672

673
	val = uv_hub_ipi_value(apicid, vector, dmode);
674 675 676
	uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
}

677 678
/*
 * Get the minimum revision number of the hub chips within the partition.
679 680 681
 *     1 - UV1 rev 1.0 initial silicon
 *     2 - UV1 rev 2.0 production silicon
 *     3 - UV2 rev 1.0 initial silicon
682
 *     5 - UV3 rev 1.0 initial silicon
683 684 685
 */
static inline int uv_get_min_hub_revision_id(void)
{
686
	return uv_hub_info->hub_revision;
687 688
}

689
#endif /* CONFIG_X86_64 */
690
#endif /* _ASM_X86_UV_UV_HUB_H */