sched.h 49.9 KB
Newer Older
1 2

#include <linux/sched.h>
3
#include <linux/sched/sysctl.h>
4
#include <linux/sched/topology.h>
5
#include <linux/sched/rt.h>
6
#include <linux/sched/clock.h>
7
#include <linux/sched/wake_q.h>
8
#include <linux/sched/signal.h>
9
#include <linux/sched/numa_balancing.h>
10
#include <linux/sched/mm.h>
11
#include <linux/sched/cpufreq.h>
12
#include <linux/sched/stat.h>
13
#include <linux/u64_stats_sync.h>
14
#include <linux/sched/deadline.h>
15
#include <linux/kernel_stat.h>
16
#include <linux/binfmts.h>
17 18 19
#include <linux/mutex.h>
#include <linux/spinlock.h>
#include <linux/stop_machine.h>
20
#include <linux/irq_work.h>
21
#include <linux/tick.h>
22
#include <linux/slab.h>
23

24 25 26 27
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif

28
#include "cpupri.h"
29
#include "cpudeadline.h"
30
#include "cpuacct.h"
31

32 33 34 35 36 37
#ifdef CONFIG_SCHED_DEBUG
#define SCHED_WARN_ON(x)	WARN_ONCE(x, #x)
#else
#define SCHED_WARN_ON(x)	((void)(x))
#endif

38
struct rq;
39
struct cpuidle_state;
40

41 42
/* task_struct::on_rq states: */
#define TASK_ON_RQ_QUEUED	1
43
#define TASK_ON_RQ_MIGRATING	2
44

45 46
extern __read_mostly int scheduler_running;

47 48 49
extern unsigned long calc_load_update;
extern atomic_long_t calc_load_tasks;

50
extern void calc_global_load_tick(struct rq *this_rq);
51
extern long calc_load_fold_active(struct rq *this_rq, long adjust);
52 53

#ifdef CONFIG_SMP
54
extern void cpu_load_update_active(struct rq *this_rq);
55
#else
56
static inline void cpu_load_update_active(struct rq *this_rq) { }
57
#endif
58

59 60 61 62 63
/*
 * Helpers for converting nanosecond timing to jiffy resolution
 */
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))

64 65 66 67 68 69 70 71
/*
 * Increase resolution of nice-level calculations for 64-bit architectures.
 * The extra resolution improves shares distribution and load balancing of
 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
 * hierarchies, especially on larger systems. This is not a user-visible change
 * and does not change the user-interface for setting shares/weights.
 *
 * We increase resolution only if we have enough bits to allow this increased
72 73 74 75 76
 * resolution (i.e. 64bit). The costs for increasing resolution when 32bit are
 * pretty high and the returns do not justify the increased costs.
 *
 * Really only required when CONFIG_FAIR_GROUP_SCHED is also set, but to
 * increase coverage and consistency always enable it on 64bit platforms.
77
 */
78
#ifdef CONFIG_64BIT
79
# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
80 81
# define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
# define scale_load_down(w)	((w) >> SCHED_FIXEDPOINT_SHIFT)
82
#else
83
# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
84 85 86 87
# define scale_load(w)		(w)
# define scale_load_down(w)	(w)
#endif

88
/*
89 90 91 92 93 94 95
 * Task weight (visible to users) and its load (invisible to users) have
 * independent resolution, but they should be well calibrated. We use
 * scale_load() and scale_load_down(w) to convert between them. The
 * following must be true:
 *
 *  scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
 *
96
 */
97
#define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
98

99 100 101 102 103 104 105
/*
 * Single value that decides SCHED_DEADLINE internal math precision.
 * 10 -> just above 1us
 * 9  -> just above 0.5us
 */
#define DL_SCALE (10)

106 107 108 109 110 111 112 113 114
/*
 * These are the 'tuning knobs' of the scheduler:
 */

/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

115 116 117 118
static inline int idle_policy(int policy)
{
	return policy == SCHED_IDLE;
}
119 120 121 122 123
static inline int fair_policy(int policy)
{
	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
}

124 125
static inline int rt_policy(int policy)
{
126
	return policy == SCHED_FIFO || policy == SCHED_RR;
127 128
}

129 130 131 132
static inline int dl_policy(int policy)
{
	return policy == SCHED_DEADLINE;
}
133 134 135 136 137
static inline bool valid_policy(int policy)
{
	return idle_policy(policy) || fair_policy(policy) ||
		rt_policy(policy) || dl_policy(policy);
}
138

139 140 141 142 143
static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

144 145 146 147 148
static inline int task_has_dl_policy(struct task_struct *p)
{
	return dl_policy(p->policy);
}

149 150 151
/*
 * Tells if entity @a should preempt entity @b.
 */
152 153
static inline bool
dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
154 155 156 157
{
	return dl_time_before(a->deadline, b->deadline);
}

158 159 160 161 162 163 164 165 166 167 168 169 170 171
/*
 * This is the priority-queue data structure of the RT scheduling class:
 */
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

struct rt_bandwidth {
	/* nests inside the rq lock: */
	raw_spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
P
Peter Zijlstra 已提交
172
	unsigned int		rt_period_active;
173
};
174 175 176

void __dl_clear_params(struct task_struct *p);

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
/*
 * To keep the bandwidth of -deadline tasks and groups under control
 * we need some place where:
 *  - store the maximum -deadline bandwidth of the system (the group);
 *  - cache the fraction of that bandwidth that is currently allocated.
 *
 * This is all done in the data structure below. It is similar to the
 * one used for RT-throttling (rt_bandwidth), with the main difference
 * that, since here we are only interested in admission control, we
 * do not decrease any runtime while the group "executes", neither we
 * need a timer to replenish it.
 *
 * With respect to SMP, the bandwidth is given on a per-CPU basis,
 * meaning that:
 *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
 *  - dl_total_bw array contains, in the i-eth element, the currently
 *    allocated bandwidth on the i-eth CPU.
 * Moreover, groups consume bandwidth on each CPU, while tasks only
 * consume bandwidth on the CPU they're running on.
 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
 * that will be shown the next time the proc or cgroup controls will
 * be red. It on its turn can be changed by writing on its own
 * control.
 */
struct dl_bandwidth {
	raw_spinlock_t dl_runtime_lock;
	u64 dl_runtime;
	u64 dl_period;
};

static inline int dl_bandwidth_enabled(void)
{
209
	return sysctl_sched_rt_runtime >= 0;
210 211 212 213 214 215 216 217 218
}

extern struct dl_bw *dl_bw_of(int i);

struct dl_bw {
	raw_spinlock_t lock;
	u64 bw, total_bw;
};

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
static inline
void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
{
	dl_b->total_bw -= tsk_bw;
}

static inline
void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
{
	dl_b->total_bw += tsk_bw;
}

static inline
bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
{
	return dl_b->bw != -1 &&
	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
}

238
extern void init_dl_bw(struct dl_bw *dl_b);
239 240 241 242 243 244 245 246

#ifdef CONFIG_CGROUP_SCHED

#include <linux/cgroup.h>

struct cfs_rq;
struct rt_rq;

247
extern struct list_head task_groups;
248 249 250 251 252 253

struct cfs_bandwidth {
#ifdef CONFIG_CFS_BANDWIDTH
	raw_spinlock_t lock;
	ktime_t period;
	u64 quota, runtime;
254
	s64 hierarchical_quota;
255 256
	u64 runtime_expires;

P
Peter Zijlstra 已提交
257
	int idle, period_active;
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
	struct hrtimer period_timer, slack_timer;
	struct list_head throttled_cfs_rq;

	/* statistics */
	int nr_periods, nr_throttled;
	u64 throttled_time;
#endif
};

/* task group related information */
struct task_group {
	struct cgroup_subsys_state css;

#ifdef CONFIG_FAIR_GROUP_SCHED
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;

278
#ifdef	CONFIG_SMP
279 280 281 282 283 284
	/*
	 * load_avg can be heavily contended at clock tick time, so put
	 * it in its own cacheline separated from the fields above which
	 * will also be accessed at each tick.
	 */
	atomic_long_t load_avg ____cacheline_aligned;
285
#endif
286
#endif
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

	struct rt_bandwidth rt_bandwidth;
#endif

	struct rcu_head rcu;
	struct list_head list;

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;

#ifdef CONFIG_SCHED_AUTOGROUP
	struct autogroup *autogroup;
#endif

	struct cfs_bandwidth cfs_bandwidth;
};

#ifdef CONFIG_FAIR_GROUP_SCHED
#define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD

/*
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
#define MIN_SHARES	(1UL <<  1)
#define MAX_SHARES	(1UL << 18)
#endif

typedef int (*tg_visitor)(struct task_group *, void *);

extern int walk_tg_tree_from(struct task_group *from,
			     tg_visitor down, tg_visitor up, void *data);

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
 */
static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
{
	return walk_tg_tree_from(&root_task_group, down, up, data);
}

extern int tg_nop(struct task_group *tg, void *data);

extern void free_fair_sched_group(struct task_group *tg);
extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
344
extern void online_fair_sched_group(struct task_group *tg);
345
extern void unregister_fair_sched_group(struct task_group *tg);
346 347 348 349 350 351
extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent);
extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);

extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
P
Peter Zijlstra 已提交
352
extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
353 354 355 356 357 358 359 360
extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);

extern void free_rt_sched_group(struct task_group *tg);
extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu,
		struct sched_rt_entity *parent);

361 362 363 364 365 366 367 368 369 370
extern struct task_group *sched_create_group(struct task_group *parent);
extern void sched_online_group(struct task_group *tg,
			       struct task_group *parent);
extern void sched_destroy_group(struct task_group *tg);
extern void sched_offline_group(struct task_group *tg);

extern void sched_move_task(struct task_struct *tsk);

#ifdef CONFIG_FAIR_GROUP_SCHED
extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
371 372 373 374 375 376 377 378 379

#ifdef CONFIG_SMP
extern void set_task_rq_fair(struct sched_entity *se,
			     struct cfs_rq *prev, struct cfs_rq *next);
#else /* !CONFIG_SMP */
static inline void set_task_rq_fair(struct sched_entity *se,
			     struct cfs_rq *prev, struct cfs_rq *next) { }
#endif /* CONFIG_SMP */
#endif /* CONFIG_FAIR_GROUP_SCHED */
380

381 382 383 384 385 386 387 388 389
#else /* CONFIG_CGROUP_SCHED */

struct cfs_bandwidth { };

#endif	/* CONFIG_CGROUP_SCHED */

/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
390
	unsigned int nr_running, h_nr_running;
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410

	u64 exec_clock;
	u64 min_vruntime;
#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
#endif

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr, *next, *last, *skip;

#ifdef	CONFIG_SCHED_DEBUG
	unsigned int nr_spread_over;
#endif

411 412
#ifdef CONFIG_SMP
	/*
413
	 * CFS load tracking
414
	 */
415
	struct sched_avg avg;
416 417
	u64 runnable_load_sum;
	unsigned long runnable_load_avg;
418
#ifdef CONFIG_FAIR_GROUP_SCHED
419
	unsigned long tg_load_avg_contrib;
420
	unsigned long propagate_avg;
421 422 423 424 425
#endif
	atomic_long_t removed_load_avg, removed_util_avg;
#ifndef CONFIG_64BIT
	u64 load_last_update_time_copy;
#endif
426

427
#ifdef CONFIG_FAIR_GROUP_SCHED
428 429 430 431 432 433 434
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
435 436 437
	u64 last_h_load_update;
	struct sched_entity *h_load_next;
#endif /* CONFIG_FAIR_GROUP_SCHED */
438 439
#endif /* CONFIG_SMP */

440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	int on_list;
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */

#ifdef CONFIG_CFS_BANDWIDTH
	int runtime_enabled;
	u64 runtime_expires;
	s64 runtime_remaining;

460 461
	u64 throttled_clock, throttled_clock_task;
	u64 throttled_clock_task_time;
462
	int throttled, throttle_count;
463 464 465 466 467 468 469 470 471 472
	struct list_head throttled_list;
#endif /* CONFIG_CFS_BANDWIDTH */
#endif /* CONFIG_FAIR_GROUP_SCHED */
};

static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
}

473 474 475 476 477
/* RT IPI pull logic requires IRQ_WORK */
#ifdef CONFIG_IRQ_WORK
# define HAVE_RT_PUSH_IPI
#endif

478 479 480
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
481
	unsigned int rt_nr_running;
F
Frederic Weisbecker 已提交
482
	unsigned int rr_nr_running;
483 484 485 486 487 488 489 490 491 492 493 494 495
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
	struct {
		int curr; /* highest queued rt task prio */
#ifdef CONFIG_SMP
		int next; /* next highest */
#endif
	} highest_prio;
#endif
#ifdef CONFIG_SMP
	unsigned long rt_nr_migratory;
	unsigned long rt_nr_total;
	int overloaded;
	struct plist_head pushable_tasks;
496 497 498 499 500
#ifdef HAVE_RT_PUSH_IPI
	int push_flags;
	int push_cpu;
	struct irq_work push_work;
	raw_spinlock_t push_lock;
501
#endif
502
#endif /* CONFIG_SMP */
503 504
	int rt_queued;

505 506 507 508 509 510 511 512 513 514 515 516 517 518
	int rt_throttled;
	u64 rt_time;
	u64 rt_runtime;
	/* Nests inside the rq lock: */
	raw_spinlock_t rt_runtime_lock;

#ifdef CONFIG_RT_GROUP_SCHED
	unsigned long rt_nr_boosted;

	struct rq *rq;
	struct task_group *tg;
#endif
};

519 520 521 522 523 524 525
/* Deadline class' related fields in a runqueue */
struct dl_rq {
	/* runqueue is an rbtree, ordered by deadline */
	struct rb_root rb_root;
	struct rb_node *rb_leftmost;

	unsigned long dl_nr_running;
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548

#ifdef CONFIG_SMP
	/*
	 * Deadline values of the currently executing and the
	 * earliest ready task on this rq. Caching these facilitates
	 * the decision wether or not a ready but not running task
	 * should migrate somewhere else.
	 */
	struct {
		u64 curr;
		u64 next;
	} earliest_dl;

	unsigned long dl_nr_migratory;
	int overloaded;

	/*
	 * Tasks on this rq that can be pushed away. They are kept in
	 * an rb-tree, ordered by tasks' deadlines, with caching
	 * of the leftmost (earliest deadline) element.
	 */
	struct rb_root pushable_dl_tasks_root;
	struct rb_node *pushable_dl_tasks_leftmost;
549 550
#else
	struct dl_bw dl_bw;
551
#endif
552 553
};

554 555
#ifdef CONFIG_SMP

T
Tim Chen 已提交
556 557 558 559 560
static inline bool sched_asym_prefer(int a, int b)
{
	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
}

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
/*
 * We add the notion of a root-domain which will be used to define per-domain
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	atomic_t rto_count;
	struct rcu_head rcu;
	cpumask_var_t span;
	cpumask_var_t online;

576 577 578
	/* Indicate more than one runnable task for any CPU */
	bool overload;

579 580 581 582 583 584
	/*
	 * The bit corresponding to a CPU gets set here if such CPU has more
	 * than one runnable -deadline task (as it is below for RT tasks).
	 */
	cpumask_var_t dlo_mask;
	atomic_t dlo_count;
585
	struct dl_bw dl_bw;
586
	struct cpudl cpudl;
587

588 589 590 591 592 593
	/*
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_var_t rto_mask;
	struct cpupri cpupri;
594 595

	unsigned long max_cpu_capacity;
596 597 598
};

extern struct root_domain def_root_domain;
599 600 601 602 603 604 605
extern struct mutex sched_domains_mutex;
extern cpumask_var_t fallback_doms;
extern cpumask_var_t sched_domains_tmpmask;

extern void init_defrootdomain(void);
extern int init_sched_domains(const struct cpumask *cpu_map);
extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623

#endif /* CONFIG_SMP */

/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
struct rq {
	/* runqueue lock: */
	raw_spinlock_t lock;

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
624
	unsigned int nr_running;
625 626 627 628
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
629 630
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
631
#ifdef CONFIG_NO_HZ_COMMON
632 633 634
#ifdef CONFIG_SMP
	unsigned long last_load_update_tick;
#endif /* CONFIG_SMP */
635
	unsigned long nohz_flags;
636
#endif /* CONFIG_NO_HZ_COMMON */
637 638
#ifdef CONFIG_NO_HZ_FULL
	unsigned long last_sched_tick;
639 640 641 642 643 644 645 646
#endif
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
	struct rt_rq rt;
647
	struct dl_rq dl;
648 649 650 651

#ifdef CONFIG_FAIR_GROUP_SCHED
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
652
	struct list_head *tmp_alone_branch;
653 654
#endif /* CONFIG_FAIR_GROUP_SCHED */

655 656 657 658 659 660 661 662 663 664 665 666
	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

	struct task_struct *curr, *idle, *stop;
	unsigned long next_balance;
	struct mm_struct *prev_mm;

667
	unsigned int clock_update_flags;
668 669 670 671 672 673 674 675 676
	u64 clock;
	u64 clock_task;

	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct root_domain *rd;
	struct sched_domain *sd;

677
	unsigned long cpu_capacity;
678
	unsigned long cpu_capacity_orig;
679

680 681
	struct callback_head *balance_callback;

682 683 684 685 686 687 688 689 690
	unsigned char idle_balance;
	/* For active balancing */
	int active_balance;
	int push_cpu;
	struct cpu_stop_work active_balance_work;
	/* cpu of this runqueue: */
	int cpu;
	int online;

691 692
	struct list_head cfs_tasks;

693 694 695 696
	u64 rt_avg;
	u64 age_stamp;
	u64 idle_stamp;
	u64 avg_idle;
697 698 699

	/* This is used to determine avg_idle's max value */
	u64 max_idle_balance_cost;
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
#endif

#ifdef CONFIG_IRQ_TIME_ACCOUNTING
	u64 prev_irq_time;
#endif
#ifdef CONFIG_PARAVIRT
	u64 prev_steal_time;
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
	u64 prev_steal_time_rq;
#endif

	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

#ifdef CONFIG_SCHED_HRTICK
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
	struct hrtimer hrtick_timer;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */

	/* sys_sched_yield() stats */
	unsigned int yld_count;

	/* schedule() stats */
	unsigned int sched_count;
	unsigned int sched_goidle;

	/* try_to_wake_up() stats */
	unsigned int ttwu_count;
	unsigned int ttwu_local;
#endif

#ifdef CONFIG_SMP
	struct llist_head wake_list;
#endif
745 746 747 748 749

#ifdef CONFIG_CPU_IDLE
	/* Must be inspected within a rcu lock section */
	struct cpuidle_state *idle_state;
#endif
750 751 752 753 754 755 756 757 758 759 760
};

static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

P
Peter Zijlstra 已提交
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777

#ifdef CONFIG_SCHED_SMT

extern struct static_key_false sched_smt_present;

extern void __update_idle_core(struct rq *rq);

static inline void update_idle_core(struct rq *rq)
{
	if (static_branch_unlikely(&sched_smt_present))
		__update_idle_core(rq);
}

#else
static inline void update_idle_core(struct rq *rq) { }
#endif

778
DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
779

780
#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
781
#define this_rq()		this_cpu_ptr(&runqueues)
782 783
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
784
#define raw_rq()		raw_cpu_ptr(&runqueues)
785

786 787
static inline u64 __rq_clock_broken(struct rq *rq)
{
788
	return READ_ONCE(rq->clock);
789 790
}

791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
/*
 * rq::clock_update_flags bits
 *
 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
 *  call to __schedule(). This is an optimisation to avoid
 *  neighbouring rq clock updates.
 *
 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
 *  in effect and calls to update_rq_clock() are being ignored.
 *
 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
 *  made to update_rq_clock() since the last time rq::lock was pinned.
 *
 * If inside of __schedule(), clock_update_flags will have been
 * shifted left (a left shift is a cheap operation for the fast path
 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
 *
 *	if (rq-clock_update_flags >= RQCF_UPDATED)
 *
 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
 * one position though, because the next rq_unpin_lock() will shift it
 * back.
 */
#define RQCF_REQ_SKIP	0x01
#define RQCF_ACT_SKIP	0x02
#define RQCF_UPDATED	0x04

static inline void assert_clock_updated(struct rq *rq)
{
	/*
	 * The only reason for not seeing a clock update since the
	 * last rq_pin_lock() is if we're currently skipping updates.
	 */
	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
}

827 828
static inline u64 rq_clock(struct rq *rq)
{
829
	lockdep_assert_held(&rq->lock);
830 831
	assert_clock_updated(rq);

832 833 834 835 836
	return rq->clock;
}

static inline u64 rq_clock_task(struct rq *rq)
{
837
	lockdep_assert_held(&rq->lock);
838 839
	assert_clock_updated(rq);

840 841 842
	return rq->clock_task;
}

843 844 845 846
static inline void rq_clock_skip_update(struct rq *rq, bool skip)
{
	lockdep_assert_held(&rq->lock);
	if (skip)
847
		rq->clock_update_flags |= RQCF_REQ_SKIP;
848
	else
849
		rq->clock_update_flags &= ~RQCF_REQ_SKIP;
850 851
}

852 853 854
struct rq_flags {
	unsigned long flags;
	struct pin_cookie cookie;
855 856 857 858 859 860 861 862
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
	 * current pin context is stashed here in case it needs to be
	 * restored in rq_repin_lock().
	 */
	unsigned int clock_update_flags;
#endif
863 864 865 866 867
};

static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
{
	rf->cookie = lockdep_pin_lock(&rq->lock);
868 869 870 871 872

#ifdef CONFIG_SCHED_DEBUG
	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
	rf->clock_update_flags = 0;
#endif
873 874 875 876
}

static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
{
877 878 879 880 881
#ifdef CONFIG_SCHED_DEBUG
	if (rq->clock_update_flags > RQCF_ACT_SKIP)
		rf->clock_update_flags = RQCF_UPDATED;
#endif

882 883 884 885 886 887
	lockdep_unpin_lock(&rq->lock, rf->cookie);
}

static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
{
	lockdep_repin_lock(&rq->lock, rf->cookie);
888 889 890 891 892 893 894

#ifdef CONFIG_SCHED_DEBUG
	/*
	 * Restore the value we stashed in @rf for this pin context.
	 */
	rq->clock_update_flags |= rf->clock_update_flags;
#endif
895 896
}

897
#ifdef CONFIG_NUMA
898 899 900 901 902 903
enum numa_topology_type {
	NUMA_DIRECT,
	NUMA_GLUELESS_MESH,
	NUMA_BACKPLANE,
};
extern enum numa_topology_type sched_numa_topology_type;
904 905 906 907
extern int sched_max_numa_distance;
extern bool find_numa_distance(int distance);
#endif

908 909 910 911 912 913 914 915 916 917
#ifdef CONFIG_NUMA
extern void sched_init_numa(void);
extern void sched_domains_numa_masks_set(unsigned int cpu);
extern void sched_domains_numa_masks_clear(unsigned int cpu);
#else
static inline void sched_init_numa(void) { }
static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
#endif

918
#ifdef CONFIG_NUMA_BALANCING
919 920 921 922 923 924 925
/* The regions in numa_faults array from task_struct */
enum numa_faults_stats {
	NUMA_MEM = 0,
	NUMA_CPU,
	NUMA_MEMBUF,
	NUMA_CPUBUF
};
926
extern void sched_setnuma(struct task_struct *p, int node);
927
extern int migrate_task_to(struct task_struct *p, int cpu);
928
extern int migrate_swap(struct task_struct *, struct task_struct *);
929 930
#endif /* CONFIG_NUMA_BALANCING */

931 932
#ifdef CONFIG_SMP

933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
static inline void
queue_balance_callback(struct rq *rq,
		       struct callback_head *head,
		       void (*func)(struct rq *rq))
{
	lockdep_assert_held(&rq->lock);

	if (unlikely(head->next))
		return;

	head->func = (void (*)(struct callback_head *))func;
	head->next = rq->balance_callback;
	rq->balance_callback = head;
}

948 949
extern void sched_ttwu_pending(void);

950 951 952 953 954 955 956 957 958 959 960 961
#define rcu_dereference_check_sched_domain(p) \
	rcu_dereference_check((p), \
			      lockdep_is_held(&sched_domains_mutex))

/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
 * See detach_destroy_domains: synchronize_sched for details.
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
#define for_each_domain(cpu, __sd) \
962 963
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
			__sd; __sd = __sd->parent)
964

965 966
#define for_each_lower_domain(sd) for (; sd; sd = sd->child)

967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
/**
 * highest_flag_domain - Return highest sched_domain containing flag.
 * @cpu:	The cpu whose highest level of sched domain is to
 *		be returned.
 * @flag:	The flag to check for the highest sched_domain
 *		for the given cpu.
 *
 * Returns the highest sched_domain of a cpu which contains the given flag.
 */
static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd, *hsd = NULL;

	for_each_domain(cpu, sd) {
		if (!(sd->flags & flag))
			break;
		hsd = sd;
	}

	return hsd;
}

989 990 991 992 993 994 995 996 997 998 999 1000
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd) {
		if (sd->flags & flag)
			break;
	}

	return sd;
}

1001
DECLARE_PER_CPU(struct sched_domain *, sd_llc);
1002
DECLARE_PER_CPU(int, sd_llc_size);
1003
DECLARE_PER_CPU(int, sd_llc_id);
1004
DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
1005
DECLARE_PER_CPU(struct sched_domain *, sd_numa);
1006
DECLARE_PER_CPU(struct sched_domain *, sd_asym);
1007

1008
struct sched_group_capacity {
1009 1010
	atomic_t ref;
	/*
1011
	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1012
	 * for a single CPU.
1013
	 */
1014 1015
	unsigned long capacity;
	unsigned long min_capacity; /* Min per-CPU capacity in group */
1016
	unsigned long next_update;
1017
	int imbalance; /* XXX unrelated to capacity but shared group state */
1018 1019 1020 1021 1022 1023 1024 1025 1026

	unsigned long cpumask[0]; /* iteration mask */
};

struct sched_group {
	struct sched_group *next;	/* Must be a circular list */
	atomic_t ref;

	unsigned int group_weight;
1027
	struct sched_group_capacity *sgc;
T
Tim Chen 已提交
1028
	int asym_prefer_cpu;		/* cpu of highest priority in group */
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050

	/*
	 * The CPUs this group covers.
	 *
	 * NOTE: this field is variable length. (Allocated dynamically
	 * by attaching extra space to the end of the structure,
	 * depending on how many CPUs the kernel has booted up with)
	 */
	unsigned long cpumask[0];
};

static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
{
	return to_cpumask(sg->cpumask);
}

/*
 * cpumask masking which cpus in the group are allowed to iterate up the domain
 * tree.
 */
static inline struct cpumask *sched_group_mask(struct sched_group *sg)
{
1051
	return to_cpumask(sg->sgc->cpumask);
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
}

/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

P
Peter Zijlstra 已提交
1063 1064
extern int group_balance_cpu(struct sched_group *sg);

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
void register_sched_domain_sysctl(void);
void unregister_sched_domain_sysctl(void);
#else
static inline void register_sched_domain_sysctl(void)
{
}
static inline void unregister_sched_domain_sysctl(void)
{
}
#endif

1077 1078 1079 1080
#else

static inline void sched_ttwu_pending(void) { }

1081
#endif /* CONFIG_SMP */
1082

1083
#include "stats.h"
1084
#include "autogroup.h"
1085 1086 1087 1088 1089 1090

#ifdef CONFIG_CGROUP_SCHED

/*
 * Return the group to which this tasks belongs.
 *
1091 1092 1093
 * We cannot use task_css() and friends because the cgroup subsystem
 * changes that value before the cgroup_subsys::attach() method is called,
 * therefore we cannot pin it and might observe the wrong value.
P
Peter Zijlstra 已提交
1094 1095 1096 1097 1098 1099
 *
 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
 * core changes this before calling sched_move_task().
 *
 * Instead we use a 'copy' which is updated from sched_move_task() while
 * holding both task_struct::pi_lock and rq::lock.
1100 1101 1102
 */
static inline struct task_group *task_group(struct task_struct *p)
{
P
Peter Zijlstra 已提交
1103
	return p->sched_task_group;
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
{
#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
	struct task_group *tg = task_group(p);
#endif

#ifdef CONFIG_FAIR_GROUP_SCHED
1114
	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
	p->se.cfs_rq = tg->cfs_rq[cpu];
	p->se.parent = tg->se[cpu];
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	p->rt.rt_rq  = tg->rt_rq[cpu];
	p->rt.parent = tg->rt_se[cpu];
#endif
}

#else /* CONFIG_CGROUP_SCHED */

static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}

#endif /* CONFIG_CGROUP_SCHED */

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
1145 1146 1147
#ifdef CONFIG_THREAD_INFO_IN_TASK
	p->cpu = cpu;
#else
1148
	task_thread_info(p)->cpu = cpu;
1149
#endif
1150
	p->wake_cpu = cpu;
1151 1152 1153 1154 1155 1156 1157
#endif
}

/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
1158
# include <linux/static_key.h>
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
# define const_debug __read_mostly
#else
# define const_debug const
#endif

extern const_debug unsigned int sysctl_sched_features;

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

enum {
1170
#include "features.h"
1171
	__SCHED_FEAT_NR,
1172 1173 1174 1175
};

#undef SCHED_FEAT

1176 1177
#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
#define SCHED_FEAT(name, enabled)					\
1178
static __always_inline bool static_branch_##name(struct static_key *key) \
1179
{									\
1180
	return static_key_##enabled(key);				\
1181 1182 1183 1184 1185 1186
}

#include "features.h"

#undef SCHED_FEAT

1187
extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1188 1189
#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1190
#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1191
#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1192

1193
extern struct static_key_false sched_numa_balancing;
1194
extern struct static_key_false sched_schedstats;
1195

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
	if (sysctl_sched_rt_runtime < 0)
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}

static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

static inline int task_running(struct rq *rq, struct task_struct *p)
{
#ifdef CONFIG_SMP
	return p->on_cpu;
#else
	return task_current(rq, p);
#endif
}

1223 1224 1225 1226
static inline int task_on_rq_queued(struct task_struct *p)
{
	return p->on_rq == TASK_ON_RQ_QUEUED;
}
1227

1228 1229 1230 1231 1232
static inline int task_on_rq_migrating(struct task_struct *p)
{
	return p->on_rq == TASK_ON_RQ_MIGRATING;
}

1233 1234 1235
#ifndef prepare_arch_switch
# define prepare_arch_switch(next)	do { } while (0)
#endif
1236 1237 1238
#ifndef finish_arch_post_lock_switch
# define finish_arch_post_lock_switch()	do { } while (0)
#endif
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258

static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->on_cpu = 1;
#endif
}

static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
{
#ifdef CONFIG_SMP
	/*
	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
1259
	 *
1260 1261 1262
	 * In particular, the load of prev->state in finish_task_switch() must
	 * happen before this.
	 *
1263
	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
1264
	 */
1265
	smp_store_release(&prev->on_cpu, 0);
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
#endif
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

	raw_spin_unlock_irq(&rq->lock);
}

1281 1282 1283 1284 1285 1286 1287
/*
 * wake flags
 */
#define WF_SYNC		0x01		/* waker goes to sleep after wakeup */
#define WF_FORK		0x02		/* child wakeup after fork */
#define WF_MIGRATED	0x4		/* internal use, task got migrated */

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765

1300 1301
extern const int sched_prio_to_weight[40];
extern const u32 sched_prio_to_wmult[40];
1302

1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
/*
 * {de,en}queue flags:
 *
 * DEQUEUE_SLEEP  - task is no longer runnable
 * ENQUEUE_WAKEUP - task just became runnable
 *
 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
 *                are in a known state which allows modification. Such pairs
 *                should preserve as much state as possible.
 *
 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
 *        in the runqueue.
 *
 * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1318
 * ENQUEUE_MIGRATED  - the task was migrated during wakeup
1319 1320 1321 1322 1323 1324 1325
 *
 */

#define DEQUEUE_SLEEP		0x01
#define DEQUEUE_SAVE		0x02 /* matches ENQUEUE_RESTORE */
#define DEQUEUE_MOVE		0x04 /* matches ENQUEUE_MOVE */

1326
#define ENQUEUE_WAKEUP		0x01
1327 1328 1329 1330 1331
#define ENQUEUE_RESTORE		0x02
#define ENQUEUE_MOVE		0x04

#define ENQUEUE_HEAD		0x08
#define ENQUEUE_REPLENISH	0x10
1332
#ifdef CONFIG_SMP
1333
#define ENQUEUE_MIGRATED	0x20
1334
#else
1335
#define ENQUEUE_MIGRATED	0x00
1336 1337
#endif

1338 1339
#define RETRY_TASK		((void *)-1UL)

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
struct sched_class {
	const struct sched_class *next;

	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
	void (*yield_task) (struct rq *rq);
	bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);

	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);

1350 1351 1352 1353
	/*
	 * It is the responsibility of the pick_next_task() method that will
	 * return the next task to call put_prev_task() on the @prev task or
	 * something equivalent.
1354 1355 1356
	 *
	 * May return RETRY_TASK when it finds a higher prio class has runnable
	 * tasks.
1357 1358
	 */
	struct task_struct * (*pick_next_task) (struct rq *rq,
1359
						struct task_struct *prev,
1360
						struct rq_flags *rf);
1361 1362 1363
	void (*put_prev_task) (struct rq *rq, struct task_struct *p);

#ifdef CONFIG_SMP
1364
	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1365
	void (*migrate_task_rq)(struct task_struct *p);
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378

	void (*task_woken) (struct rq *this_rq, struct task_struct *task);

	void (*set_cpus_allowed)(struct task_struct *p,
				 const struct cpumask *newmask);

	void (*rq_online)(struct rq *rq);
	void (*rq_offline)(struct rq *rq);
#endif

	void (*set_curr_task) (struct rq *rq);
	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
	void (*task_fork) (struct task_struct *p);
1379
	void (*task_dead) (struct task_struct *p);
1380

1381 1382 1383 1384 1385
	/*
	 * The switched_from() call is allowed to drop rq->lock, therefore we
	 * cannot assume the switched_from/switched_to pair is serliazed by
	 * rq->lock. They are however serialized by p->pi_lock.
	 */
1386 1387 1388 1389 1390 1391 1392 1393
	void (*switched_from) (struct rq *this_rq, struct task_struct *task);
	void (*switched_to) (struct rq *this_rq, struct task_struct *task);
	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
			     int oldprio);

	unsigned int (*get_rr_interval) (struct rq *rq,
					 struct task_struct *task);

1394 1395
	void (*update_curr) (struct rq *rq);

1396 1397 1398
#define TASK_SET_GROUP  0
#define TASK_MOVE_GROUP	1

1399
#ifdef CONFIG_FAIR_GROUP_SCHED
1400
	void (*task_change_group) (struct task_struct *p, int type);
1401 1402
#endif
};
1403

1404 1405 1406 1407 1408
static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
{
	prev->sched_class->put_prev_task(rq, prev);
}

1409 1410 1411 1412 1413
static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
{
	curr->sched_class->set_curr_task(rq);
}

1414 1415 1416 1417 1418
#define sched_class_highest (&stop_sched_class)
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)

extern const struct sched_class stop_sched_class;
1419
extern const struct sched_class dl_sched_class;
1420 1421 1422 1423 1424 1425 1426
extern const struct sched_class rt_sched_class;
extern const struct sched_class fair_sched_class;
extern const struct sched_class idle_sched_class;


#ifdef CONFIG_SMP

1427
extern void update_group_capacity(struct sched_domain *sd, int cpu);
1428

1429
extern void trigger_load_balance(struct rq *rq);
1430

1431 1432
extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);

1433 1434
#endif

1435 1436 1437 1438 1439 1440 1441 1442 1443
#ifdef CONFIG_CPU_IDLE
static inline void idle_set_state(struct rq *rq,
				  struct cpuidle_state *idle_state)
{
	rq->idle_state = idle_state;
}

static inline struct cpuidle_state *idle_get_state(struct rq *rq)
{
1444
	SCHED_WARN_ON(!rcu_read_lock_held());
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
	return rq->idle_state;
}
#else
static inline void idle_set_state(struct rq *rq,
				  struct cpuidle_state *idle_state)
{
}

static inline struct cpuidle_state *idle_get_state(struct rq *rq)
{
	return NULL;
}
#endif

1459 1460 1461
extern void sysrq_sched_debug_show(void);
extern void sched_init_granularity(void);
extern void update_max_interval(void);
1462 1463

extern void init_sched_dl_class(void);
1464 1465 1466
extern void init_sched_rt_class(void);
extern void init_sched_fair_class(void);

1467
extern void resched_curr(struct rq *rq);
1468 1469 1470 1471 1472
extern void resched_cpu(int cpu);

extern struct rt_bandwidth def_rt_bandwidth;
extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);

1473 1474
extern struct dl_bandwidth def_dl_bandwidth;
extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1475 1476
extern void init_dl_task_timer(struct sched_dl_entity *dl_se);

1477 1478
unsigned long to_ratio(u64 period, u64 runtime);

1479
extern void init_entity_runnable_average(struct sched_entity *se);
1480
extern void post_init_entity_util_avg(struct sched_entity *se);
1481

1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
#ifdef CONFIG_NO_HZ_FULL
extern bool sched_can_stop_tick(struct rq *rq);

/*
 * Tick may be needed by tasks in the runqueue depending on their policy and
 * requirements. If tick is needed, lets send the target an IPI to kick it out of
 * nohz mode if necessary.
 */
static inline void sched_update_tick_dependency(struct rq *rq)
{
	int cpu;

	if (!tick_nohz_full_enabled())
		return;

	cpu = cpu_of(rq);

	if (!tick_nohz_full_cpu(cpu))
		return;

	if (sched_can_stop_tick(rq))
		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
	else
		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
}
#else
static inline void sched_update_tick_dependency(struct rq *rq) { }
#endif

1511
static inline void add_nr_running(struct rq *rq, unsigned count)
1512
{
1513 1514 1515
	unsigned prev_nr = rq->nr_running;

	rq->nr_running = prev_nr + count;
1516

1517
	if (prev_nr < 2 && rq->nr_running >= 2) {
1518 1519 1520 1521 1522
#ifdef CONFIG_SMP
		if (!rq->rd->overload)
			rq->rd->overload = true;
#endif
	}
1523 1524

	sched_update_tick_dependency(rq);
1525 1526
}

1527
static inline void sub_nr_running(struct rq *rq, unsigned count)
1528
{
1529
	rq->nr_running -= count;
1530 1531
	/* Check if we still need preemption */
	sched_update_tick_dependency(rq);
1532 1533
}

1534 1535 1536 1537 1538 1539 1540
static inline void rq_last_tick_reset(struct rq *rq)
{
#ifdef CONFIG_NO_HZ_FULL
	rq->last_sched_tick = jiffies;
#endif
}

1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
extern void update_rq_clock(struct rq *rq);

extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);

extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);

extern const_debug unsigned int sysctl_sched_time_avg;
extern const_debug unsigned int sysctl_sched_nr_migrate;
extern const_debug unsigned int sysctl_sched_migration_cost;

static inline u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

#ifdef CONFIG_SCHED_HRTICK

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
	if (!cpu_active(cpu_of(rq)))
		return 0;
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

void hrtick_start(struct rq *rq, u64 delay);

1575 1576 1577 1578 1579 1580 1581
#else

static inline int hrtick_enabled(struct rq *rq)
{
	return 0;
}

1582 1583 1584 1585
#endif /* CONFIG_SCHED_HRTICK */

#ifdef CONFIG_SMP
extern void sched_avg_update(struct rq *rq);
1586 1587 1588 1589 1590 1591 1592 1593

#ifndef arch_scale_freq_capacity
static __always_inline
unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
{
	return SCHED_CAPACITY_SCALE;
}
#endif
1594

1595 1596 1597 1598
#ifndef arch_scale_cpu_capacity
static __always_inline
unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
{
1599
	if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1600 1601 1602 1603 1604 1605
		return sd->smt_gain / sd->span_weight;

	return SCHED_CAPACITY_SCALE;
}
#endif

1606 1607
static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
1608
	rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
1609 1610 1611 1612 1613 1614 1615
	sched_avg_update(rq);
}
#else
static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
static inline void sched_avg_update(struct rq *rq) { }
#endif

1616
struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1617
	__acquires(rq->lock);
1618
struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1619
	__acquires(p->pi_lock)
1620
	__acquires(rq->lock);
1621

1622
static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1623 1624
	__releases(rq->lock)
{
1625
	rq_unpin_lock(rq, rf);
1626 1627 1628 1629
	raw_spin_unlock(&rq->lock);
}

static inline void
1630
task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1631 1632 1633
	__releases(rq->lock)
	__releases(p->pi_lock)
{
1634
	rq_unpin_lock(rq, rf);
1635
	raw_spin_unlock(&rq->lock);
1636
	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1637 1638
}

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
#ifdef CONFIG_SMP
#ifdef CONFIG_PREEMPT

static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);

/*
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
 */
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	raw_spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
	}
	return ret;
}

#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		raw_spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	raw_spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}

1715 1716 1717 1718 1719 1720 1721 1722 1723
static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
{
	if (l1 > l2)
		swap(l1, l2);

	spin_lock(l1);
	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
}

1724 1725 1726 1727 1728 1729 1730 1731 1732
static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
{
	if (l1 > l2)
		swap(l1, l2);

	spin_lock_irq(l1);
	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
}

1733 1734 1735 1736 1737 1738 1739 1740 1741
static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
{
	if (l1 > l2)
		swap(l1, l2);

	raw_spin_lock(l1);
	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
}

1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

1784 1785 1786 1787
extern void set_rq_online (struct rq *rq);
extern void set_rq_offline(struct rq *rq);
extern bool sched_smp_initialized;

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
#else /* CONFIG_SMP */

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	BUG_ON(rq1 != rq2);
	raw_spin_lock(&rq1->lock);
	__acquire(rq2->lock);	/* Fake it out ;) */
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	BUG_ON(rq1 != rq2);
	raw_spin_unlock(&rq1->lock);
	__release(rq2->lock);
}

#endif

extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1825 1826

#ifdef	CONFIG_SCHED_DEBUG
1827 1828
extern void print_cfs_stats(struct seq_file *m, int cpu);
extern void print_rt_stats(struct seq_file *m, int cpu);
1829
extern void print_dl_stats(struct seq_file *m, int cpu);
1830 1831
extern void
print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
1832 1833 1834 1835 1836 1837 1838 1839 1840

#ifdef CONFIG_NUMA_BALANCING
extern void
show_numa_stats(struct task_struct *p, struct seq_file *m);
extern void
print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
	unsigned long tpf, unsigned long gsf, unsigned long gpf);
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
1841 1842

extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1843 1844
extern void init_rt_rq(struct rt_rq *rt_rq);
extern void init_dl_rq(struct dl_rq *dl_rq);
1845

1846 1847
extern void cfs_bandwidth_usage_inc(void);
extern void cfs_bandwidth_usage_dec(void);
1848

1849
#ifdef CONFIG_NO_HZ_COMMON
1850 1851 1852 1853 1854 1855
enum rq_nohz_flag_bits {
	NOHZ_TICK_STOPPED,
	NOHZ_BALANCE_KICK,
};

#define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
1856 1857 1858 1859

extern void nohz_balance_exit_idle(unsigned int cpu);
#else
static inline void nohz_balance_exit_idle(unsigned int cpu) { }
1860
#endif
1861 1862

#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1863
struct irqtime {
1864
	u64			tick_delta;
1865 1866 1867
	u64			irq_start_time;
	struct u64_stats_sync	sync;
};
1868

1869
DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
1870 1871 1872

static inline u64 irq_time_read(int cpu)
{
1873
	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
1874
	u64 *cpustat = kcpustat_cpu(cpu).cpustat;
1875 1876
	unsigned int seq;
	u64 total;
1877 1878

	do {
1879
		seq = __u64_stats_fetch_begin(&irqtime->sync);
1880
		total = cpustat[CPUTIME_SOFTIRQ] + cpustat[CPUTIME_IRQ];
1881
	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
1882

1883
	return total;
1884 1885
}
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1886 1887 1888 1889 1890 1891

#ifdef CONFIG_CPU_FREQ
DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);

/**
 * cpufreq_update_util - Take a note about CPU utilization changes.
1892
 * @rq: Runqueue to carry out the update for.
1893
 * @flags: Update reason flags.
1894
 *
1895 1896
 * This function is called by the scheduler on the CPU whose utilization is
 * being updated.
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
 *
 * It can only be called from RCU-sched read-side critical sections.
 *
 * The way cpufreq is currently arranged requires it to evaluate the CPU
 * performance state (frequency/voltage) on a regular basis to prevent it from
 * being stuck in a completely inadequate performance level for too long.
 * That is not guaranteed to happen if the updates are only triggered from CFS,
 * though, because they may not be coming in if RT or deadline tasks are active
 * all the time (or there are RT and DL tasks only).
 *
 * As a workaround for that issue, this function is called by the RT and DL
 * sched classes to trigger extra cpufreq updates to prevent it from stalling,
 * but that really is a band-aid.  Going forward it should be replaced with
 * solutions targeted more specifically at RT and DL tasks.
 */
1912
static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
1913
{
1914 1915 1916 1917
	struct update_util_data *data;

	data = rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data));
	if (data)
1918 1919 1920 1921 1922 1923 1924
		data->func(data, rq_clock(rq), flags);
}

static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags)
{
	if (cpu_of(rq) == smp_processor_id())
		cpufreq_update_util(rq, flags);
1925 1926
}
#else
1927 1928
static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags) {}
1929
#endif /* CONFIG_CPU_FREQ */
1930

1931 1932 1933 1934 1935 1936 1937
#ifdef arch_scale_freq_capacity
#ifndef arch_scale_freq_invariant
#define arch_scale_freq_invariant()	(true)
#endif
#else /* arch_scale_freq_capacity */
#define arch_scale_freq_invariant()	(false)
#endif