memory.hpp 10.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.

#ifndef OPENCV_DNN_SRC_CUDA4DNN_CSL_MEMORY_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_CSL_MEMORY_HPP

#include "error.hpp"
#include "pointer.hpp"

#include <opencv2/core.hpp>

#include <cuda_runtime_api.h>

#include <cstddef>
#include <type_traits>
#include <memory>
#include <utility>

namespace cv { namespace dnn { namespace cuda4dnn { namespace csl {

    /* @brief smart device pointer with allocation/deallocation methods
     *
     * ManagedPtr is a smart shared device pointer which also handles memory allocation.
     */
    template <class T>
    class ManagedPtr {
        static_assert(!std::is_const<T>::value && !std::is_volatile<T>::value, "T cannot be cv-qualified");
        static_assert(std::is_standard_layout<T>::value, "T must satisfy StandardLayoutType");

    public:
        using element_type = T;

        using pointer = DevicePtr<element_type>;
        using const_pointer = DevicePtr<typename std::add_const<element_type>::type>;

        using size_type = std::size_t;

        ManagedPtr() noexcept : wrapped{ nullptr }, n{ 0 }, capacity{ 0 } { }
        ManagedPtr(const ManagedPtr&) noexcept = default;
        ManagedPtr(ManagedPtr&& other) noexcept
            : wrapped{ std::move(other.wrapped) }, n{ other.n }, capacity { other.capacity }
        {
            other.reset();
        }

        /** allocates device memory for \p count number of element */
        ManagedPtr(size_type count) {
            if (count <= 0) {
                CV_Error(Error::StsBadArg, "number of elements is zero or negative");
            }

            void* temp = nullptr;
            CUDA4DNN_CHECK_CUDA(cudaMalloc(&temp, count * sizeof(element_type)));

            auto ptr = typename pointer::pointer(static_cast<element_type*>(temp));
            wrapped.reset(ptr, [](element_type* ptr) {
                if (ptr != nullptr) {
                    /* contract violation for std::shared_ptr if cudaFree throws */
                    try {
                        CUDA4DNN_CHECK_CUDA(cudaFree(ptr));
                    } catch (const CUDAException& ex) {
                        std::ostringstream os;
                        os << "Device memory deallocation failed in deleter.\n";
                        os << ex.what();
                        os << "Exception will be ignored.\n";
                        CV_LOG_WARNING(0, os.str().c_str());
                    }
                }
            });
            /* std::shared_ptr<T>::reset invokves the deleter if an exception occurs; hence, we don't
             * need to have a try-catch block to free the allocated device memory
             */

            n = capacity = count;
        }

        ManagedPtr& operator=(ManagedPtr&& other) noexcept {
            wrapped = std::move(other.wrapped);
            n = other.n;
            capacity = other.capacity;

            other.reset();
            return *this;
        }

        size_type size() const noexcept { return n; }

        void reset() noexcept { wrapped.reset(); n = capacity = 0; }

        /**
         * deallocates any previously allocated memory and allocates device memory
         * for \p count number of elements
         *
         * @note no reallocation if the previously allocated memory has no owners and the requested memory size fits in it
         * @note use move constructor to guarantee a deallocation of the previously allocated memory
         *
         * Exception Guarantee: Strong
         */
        void reset(size_type count) {
            /* we need to fully own the memory to perform optimizations */
            if (wrapped.use_count() == 1) {
                /* avoid reallocation if the existing capacity is sufficient */
                if (count <= capacity) {
                    n = count;
                    return;
                }
            }

            /* no optimization performed; allocate memory */
            ManagedPtr tmp(count);
            swap(tmp, *this);
        }

        pointer get() const noexcept { return pointer(wrapped.get()); }

        explicit operator bool() const noexcept { return wrapped; }

        friend bool operator==(const ManagedPtr& lhs, const ManagedPtr& rhs) noexcept { return lhs.wrapped == rhs.wrapped; }
        friend bool operator!=(const ManagedPtr& lhs, const ManagedPtr& rhs) noexcept { return lhs.wrapped != rhs.wrapped; }

        friend void swap(ManagedPtr& lhs, ManagedPtr& rhs) noexcept {
            using std::swap;
            swap(lhs.wrapped, rhs.wrapped);
            swap(lhs.n, rhs.n);
            swap(lhs.capacity, rhs.capacity);
        }

    private:
        std::shared_ptr<element_type> wrapped;
        size_type n, capacity;
    };

    /** copies entire memory block pointed by \p src to \p dest
     *
     * \param[in]   src     device pointer
     * \param[out]  dest    host pointer
     *
     * Pre-conditions:
     * - memory pointed by \p dest must be large enough to hold the entire block of memory held by \p src
     *
     * Exception Guarantee: Basic
     */
    template <class T>
    void memcpy(T *dest, const ManagedPtr<T>& src) {
        memcpy<T>(dest, src.get(), src.size());
    }

    /** copies data from memory pointed by \p src to fully fill \p dest
     *
     * \param[in]   src     host pointer
     * \param[out]  dest    device pointer
     *
     * Pre-conditions:
     * - memory pointed by \p src must be at least as big as the memory block held by \p dest
     *
     * Exception Guarantee: Basic
     */
    template <class T>
    void memcpy(const ManagedPtr<T>& dest, const T* src) {
        memcpy<T>(dest.get(), src, dest.size());
    }

    /** copies data from memory pointed by \p src to \p dest
     *
     * if the two \p src and \p  dest have different sizes, the number of elements copied is
     * equal to the size of the smaller memory block
     *
     * \param[in]   src     device pointer
     * \param[out]  dest    device pointer
     *
     * Exception Guarantee: Basic
     */
    template <class T>
    void memcpy(const ManagedPtr<T>& dest, const ManagedPtr<T>& src) {
        memcpy<T>(dest.get(), src.get(), std::min(dest.size(), src.size()));
    }

    /** sets device memory block to a specific 8-bit value
     *
     * \param[in]   src     device pointer
     * \param[out]  ch      8-bit value to fill the device memory with
     *
     * Exception Guarantee: Basic
     */
    template <class T>
    void memset(const ManagedPtr<T>& dest, std::int8_t ch) {
        memset<T>(dest.get(), ch, dest.size());
    }

    /** copies entire memory block pointed by \p src to \p dest asynchronously
     *
     * \param[in]   src     device pointer
     * \param[out]  dest    host pointer
     * \param       stream  CUDA stream that has to be used for the memory transfer
     *
     * Pre-conditions:
     * - memory pointed by \p dest must be large enough to hold the entire block of memory held by \p src
     * - \p dest points to page-locked memory
     *
     * Exception Guarantee: Basic
     */
    template <class T>
    void memcpy(T *dest, const ManagedPtr<T>& src, const Stream& stream) {
        CV_Assert(stream);
        memcpy<T>(dest, src.get(), src.size(), stream);
    }

    /** copies data from memory pointed by \p src to \p dest asynchronously
     *
     * \param[in]   src     host pointer
     * \param[out]  dest    device pointer
     * \param       stream  CUDA stream that has to be used for the memory transfer
     *
     * Pre-conditions:
     * - memory pointed by \p dest must be large enough to hold the entire block of memory held by \p src
     * - \p src points to page-locked memory
     *
     * Exception Guarantee: Basic
     */
    template <class T>
    void memcpy(const ManagedPtr<T>& dest, const T* src, const Stream& stream) {
        CV_Assert(stream);
        memcpy<T>(dest.get(), src, dest.size(), stream);
    }

    /** copies data from memory pointed by \p src to \p dest asynchronously
     *
     * \param[in]   src     device pointer
     * \param[out]  dest    device pointer
     * \param       stream  CUDA stream that has to be used for the memory transfer
     *
     * if the two \p src and \p  dest have different sizes, the number of elements copied is
     * equal to the size of the smaller memory block
     *
     * Exception Guarantee: Basic
     */
    template <class T>
    void memcpy(ManagedPtr<T>& dest, const ManagedPtr<T>& src, const Stream& stream) {
        CV_Assert(stream);
        memcpy<T>(dest.get(), src.get(), std::min(dest.size(), src.size()), stream);
    }

    /** sets device memory block to a specific 8-bit value asynchronously
     *
     * \param[in]   src     device pointer
     * \param[out]  ch      8-bit value to fill the device memory with
     * \param       stream  CUDA stream that has to be used for the memory operation
     *
     * Exception Guarantee: Basic
     */
    template <class T>
    void memset(const ManagedPtr<T>& dest, int ch, const Stream& stream) {
        CV_Assert(stream);
        memset<T>(dest.get(), ch, dest.size(), stream);
    }

    /** @brief registers host memory as page-locked and unregisters on destruction */
    class MemoryLockGuard {
    public:
        MemoryLockGuard() noexcept : ptr { nullptr } { }
        MemoryLockGuard(const MemoryLockGuard&) = delete;
        MemoryLockGuard(MemoryLockGuard&& other) noexcept : ptr{ other.ptr } {
            other.ptr = nullptr;
        }

        /** page-locks \p size_in_bytes bytes of memory starting from \p ptr_
         *
B
Brian Wignall 已提交
269
         * Pre-conditions:
270 271 272 273 274 275 276 277 278
         * - host memory should be unregistered
         */
        MemoryLockGuard(void* ptr_, std::size_t size_in_bytes) {
            CUDA4DNN_CHECK_CUDA(cudaHostRegister(ptr_, size_in_bytes, cudaHostRegisterPortable));
            ptr = ptr_;
        }

        MemoryLockGuard& operator=(const MemoryLockGuard&) = delete;
        MemoryLockGuard& operator=(MemoryLockGuard&& other) noexcept {
279 280 281 282 283 284 285 286
            if (&other != this) {
                if(ptr != nullptr) {
                    /* cudaHostUnregister does not throw for a valid ptr */
                    CUDA4DNN_CHECK_CUDA(cudaHostUnregister(ptr));
                }
                ptr = other.ptr;
                other.ptr = nullptr;
            }
287 288 289 290
            return *this;
        }

        ~MemoryLockGuard() {
291 292
            if(ptr != nullptr) {
                /* cudaHostUnregister does not throw for a valid ptr */
293
                CUDA4DNN_CHECK_CUDA(cudaHostUnregister(ptr));
294
            }
295 296 297 298 299 300 301 302 303
        }

    private:
        void *ptr;
    };

}}}} /* namespace cv::dnn::cuda4dnn::csl */

#endif /* OPENCV_DNN_SRC_CUDA4DNN_CSL_MEMORY_HPP */