提交 455349a0 编写于 作者: A Alexander Mordvintsev

comments for digits.py sample

上级 03a14bb5
...@@ -2,6 +2,7 @@ import numpy as np ...@@ -2,6 +2,7 @@ import numpy as np
import cv2 import cv2
import os import os
from contextlib import contextmanager from contextlib import contextmanager
import itertools as it
image_extensions = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.tiff', '.pbm', '.pgm', '.ppm'] image_extensions = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.tiff', '.pbm', '.pgm', '.ppm']
...@@ -170,3 +171,22 @@ class RectSelector: ...@@ -170,3 +171,22 @@ class RectSelector:
return return
x0, y0, x1, y1 = self.drag_rect x0, y0, x1, y1 = self.drag_rect
cv2.rectangle(vis, (x0, y0), (x1, y1), (0, 255, 0), 2) cv2.rectangle(vis, (x0, y0), (x1, y1), (0, 255, 0), 2)
def grouper(n, iterable, fillvalue=None):
'''grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx'''
args = [iter(iterable)] * n
return it.izip_longest(fillvalue=fillvalue, *args)
def mosaic(w, imgs):
'''Make a grid from images.
w -- number of grid columns
imgs -- images (must have same size and format)
'''
imgs = iter(imgs)
img0 = imgs.next()
pad = np.zeros_like(img0)
imgs = it.chain([img0], imgs)
rows = grouper(w, imgs, pad)
return np.vstack(map(np.hstack, rows))
import numpy as np
import cv2
import itertools as it
''' '''
from scipy.io import loadmat Neural network digit recognition sample.
Usage:
digits.py
m = loadmat('ex4data1.mat') Sample loads a dataset of handwritten digits from 'digits.png'.
X = m['X'].reshape(-1, 20, 20) Then it trains a neural network classifier on it and evaluates
X = np.transpose(X, (0, 2, 1)) its classification accuracy.
img = np.vstack(map(np.hstack, X.reshape(-1, 100, 20, 20)))
img = np.uint8(np.clip(img, 0, 1)*255)
cv2.imwrite('digits.png', img)
''' '''
import numpy as np
import cv2
from common import mosaic
def unroll_responses(responses, class_n): def unroll_responses(responses, class_n):
'''[1, 0, 2, ...] -> [[0, 1, 0], [1, 0, 0], [0, 0, 1], ...]'''
sample_n = len(responses) sample_n = len(responses)
new_responses = np.zeros((sample_n, class_n), np.float32) new_responses = np.zeros((sample_n, class_n), np.float32)
new_responses[np.arange(sample_n), responses] = 1 new_responses[np.arange(sample_n), responses] = 1
return new_responses return new_responses
SZ = 20 SZ = 20 # size of each digit is SZ x SZ
CLASS_N = 10
digits_img = cv2.imread('digits.png', 0) digits_img = cv2.imread('digits.png', 0)
# prepare dataset
h, w = digits_img.shape h, w = digits_img.shape
digits = [np.hsplit(row, w/SZ) for row in np.vsplit(digits_img, h/SZ)] digits = [np.hsplit(row, w/SZ) for row in np.vsplit(digits_img, h/SZ)]
digits = np.float32(digits).reshape(-1, SZ*SZ) digits = np.float32(digits).reshape(-1, SZ*SZ)
N = len(digits) N = len(digits)
labels = np.repeat(np.arange(10), N/10) labels = np.repeat(np.arange(CLASS_N), N/CLASS_N)
# split it onto train and test subsets
shuffle = np.random.permutation(N) shuffle = np.random.permutation(N)
train_n = int(0.9*N) train_n = int(0.9*N)
digits_train, digits_test = np.split(digits[shuffle], [train_n]) digits_train, digits_test = np.split(digits[shuffle], [train_n])
labels_train, labels_test = np.split(labels[shuffle], [train_n]) labels_train, labels_test = np.split(labels[shuffle], [train_n])
labels_train_unrolled = unroll_responses(labels_train, 10) # train model
model = cv2.ANN_MLP() model = cv2.ANN_MLP()
layer_sizes = np.int32([SZ*SZ, 25, 10]) layer_sizes = np.int32([SZ*SZ, 25, CLASS_N])
model.create(layer_sizes) model.create(layer_sizes)
params = dict( term_crit = (cv2.TERM_CRITERIA_COUNT, 100, 0.01),
# CvANN_MLP_TrainParams::BACKPROP,0.001
params = dict( term_crit = (cv2.TERM_CRITERIA_COUNT, 300, 0.01),
train_method = cv2.ANN_MLP_TRAIN_PARAMS_BACKPROP, train_method = cv2.ANN_MLP_TRAIN_PARAMS_BACKPROP,
bp_dw_scale = 0.001, bp_dw_scale = 0.001,
bp_moment_scale = 0.0 ) bp_moment_scale = 0.0 )
print 'training...' print 'training...'
labels_train_unrolled = unroll_responses(labels_train, CLASS_N)
model.train(digits_train, labels_train_unrolled, None, params=params) model.train(digits_train, labels_train_unrolled, None, params=params)
model.save('dig_nn.dat') model.save('dig_nn.dat')
model.load('dig_nn.dat') model.load('dig_nn.dat')
ret, resp = model.predict(digits_test) def evaluate(model, samples, labels):
resp = resp.argmax(-1) '''Evaluates classifier preformance on a given labeled samples set.'''
error_mask = (resp == labels_test) ret, resp = model.predict(samples)
print error_mask.mean() resp = resp.argmax(-1)
error_mask = (resp == labels)
def grouper(n, iterable, fillvalue=None): accuracy = error_mask.mean()
"grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx" return accuracy, error_mask
args = [iter(iterable)] * n
return it.izip_longest(fillvalue=fillvalue, *args) # evaluate model
train_accuracy, _ = evaluate(model, digits_train, labels_train)
def mosaic(w, imgs): print 'train accuracy: ', train_accuracy
imgs = iter(imgs) test_accuracy, test_error_mask = evaluate(model, digits_test, labels_test)
img0 = imgs.next() print 'test accuracy: ', test_accuracy
pad = np.zeros_like(img0)
imgs = it.chain([img0], imgs) # visualize test results
rows = grouper(w, imgs, pad) vis = []
return np.vstack(map(np.hstack, rows)) for img, flag in zip(digits_test, test_error_mask):
img = np.uint8(img).reshape(SZ, SZ)
test_img = np.uint8(digits_test).reshape(-1, SZ, SZ)
def vis_resp(img, flag):
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
if not flag: if not flag:
img[...,:2] = 0 img[...,:2] = 0
return img vis.append(img)
vis = mosaic(25, vis)
test_img = mosaic(25, it.starmap(vis_resp, it.izip(test_img, error_mask))) cv2.imshow('test', vis)
cv2.imshow('test', test_img)
cv2.waitKey() cv2.waitKey()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册