matchers.cpp 18.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
41
//M*/
42

43
#include "precomp.hpp"
44 45

using namespace std;
A
Alexey Spizhevoy 已提交
46
using namespace cv;
47
using namespace cv::detail;
48

49
#ifndef ANDROID
50
using namespace cv::gpu;
51
#endif
52

53 54 55 56 57 58 59 60
namespace {

struct DistIdxPair
{
    bool operator<(const DistIdxPair &other) const { return dist < other.dist; }
    double dist;
    int idx;
};
61 62


63 64 65 66 67 68 69 70 71 72
struct MatchPairsBody
{
    MatchPairsBody(const MatchPairsBody& other)
            : matcher(other.matcher), features(other.features),
              pairwise_matches(other.pairwise_matches), near_pairs(other.near_pairs) {}

    MatchPairsBody(FeaturesMatcher &matcher, const vector<ImageFeatures> &features,
                   vector<MatchesInfo> &pairwise_matches, vector<pair<int,int> > &near_pairs)
            : matcher(matcher), features(features),
              pairwise_matches(pairwise_matches), near_pairs(near_pairs) {}
73

74
    void operator ()(const BlockedRange &r) const
75
    {
76 77
        const int num_images = static_cast<int>(features.size());
        for (int i = r.begin(); i < r.end(); ++i)
78
        {
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
            int from = near_pairs[i].first;
            int to = near_pairs[i].second;
            int pair_idx = from*num_images + to;

            matcher(features[from], features[to], pairwise_matches[pair_idx]);
            pairwise_matches[pair_idx].src_img_idx = from;
            pairwise_matches[pair_idx].dst_img_idx = to;

            size_t dual_pair_idx = to*num_images + from;

            pairwise_matches[dual_pair_idx] = pairwise_matches[pair_idx];
            pairwise_matches[dual_pair_idx].src_img_idx = to;
            pairwise_matches[dual_pair_idx].dst_img_idx = from;

            if (!pairwise_matches[pair_idx].H.empty())
                pairwise_matches[dual_pair_idx].H = pairwise_matches[pair_idx].H.inv();

            for (size_t j = 0; j < pairwise_matches[dual_pair_idx].matches.size(); ++j)
                std::swap(pairwise_matches[dual_pair_idx].matches[j].queryIdx,
                          pairwise_matches[dual_pair_idx].matches[j].trainIdx);
            LOG(".");
100
        }
101 102 103 104 105 106
    }

    FeaturesMatcher &matcher;
    const vector<ImageFeatures> &features;
    vector<MatchesInfo> &pairwise_matches;
    vector<pair<int,int> > &near_pairs;
107

108 109 110
private:
    void operator =(const MatchPairsBody&);
};
111

112

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
//////////////////////////////////////////////////////////////////////////////

typedef set<pair<int,int> > MatchesSet;

// These two classes are aimed to find features matches only, not to
// estimate homography

class CpuMatcher : public FeaturesMatcher
{
public:
    CpuMatcher(float match_conf) : FeaturesMatcher(true), match_conf_(match_conf) {}
    void match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo& matches_info);

private:
    float match_conf_;
};
129

130
#ifndef ANDROID
131 132 133 134 135 136
class GpuMatcher : public FeaturesMatcher
{
public:
    GpuMatcher(float match_conf) : match_conf_(match_conf) {}
    void match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo& matches_info);

137
    void collectGarbage();
138 139 140 141 142 143 144

private:
    float match_conf_;
    GpuMat descriptors1_, descriptors2_;
    GpuMat train_idx_, distance_, all_dist_;
    vector< vector<DMatch> > pair_matches;
};
145
#endif
146 147 148 149 150 151 152 153 154 155 156 157


void CpuMatcher::match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo& matches_info)
{
    matches_info.matches.clear();
    FlannBasedMatcher matcher;
    vector< vector<DMatch> > pair_matches;
    MatchesSet matches;

    // Find 1->2 matches
    matcher.knnMatch(features1.descriptors, features2.descriptors, pair_matches, 2);
    for (size_t i = 0; i < pair_matches.size(); ++i)
158
    {
159 160 161 162 163 164 165 166 167
        if (pair_matches[i].size() < 2)
            continue;
        const DMatch& m0 = pair_matches[i][0];
        const DMatch& m1 = pair_matches[i][1];
        if (m0.distance < (1.f - match_conf_) * m1.distance)
        {
            matches_info.matches.push_back(m0);
            matches.insert(make_pair(m0.queryIdx, m0.trainIdx));
        }
168 169
    }

170 171 172 173
    // Find 2->1 matches
    pair_matches.clear();
    matcher.knnMatch(features2.descriptors, features1.descriptors, pair_matches, 2);
    for (size_t i = 0; i < pair_matches.size(); ++i)
174
    {
175 176 177 178 179 180 181 182 183 184
        if (pair_matches[i].size() < 2)
            continue;
        const DMatch& m0 = pair_matches[i][0];
        const DMatch& m1 = pair_matches[i][1];
        if (m0.distance < (1.f - match_conf_) * m1.distance)
            if (matches.find(make_pair(m0.trainIdx, m0.queryIdx)) == matches.end())
                matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance));
    }
}

185
#ifndef ANDROID
186 187 188
void GpuMatcher::match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo& matches_info)
{
    matches_info.matches.clear();
189

190 191
    ensureSizeIsEnough(features1.descriptors.size(), features1.descriptors.type(), descriptors1_);
    ensureSizeIsEnough(features2.descriptors.size(), features2.descriptors.type(), descriptors2_);
192

193 194
    descriptors1_.upload(features1.descriptors);
    descriptors2_.upload(features2.descriptors);
195

196 197
    BruteForceMatcher_GPU< L2<float> > matcher;
    MatchesSet matches;
198

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
    // Find 1->2 matches
    pair_matches.clear();
    matcher.knnMatch(descriptors1_, descriptors2_, train_idx_, distance_, all_dist_, 2);
    matcher.knnMatchDownload(train_idx_, distance_, pair_matches);
    for (size_t i = 0; i < pair_matches.size(); ++i)
    {
        if (pair_matches[i].size() < 2)
            continue;
        const DMatch& m0 = pair_matches[i][0];
        const DMatch& m1 = pair_matches[i][1];
        if (m0.distance < (1.f - match_conf_) * m1.distance)
        {
            matches_info.matches.push_back(m0);
            matches.insert(make_pair(m0.queryIdx, m0.trainIdx));
        }
214 215
    }

216 217 218 219 220
    // Find 2->1 matches
    pair_matches.clear();
    matcher.knnMatch(descriptors2_, descriptors1_, train_idx_, distance_, all_dist_, 2);
    matcher.knnMatchDownload(train_idx_, distance_, pair_matches);
    for (size_t i = 0; i < pair_matches.size(); ++i)
221
    {
222 223 224 225 226 227 228
        if (pair_matches[i].size() < 2)
            continue;
        const DMatch& m0 = pair_matches[i][0];
        const DMatch& m1 = pair_matches[i][1];
        if (m0.distance < (1.f - match_conf_) * m1.distance)
            if (matches.find(make_pair(m0.trainIdx, m0.queryIdx)) == matches.end())
                matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance));
229
    }
230 231
}

232
void GpuMatcher::collectGarbage()
233 234 235 236 237 238 239 240
{
    descriptors1_.release();
    descriptors2_.release();
    train_idx_.release();
    distance_.release();
    all_dist_.release();
    vector< vector<DMatch> >().swap(pair_matches);
}
241
#endif
242

243
} // namespace
244 245


246 247 248 249 250 251 252 253 254 255
namespace cv {
namespace detail {

void FeaturesFinder::operator ()(const Mat &image, ImageFeatures &features)
{ 
    find(image, features);
    features.img_size = image.size();
}


256 257
void FeaturesFinder::operator ()(const Mat &image, ImageFeatures &features, const vector<Rect> &rois)
{ 
258
    vector<ImageFeatures> roi_features(rois.size());
259
    size_t total_kps_count = 0;
260
    int total_descriptors_height = 0;
261 262 263 264 265

    for (size_t i = 0; i < rois.size(); ++i)
    {
        find(image(rois[i]), roi_features[i]);
        total_kps_count += roi_features[i].keypoints.size();
266
        total_descriptors_height += roi_features[i].descriptors.rows;
267 268 269 270
    }

    features.img_size = image.size();
    features.keypoints.resize(total_kps_count);
271 272 273
    features.descriptors.create(total_descriptors_height, 
                                roi_features[0].descriptors.cols, 
                                roi_features[0].descriptors.type());
274 275 276 277 278

    int kp_idx = 0;
    int descr_offset = 0;
    for (size_t i = 0; i < rois.size(); ++i)
    {
279
        for (size_t j = 0; j < roi_features[i].keypoints.size(); ++j, ++kp_idx)
280 281 282 283 284
        {
            features.keypoints[kp_idx] = roi_features[i].keypoints[j];
            features.keypoints[kp_idx].pt.x += (float)rois[i].x;
            features.keypoints[kp_idx].pt.y += (float)rois[i].y;
        }
285 286
        Mat subdescr = features.descriptors.rowRange(
                descr_offset, descr_offset + roi_features[i].descriptors.rows);
287
        roi_features[i].descriptors.copyTo(subdescr);
288
        descr_offset += roi_features[i].descriptors.rows;
289 290 291 292
    }
}


293
SurfFeaturesFinder::SurfFeaturesFinder(double hess_thresh, int num_octaves, int num_layers,
294 295
                                       int num_octaves_descr, int num_layers_descr)
{
296 297 298 299 300 301 302 303 304
    if (num_octaves_descr == num_octaves && num_layers_descr == num_layers)
    {
        surf = new SURF(hess_thresh, num_octaves, num_layers);
    }
    else
    {
        detector_ = new SurfFeatureDetector(hess_thresh, num_octaves, num_layers);
        extractor_ = new SurfDescriptorExtractor(num_octaves_descr, num_layers_descr);
    }
305 306 307
}


308
void SurfFeaturesFinder::find(const Mat &image, ImageFeatures &features)
309
{
310 311 312
    Mat gray_image;
    CV_Assert(image.depth() == CV_8U);
    cvtColor(image, gray_image, CV_BGR2GRAY);
313 314 315 316 317 318 319 320 321 322 323
    if (surf == 0)
    {
        detector_->detect(gray_image, features.keypoints);
        extractor_->compute(gray_image, features.keypoints, features.descriptors);
    }
    else
    {
        vector<float> descriptors;
        (*surf)(gray_image, Mat(), features.keypoints, descriptors);
        features.descriptors = Mat(descriptors, true).reshape(1, (int)features.keypoints.size());
    }
324 325
}

326

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
#ifndef ANDROID
SurfFeaturesFinderGpu::SurfFeaturesFinderGpu(double hess_thresh, int num_octaves, int num_layers,
                                             int num_octaves_descr, int num_layers_descr)
{
    surf_.keypointsRatio = 0.1f;
    surf_.hessianThreshold = hess_thresh;
    surf_.extended = false;
    num_octaves_ = num_octaves;
    num_layers_ = num_layers;
    num_octaves_descr_ = num_octaves_descr;
    num_layers_descr_ = num_layers_descr;
}


void SurfFeaturesFinderGpu::find(const Mat &image, ImageFeatures &features)
{
    CV_Assert(image.depth() == CV_8U);

    ensureSizeIsEnough(image.size(), image.type(), image_);
    image_.upload(image);

    ensureSizeIsEnough(image.size(), CV_8UC1, gray_image_);
    cvtColor(image_, gray_image_, CV_BGR2GRAY);

    surf_.nOctaves = num_octaves_;
    surf_.nOctaveLayers = num_layers_;
    surf_.upright = false;
    surf_(gray_image_, GpuMat(), keypoints_);

    surf_.nOctaves = num_octaves_descr_;
    surf_.nOctaveLayers = num_layers_descr_;
    surf_.upright = true;
    surf_(gray_image_, GpuMat(), keypoints_, descriptors_, true);
    surf_.downloadKeypoints(keypoints_, features.keypoints);

    descriptors_.download(features.descriptors);
}

void SurfFeaturesFinderGpu::collectGarbage()
366
{
367 368 369 370 371
    surf_.releaseMemory();
    image_.release();
    gray_image_.release();
    keypoints_.release();
    descriptors_.release();
372
}
373
#endif
374

375 376 377

//////////////////////////////////////////////////////////////////////////////

378
MatchesInfo::MatchesInfo() : src_img_idx(-1), dst_img_idx(-1), num_inliers(0), confidence(0) {}
379

380
MatchesInfo::MatchesInfo(const MatchesInfo &other) { *this = other; }
381

382
const MatchesInfo& MatchesInfo::operator =(const MatchesInfo &other)
383 384 385 386 387 388 389 390 391 392 393 394 395 396
{
    src_img_idx = other.src_img_idx;
    dst_img_idx = other.dst_img_idx;
    matches = other.matches;
    inliers_mask = other.inliers_mask;
    num_inliers = other.num_inliers;
    H = other.H.clone();
    confidence = other.confidence;
    return *this;
}


//////////////////////////////////////////////////////////////////////////////

397 398
void FeaturesMatcher::operator ()(const vector<ImageFeatures> &features, vector<MatchesInfo> &pairwise_matches,
                                  const Mat &mask)
399 400 401
{
    const int num_images = static_cast<int>(features.size());

402 403 404 405 406
    CV_Assert(mask.empty() || (mask.type() == CV_8U && mask.cols == num_images && mask.rows));
    Mat_<uchar> mask_(mask);
    if (mask_.empty())
        mask_ = Mat::ones(num_images, num_images, CV_8U);

407 408 409
    vector<pair<int,int> > near_pairs;
    for (int i = 0; i < num_images - 1; ++i)
        for (int j = i + 1; j < num_images; ++j)
410
            if (features[i].keypoints.size() > 0 && features[j].keypoints.size() > 0 && mask_(i, j))
411
                near_pairs.push_back(make_pair(i, j));
412 413 414 415 416 417 418 419 420 421 422 423 424 425

    pairwise_matches.resize(num_images * num_images);
    MatchPairsBody body(*this, features, pairwise_matches, near_pairs);

    if (is_thread_safe_)
        parallel_for(BlockedRange(0, static_cast<int>(near_pairs.size())), body);
    else
        body(BlockedRange(0, static_cast<int>(near_pairs.size())));
    LOGLN("");
}


//////////////////////////////////////////////////////////////////////////////

426
BestOf2NearestMatcher::BestOf2NearestMatcher(bool try_use_gpu, float match_conf, int num_matches_thresh1, int num_matches_thresh2)
427
{
428
#ifndef ANDROID
429 430 431
    if (try_use_gpu && getCudaEnabledDeviceCount() > 0)
        impl_ = new GpuMatcher(match_conf);
    else
432
#endif
433 434 435 436 437 438 439 440
        impl_ = new CpuMatcher(match_conf);

    is_thread_safe_ = impl_->isThreadSafe();
    num_matches_thresh1_ = num_matches_thresh1;
    num_matches_thresh2_ = num_matches_thresh2;
}


441
void BestOf2NearestMatcher::match(const ImageFeatures &features1, const ImageFeatures &features2,
442 443 444 445 446 447 448 449 450
                                  MatchesInfo &matches_info)
{
    (*impl_)(features1, features2, matches_info);

    // Check if it makes sense to find homography
    if (matches_info.matches.size() < static_cast<size_t>(num_matches_thresh1_))
        return;

    // Construct point-point correspondences for homography estimation
451 452
    Mat src_points(1, static_cast<int>(matches_info.matches.size()), CV_32FC2);
    Mat dst_points(1, static_cast<int>(matches_info.matches.size()), CV_32FC2);
453 454 455 456 457 458 459
    for (size_t i = 0; i < matches_info.matches.size(); ++i)
    {
        const DMatch& m = matches_info.matches[i];

        Point2f p = features1.keypoints[m.queryIdx].pt;
        p.x -= features1.img_size.width * 0.5f;
        p.y -= features1.img_size.height * 0.5f;
460
        src_points.at<Point2f>(0, static_cast<int>(i)) = p;
461 462 463 464

        p = features2.keypoints[m.trainIdx].pt;
        p.x -= features2.img_size.width * 0.5f;
        p.y -= features2.img_size.height * 0.5f;
465
        dst_points.at<Point2f>(0, static_cast<int>(i)) = p;
466 467 468 469
    }

    // Find pair-wise motion
    matches_info.H = findHomography(src_points, dst_points, matches_info.inliers_mask, CV_RANSAC);
470
    if (std::abs(determinant(matches_info.H)) < numeric_limits<double>::epsilon())
471
        return;
472 473 474 475 476 477 478

    // Find number of inliers
    matches_info.num_inliers = 0;
    for (size_t i = 0; i < matches_info.inliers_mask.size(); ++i)
        if (matches_info.inliers_mask[i])
            matches_info.num_inliers++;

479 480 481 482 483 484 485
    // These coeffs are from paper M. Brown and D. Lowe. "Automatic Panoramic Image Stitching 
    // using Invariant Features"
    matches_info.confidence = matches_info.num_inliers / (8 + 0.3 * matches_info.matches.size());

    // Set zero confidence to remove matches between too close images, as they don't provide 
    // additional information anyway. The threshold was set experimentally.
    matches_info.confidence = matches_info.confidence > 3. ? 0. : matches_info.confidence;
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517

    // Check if we should try to refine motion
    if (matches_info.num_inliers < num_matches_thresh2_)
        return;

    // Construct point-point correspondences for inliers only
    src_points.create(1, matches_info.num_inliers, CV_32FC2);
    dst_points.create(1, matches_info.num_inliers, CV_32FC2);
    int inlier_idx = 0;
    for (size_t i = 0; i < matches_info.matches.size(); ++i)
    {
        if (!matches_info.inliers_mask[i])
            continue;

        const DMatch& m = matches_info.matches[i];

        Point2f p = features1.keypoints[m.queryIdx].pt;
        p.x -= features1.img_size.width * 0.5f;
        p.y -= features1.img_size.height * 0.5f;
        src_points.at<Point2f>(0, inlier_idx) = p;

        p = features2.keypoints[m.trainIdx].pt;
        p.x -= features2.img_size.width * 0.5f;
        p.y -= features2.img_size.height * 0.5f;
        dst_points.at<Point2f>(0, inlier_idx) = p;

        inlier_idx++;
    }

    // Rerun motion estimation on inliers only
    matches_info.H = findHomography(src_points, dst_points, CV_RANSAC);
}
518

519
void BestOf2NearestMatcher::collectGarbage()
520
{
521
    impl_->collectGarbage();
522
}
523 524 525

} // namespace detail
} // namespace cv