README.md 9.1 KB
Newer Older
J
Javier 已提交
1

J
jrzaurin 已提交
2
<p align="center">
3
  <img width="300" src="docs/figures/widedeep_logo.png">
J
jrzaurin 已提交
4 5
</p>

J
jrzaurin 已提交
6
[![Build Status](https://travis-ci.org/jrzaurin/pytorch-widedeep.svg?branch=master)](https://travis-ci.org/jrzaurin/pytorch-widedeep)
J
jrzaurin 已提交
7
[![Documentation Status](https://readthedocs.org/projects/pytorch-widedeep/badge/?version=latest)](https://pytorch-widedeep.readthedocs.io/en/latest/?badge=latest)
8
[![PyPI version](https://badge.fury.io/py/pytorch-widedeep.svg)](https://badge.fury.io/py/pytorch-widedeep)
9
[![Maintenance](https://img.shields.io/badge/Maintained%3F-yes-green.svg)](https://github.com/jrzaurin/pytorch-widedeep/graphs/commit-activity)
10
[![contributions welcome](https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat)](https://github.com/jrzaurin/pytorch-widedeep/issues)
J
jrzaurin 已提交
11
[![codecov](https://codecov.io/gh/jrzaurin/pytorch-widedeep/branch/master/graph/badge.svg)](https://codecov.io/gh/jrzaurin/pytorch-widedeep)
12
[![Python 3.6 3.7 3.8](https://img.shields.io/badge/python-3.6%20%7C%203.7%20%7C%203.8-blue.svg)](https://www.python.org/)
13

J
jrzaurin 已提交
14 15
# pytorch-widedeep

16
A flexible package to combine tabular data with text and images using wide and
J
jrzaurin 已提交
17 18
deep models.

J
jrzaurin 已提交
19 20
**Documentation:** [https://pytorch-widedeep.readthedocs.io](https://pytorch-widedeep.readthedocs.io/en/latest/index.html)

J
jrzaurin 已提交
21 22
### Introduction

J
jrzaurin 已提交
23
`pytorch-widedeep` is based on Google's Wide and Deep Algorithm. Details of
J
jrzaurin 已提交
24
the original algorithm can be found
J
jrzaurin 已提交
25
[here](https://www.tensorflow.org/tutorials/wide_and_deep), and the nice
J
jrzaurin 已提交
26 27
research paper can be found [here](https://arxiv.org/abs/1606.07792).

J
jrzaurin 已提交
28 29
In general terms, `pytorch-widedeep` is a package to use deep learning with
tabular data. In particular, is intended to facilitate the combination of text
J
jrzaurin 已提交
30 31 32 33 34 35 36 37 38 39 40 41
and images with corresponding tabular data using wide and deep models. With
that in mind there are two architectures that can be implemented with just a
few lines of code.

### Architectures

**Architecture 1**:

<p align="center">
  <img width="600" src="docs/figures/architecture_1.png">
</p>

42
Architecture 1 combines the `Wide`, Linear model with the outputs from the
43 44 45 46 47
`DeepDense` or `DeepDenseResnet`, `DeepText` and `DeepImage` components
connected to a final output neuron or neurons, depending on whether we are
performing a binary classification or regression, or a multi-class
classification. The components within the faded-pink rectangles are
concatenated.
J
jrzaurin 已提交
48

49 50 51
In math terms, and following the notation in the
[paper](https://arxiv.org/abs/1606.07792), Architecture 1 can be formulated
as:
J
jrzaurin 已提交
52 53

<p align="center">
54
  <img width="500" src="docs/figures/architecture_1_math.png">
J
jrzaurin 已提交
55 56
</p>

57 58 59

Where *'W'* are the weight matrices applied to the wide model and to the final
activations of the deep models, *'a'* are these final activations, and
J
jrzaurin 已提交
60 61 62 63 64 65 66
&phi;(x) are the cross product transformations of the original features *'x'*.
In case you are wondering what are *"cross product transformations"*, here is
a quote taken directly from the paper: *"For binary features, a cross-product
transformation (e.g., “AND(gender=female, language=en)”) is 1 if and only if
the constituent features (“gender=female” and “language=en”) are all 1, and 0
otherwise".*

67 68 69

**Architecture 2**

J
jrzaurin 已提交
70 71 72 73
<p align="center">
  <img width="600" src="docs/figures/architecture_2.png">
</p>

74 75 76 77
Architecture 2 combines the `Wide`, Linear model with the Deep components of
the model connected to the output neuron(s), after the different Deep
components have been themselves combined through a FC-Head (that I refer as
`deephead`).
J
jrzaurin 已提交
78

79 80 81 82 83 84 85 86
In math terms, and following the notation in the
[paper](https://arxiv.org/abs/1606.07792), Architecture 2 can be formulated
as:

<p align="center">
  <img width="300" src="docs/figures/architecture_2_math.png">
</p>

87 88 89 90 91 92 93 94 95 96 97 98 99
Note that each individual component, `wide`, `deepdense` (either `DeepDense`
or `DeepDenseResnet`), `deeptext` and `deepimage`, can be used independently
and in isolation. For example, one could use only `wide`, which is in simply a
linear model.

On the other hand, while I recommend using the `Wide` and `DeepDense` (or
`DeepDenseResnet`) classes in `pytorch-widedeep` to build the `wide` and
`deepdense` component, it is very likely that users will want to use their own
models in the case of the `deeptext` and `deepimage` components. That is
perfectly possible as long as the the custom models have an attribute called
`output_dim` with the size of the last layer of activations, so that
`WideDeep` can be constructed

100
`pytorch-widedeep` includes standard text (stack of LSTMs) and image
101 102 103
(pre-trained ResNets or stack of CNNs) models.

See the examples folder or the docs for more information.
J
jrzaurin 已提交
104 105 106


### Installation
J
jrzaurin 已提交
107

108 109 110 111 112 113 114
Install using pip:

```bash
pip install pytorch-widedeep
```

Or install directly from github
J
jrzaurin 已提交
115

J
jrzaurin 已提交
116
```bash
J
jrzaurin 已提交
117 118 119
pip install git+https://github.com/jrzaurin/pytorch-widedeep.git
```

J
jrzaurin 已提交
120
#### Developer Install
J
jrzaurin 已提交
121 122

```bash
J
jrzaurin 已提交
123
# Clone the repository
J
jrzaurin 已提交
124
git clone https://github.com/jrzaurin/pytorch-widedeep
J
jrzaurin 已提交
125 126
cd pytorch-widedeep

J
jrzaurin 已提交
127
# Install in dev mode
J
jrzaurin 已提交
128 129 130 131 132 133
pip install -e .
```

### Quick start

Binary classification with the [adult
134
dataset]([adult](https://www.kaggle.com/wenruliu/adult-income-dataset))
135
using `Wide` and `DeepDense` and defaults settings.
J
jrzaurin 已提交
136 137

```python
J
jrzaurin 已提交
138
import pandas as pd
139
import numpy as np
140 141
from sklearn.model_selection import train_test_split

142
from pytorch_widedeep.preprocessing import WidePreprocessor, DensePreprocessor
J
jrzaurin 已提交
143
from pytorch_widedeep.models import Wide, DeepDense, WideDeep
144
from pytorch_widedeep.metrics import Accuracy
J
jrzaurin 已提交
145

146
# these next 4 lines are not directly related to pytorch-widedeep. I assume
J
jrzaurin 已提交
147
# you have downloaded the dataset and place it in a dir called data/adult/
148 149 150 151
df = pd.read_csv("data/adult/adult.csv.zip")
df["income_label"] = (df["income"].apply(lambda x: ">50K" in x)).astype(int)
df.drop("income", axis=1, inplace=True)
df_train, df_test = train_test_split(df, test_size=0.2, stratify=df.income_label)
J
jrzaurin 已提交
152 153

# prepare wide, crossed, embedding and continuous columns
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
wide_cols = [
    "education",
    "relationship",
    "workclass",
    "occupation",
    "native-country",
    "gender",
]
cross_cols = [("education", "occupation"), ("native-country", "occupation")]
embed_cols = [
    ("education", 16),
    ("workclass", 16),
    ("occupation", 16),
    ("native-country", 32),
]
cont_cols = ["age", "hours-per-week"]
target_col = "income_label"
J
jrzaurin 已提交
171 172

# target
173
target = df_train[target_col].values
J
jrzaurin 已提交
174 175 176

# wide
preprocess_wide = WidePreprocessor(wide_cols=wide_cols, crossed_cols=cross_cols)
177
X_wide = preprocess_wide.fit_transform(df_train)
178
wide = Wide(wide_dim=np.unique(X_wide).shape[0], pred_dim=1)
J
jrzaurin 已提交
179 180

# deepdense
181
preprocess_deep = DensePreprocessor(embed_cols=embed_cols, continuous_cols=cont_cols)
182 183 184 185 186 187 188
X_deep = preprocess_deep.fit_transform(df_train)
deepdense = DeepDense(
    hidden_layers=[64, 32],
    deep_column_idx=preprocess_deep.deep_column_idx,
    embed_input=preprocess_deep.embeddings_input,
    continuous_cols=cont_cols,
)
189 190 191 192 193 194 195 196
# # To use DeepDenseResnet as the deepdense component simply:
# from pytorch_widedeep.models import DeepDenseResnet:
# deepdense = DeepDenseResnet(
#     blocks=[64, 32],
#     deep_column_idx=preprocess_deep.deep_column_idx,
#     embed_input=preprocess_deep.embeddings_input,
#     continuous_cols=cont_cols,
# )
197 198

# build, compile and fit
J
jrzaurin 已提交
199
model = WideDeep(wide=wide, deepdense=deepdense)
200
model.compile(method="binary", metrics=[Accuracy])
201 202 203 204 205 206 207 208 209 210 211 212 213
model.fit(
    X_wide=X_wide,
    X_deep=X_deep,
    target=target,
    n_epochs=5,
    batch_size=256,
    val_split=0.1,
)

# predict
X_wide_te = preprocess_wide.transform(df_test)
X_deep_te = preprocess_deep.transform(df_test)
preds = model.predict(X_wide=X_wide_te, X_deep=X_deep_te)
214 215 216 217 218 219 220 221 222

#  # save and load
# torch.save(model, "model_weights/model.t")
# model = torch.load("model_weights/model.t")

#  # or via state dictionaries
# torch.save(model.state_dict(), PATH)
# model = WideDeep(*args)
# model.load_state_dict(torch.load(PATH))
J
jrzaurin 已提交
223 224
```

225 226
Of course, one can do much more, such as using different initializations,
optimizers or learning rate schedulers for each component of the overall
227 228 229 230
model. Adding FC-Heads to the Text and Image components. Using the [Focal
Loss](https://arxiv.org/abs/1708.02002), warming up individual components
before joined training, etc. See the `examples` or the `docs` folders for a
better understanding of the content of the package and its functionalities.
J
jrzaurin 已提交
231 232 233 234

### Testing

```
J
jrzaurin 已提交
235
pytest tests
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
```

### Acknowledgments

This library takes from a series of other libraries, so I think it is just
fair to mention them here in the README (specific mentions are also included
in the code).

The `Callbacks` and `Initializers` structure and code is inspired by the
[`torchsample`](https://github.com/ncullen93/torchsample) library, which in
itself partially inspired by [`Keras`](https://keras.io/).

The `TextProcessor` class in this library uses the
[`fastai`](https://docs.fast.ai/text.transform.html#BaseTokenizer.tokenizer)'s
`Tokenizer` and `Vocab`. The code at `utils.fastai_transforms` is a minor
adaptation of their code so it functions within this library. To my experience
their `Tokenizer` is the best in class.

The `ImageProcessor` class in this library uses code from the fantastic [Deep
Learning for Computer
Vision](https://www.pyimagesearch.com/deep-learning-computer-vision-python-book/)
(DL4CV) book by Adrian Rosebrock.