cascadedetect.cpp 44.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
#include <cstdio>

namespace cv
{
    
// class for grouping object candidates, detected by Cascade Classifier, HOG etc.
// instance of the class is to be passed to cv::partition (see cxoperations.hpp)
class CV_EXPORTS SimilarRects
{
public:    
    SimilarRects(double _eps) : eps(_eps) {}
    inline bool operator()(const Rect& r1, const Rect& r2) const
    {
        double delta = eps*(std::min(r1.width, r2.width) + std::min(r1.height, r2.height))*0.5;
        return std::abs(r1.x - r2.x) <= delta &&
        std::abs(r1.y - r2.y) <= delta &&
        std::abs(r1.x + r1.width - r2.x - r2.width) <= delta &&
        std::abs(r1.y + r1.height - r2.y - r2.height) <= delta;
    }
    double eps;
};    
    

66
void groupRectangles(vector<Rect>& rectList, int groupThreshold, double eps, vector<int>* weights, vector<double>* levelWeights)
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
{
    if( groupThreshold <= 0 || rectList.empty() )
    {
        if( weights )
        {
            size_t i, sz = rectList.size();
            weights->resize(sz);
            for( i = 0; i < sz; i++ )
                (*weights)[i] = 1;
        }
        return;
    }
    
    vector<int> labels;
    int nclasses = partition(rectList, labels, SimilarRects(eps));
    
    vector<Rect> rrects(nclasses);
    vector<int> rweights(nclasses, 0);
85 86
	vector<int> rejectLevels(nclasses, 0);
    vector<double> rejectWeights(nclasses, DBL_MIN);
87 88 89 90 91 92 93 94 95 96
    int i, j, nlabels = (int)labels.size();
    for( i = 0; i < nlabels; i++ )
    {
        int cls = labels[i];
        rrects[cls].x += rectList[i].x;
        rrects[cls].y += rectList[i].y;
        rrects[cls].width += rectList[i].width;
        rrects[cls].height += rectList[i].height;
        rweights[cls]++;
    }
97
    if ( levelWeights && weights && !weights->empty() && !levelWeights->empty() )
98 99 100 101
	{
		for( i = 0; i < nlabels; i++ )
		{
			int cls = labels[i];
102 103 104 105 106 107 108
            if( (*weights)[i] > rejectLevels[cls] )
            {
                rejectLevels[cls] = (*weights)[i];
                rejectWeights[cls] = (*levelWeights)[i];
            }
            else if( ( (*weights)[i] == rejectLevels[cls] ) && ( (*levelWeights)[i] > rejectWeights[cls] ) )
                rejectWeights[cls] = (*levelWeights)[i];
109 110
		}
	}
111 112 113 114 115 116 117 118 119 120 121 122 123 124
    
    for( i = 0; i < nclasses; i++ )
    {
        Rect r = rrects[i];
        float s = 1.f/rweights[i];
        rrects[i] = Rect(saturate_cast<int>(r.x*s),
             saturate_cast<int>(r.y*s),
             saturate_cast<int>(r.width*s),
             saturate_cast<int>(r.height*s));
    }
    
    rectList.clear();
    if( weights )
        weights->clear();
125 126
	if( levelWeights )
		levelWeights->clear();
127 128 129 130
    
    for( i = 0; i < nclasses; i++ )
    {
        Rect r1 = rrects[i];
131 132
        int n1 = levelWeights ? rejectLevels[i] : rweights[i];
		double w1 = rejectWeights[i];
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
        if( n1 <= groupThreshold )
            continue;
        // filter out small face rectangles inside large rectangles
        for( j = 0; j < nclasses; j++ )
        {
            int n2 = rweights[j];
            
            if( j == i || n2 <= groupThreshold )
                continue;
            Rect r2 = rrects[j];
            
            int dx = saturate_cast<int>( r2.width * eps );
            int dy = saturate_cast<int>( r2.height * eps );
            
            if( i != j &&
                r1.x >= r2.x - dx &&
                r1.y >= r2.y - dy &&
                r1.x + r1.width <= r2.x + r2.width + dx &&
                r1.y + r1.height <= r2.y + r2.height + dy &&
                (n2 > std::max(3, n1) || n1 < 3) )
                break;
        }
        
        if( j == nclasses )
        {
            rectList.push_back(r1);
            if( weights )
                weights->push_back(n1);
161 162
			if( levelWeights )
				levelWeights->push_back(w1);
163 164 165 166
        }
    }
}

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
class MeanshiftGrouping
{
public:
	MeanshiftGrouping(const Point3d& densKer, const vector<Point3d>& posV, 
		const vector<double>& wV, double modeEps = 1e-4, int maxIter = 20)
    {
	    densityKernel = densKer;
        weightsV = wV;
        positionsV = posV;
        positionsCount = posV.size();
	    meanshiftV.resize(positionsCount);
        distanceV.resize(positionsCount);
        modeEps = modeEps;
	    iterMax = maxIter;
        
	    for (unsigned i = 0; i<positionsV.size(); i++)
	    {
		    meanshiftV[i] = getNewValue(positionsV[i]);

		    distanceV[i] = moveToMode(meanshiftV[i]);

		    meanshiftV[i] -= positionsV[i];
	    }
    }
	
	void getModes(vector<Point3d>& modesV, vector<double>& resWeightsV, const double eps)
    {
	    for (size_t i=0; i <distanceV.size(); i++)
	    {
		    bool is_found = false;
		    for(size_t j=0; j<modesV.size(); j++)
		    {
			    if ( getDistance(distanceV[i], modesV[j]) < eps)
			    {
				    is_found=true;
				    break;
			    }
		    }
		    if (!is_found)
		    {
			    modesV.push_back(distanceV[i]);
		    }
	    }
    	
	    resWeightsV.resize(modesV.size());

	    for (size_t i=0; i<modesV.size(); i++)
	    {
		    resWeightsV[i] = getResultWeight(modesV[i]);
	    }
    }

protected:
	vector<Point3d> positionsV;
	vector<double> weightsV;

	Point3d densityKernel;
	int positionsCount;

	vector<Point3d> meanshiftV;
	vector<Point3d> distanceV;
	int iterMax;
	double modeEps;

	Point3d getNewValue(const Point3d& inPt) const
    {
	    Point3d resPoint(.0);
	    Point3d ratPoint(.0);
	    for (size_t i=0; i<positionsV.size(); i++)
	    {
		    Point3d aPt= positionsV[i];
		    Point3d bPt = inPt;
		    Point3d sPt = densityKernel;
    		
		    sPt.x *= exp(aPt.z);
		    sPt.y *= exp(aPt.z);
    		
		    aPt.x /= sPt.x;
		    aPt.y /= sPt.y;
		    aPt.z /= sPt.z;

		    bPt.x /= sPt.x;
		    bPt.y /= sPt.y;
		    bPt.z /= sPt.z;
    		
		    double w = (weightsV[i])*std::exp(-((aPt-bPt).dot(aPt-bPt))/2)/std::sqrt(sPt.dot(Point3d(1,1,1)));
    		
		    resPoint += w*aPt;

		    ratPoint.x += w/sPt.x;
		    ratPoint.y += w/sPt.y;
		    ratPoint.z += w/sPt.z;
	    }
	    resPoint.x /= ratPoint.x;
	    resPoint.y /= ratPoint.y;
	    resPoint.z /= ratPoint.z;
	    return resPoint;
    }

	double getResultWeight(const Point3d& inPt) const
    {
	    double sumW=0;
	    for (size_t i=0; i<positionsV.size(); i++)
	    {
		    Point3d aPt = positionsV[i];
		    Point3d sPt = densityKernel;

		    sPt.x *= exp(aPt.z);
		    sPt.y *= exp(aPt.z);

		    aPt -= inPt;
    		
		    aPt.x /= sPt.x;
		    aPt.y /= sPt.y;
		    aPt.z /= sPt.z;
    		
		    sumW+=(weightsV[i])*std::exp(-(aPt.dot(aPt))/2)/std::sqrt(sPt.dot(Point3d(1,1,1)));
	    }
	    return sumW;
    }
    
	Point3d moveToMode(Point3d aPt) const
    {
	    Point3d bPt;
	    for (int i = 0; i<iterMax; i++)
	    {
		    bPt = aPt;
		    aPt = getNewValue(bPt);
		    if ( getDistance(aPt, bPt) <= modeEps )
		    {
			    break;
		    }
	    }
	    return aPt;
    }

    double getDistance(Point3d p1, Point3d p2) const
    {
	    Point3d ns = densityKernel;
	    ns.x *= exp(p2.z);
	    ns.y *= exp(p2.z);
	    p2 -= p1;
	    p2.x /= ns.x;
	    p2.y /= ns.y;
	    p2.z /= ns.z;
	    return p2.dot(p2);
    }
};
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
//new grouping function with using meanshift
static void groupRectangles_meanshift(vector<Rect>& rectList, double detectThreshold, vector<double>* foundWeights, 
									  vector<double>& scales, Size winDetSize)
{
    int detectionCount = rectList.size();
    vector<Point3d> hits(detectionCount), resultHits;
    vector<double> hitWeights(detectionCount), resultWeights;
    Point2d hitCenter;

    for (int i=0; i < detectionCount; i++) 
    {
        hitWeights[i] = (*foundWeights)[i];
        hitCenter = (rectList[i].tl() + rectList[i].br())*(0.5); //center of rectangles
        hits[i] = Point3d(hitCenter.x, hitCenter.y, std::log(scales[i]));
    }

    rectList.clear();
    if (foundWeights)
        foundWeights->clear();

    double logZ = std::log(1.3);
    Point3d smothing(8, 16, logZ);

    MeanshiftGrouping msGrouping(smothing, hits, hitWeights, 1e-5, 100);

    msGrouping.getModes(resultHits, resultWeights, 1);

    for (unsigned i=0; i < resultHits.size(); ++i) 
    {

        double scale = exp(resultHits[i].z);
        hitCenter.x = resultHits[i].x;
        hitCenter.y = resultHits[i].y;
        Size s( int(winDetSize.width * scale), int(winDetSize.height * scale) );
        Rect resultRect( int(hitCenter.x-s.width/2), int(hitCenter.y-s.height/2), 
            int(s.width), int(s.height) ); 

        if (resultWeights[i] > detectThreshold) 
        {
            rectList.push_back(resultRect);
            foundWeights->push_back(resultWeights[i]);
        }
    }
}
359 360 361

void groupRectangles(vector<Rect>& rectList, int groupThreshold, double eps)
{
362
    groupRectangles(rectList, groupThreshold, eps, 0, 0);
363
}
364

365 366
void groupRectangles(vector<Rect>& rectList, vector<int>& weights, int groupThreshold, double eps)
{
367 368
    groupRectangles(rectList, groupThreshold, eps, &weights, 0);
}
369 370
//used for cascade detection algorithm for ROC-curve calculating
void groupRectangles(vector<Rect>& rectList, vector<int>& rejectLevels, vector<double>& levelWeights, int groupThreshold, double eps)
371
{
372
    groupRectangles(rectList, groupThreshold, eps, &rejectLevels, &levelWeights);
373
}
374
//can be used for HOG detection algorithm only
375 376 377 378
void groupRectangles_meanshift(vector<Rect>& rectList, vector<double>& foundWeights, 
							   vector<double>& foundScales, double detectThreshold, Size winDetSize)
{
	groupRectangles_meanshift(rectList, detectThreshold, &foundWeights, foundScales, winDetSize);
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
}

    
#define CC_CASCADE_PARAMS "cascadeParams"
#define CC_STAGE_TYPE     "stageType"
#define CC_FEATURE_TYPE   "featureType"
#define CC_HEIGHT         "height"
#define CC_WIDTH          "width"

#define CC_STAGE_NUM    "stageNum"
#define CC_STAGES       "stages"
#define CC_STAGE_PARAMS "stageParams"

#define CC_BOOST            "BOOST"
#define CC_MAX_DEPTH        "maxDepth"
#define CC_WEAK_COUNT       "maxWeakCount"
#define CC_STAGE_THRESHOLD  "stageThreshold"
#define CC_WEAK_CLASSIFIERS "weakClassifiers"
#define CC_INTERNAL_NODES   "internalNodes"
#define CC_LEAF_VALUES      "leafValues"

#define CC_FEATURES       "features"
#define CC_FEATURE_PARAMS "featureParams"
#define CC_MAX_CAT_COUNT  "maxCatCount"

#define CC_HAAR   "HAAR"
#define CC_RECTS  "rects"
#define CC_TILTED "tilted"

#define CC_LBP  "LBP"
#define CC_RECT "rect"

#define CV_SUM_PTRS( p0, p1, p2, p3, sum, rect, step )                    \
    /* (x, y) */                                                          \
    (p0) = sum + (rect).x + (step) * (rect).y,                            \
    /* (x + w, y) */                                                      \
    (p1) = sum + (rect).x + (rect).width + (step) * (rect).y,             \
    /* (x + w, y) */                                                      \
    (p2) = sum + (rect).x + (step) * ((rect).y + (rect).height),          \
    /* (x + w, y + h) */                                                  \
    (p3) = sum + (rect).x + (rect).width + (step) * ((rect).y + (rect).height)

#define CV_TILTED_PTRS( p0, p1, p2, p3, tilted, rect, step )                        \
    /* (x, y) */                                                                    \
    (p0) = tilted + (rect).x + (step) * (rect).y,                                   \
    /* (x - h, y + h) */                                                            \
    (p1) = tilted + (rect).x - (rect).height + (step) * ((rect).y + (rect).height), \
    /* (x + w, y + w) */                                                            \
    (p2) = tilted + (rect).x + (rect).width + (step) * ((rect).y + (rect).width),   \
    /* (x + w - h, y + w + h) */                                                    \
    (p3) = tilted + (rect).x + (rect).width - (rect).height                         \
           + (step) * ((rect).y + (rect).width + (rect).height)

#define CALC_SUM_(p0, p1, p2, p3, offset) \
    ((p0)[offset] - (p1)[offset] - (p2)[offset] + (p3)[offset])   
    
#define CALC_SUM(rect,offset) CALC_SUM_((rect)[0], (rect)[1], (rect)[2], (rect)[3], offset)

FeatureEvaluator::~FeatureEvaluator() {}
bool FeatureEvaluator::read(const FileNode&) {return true;}
Ptr<FeatureEvaluator> FeatureEvaluator::clone() const { return Ptr<FeatureEvaluator>(); }
int FeatureEvaluator::getFeatureType() const {return -1;}
bool FeatureEvaluator::setImage(const Mat&, Size) {return true;}
bool FeatureEvaluator::setWindow(Point) { return true; }
double FeatureEvaluator::calcOrd(int) const { return 0.; }
int FeatureEvaluator::calcCat(int) const { return 0; }

//----------------------------------------------  HaarEvaluator ---------------------------------------
class HaarEvaluator : public FeatureEvaluator
{
public:
    struct Feature
    {
        Feature();
        
        float calc( int offset ) const;
        void updatePtrs( const Mat& sum );
        bool read( const FileNode& node );
        
        bool tilted;
        
        enum { RECT_NUM = 3 };
        
        struct
        {
            Rect r;
            float weight;
        } rect[RECT_NUM];
        
        const int* p[RECT_NUM][4];
    };
    
    HaarEvaluator();
    virtual ~HaarEvaluator();

    virtual bool read( const FileNode& node );
    virtual Ptr<FeatureEvaluator> clone() const;
    virtual int getFeatureType() const { return FeatureEvaluator::HAAR; }

    virtual bool setImage(const Mat&, Size origWinSize);
    virtual bool setWindow(Point pt);

    double operator()(int featureIdx) const
    { return featuresPtr[featureIdx].calc(offset) * varianceNormFactor; }
    virtual double calcOrd(int featureIdx) const
    { return (*this)(featureIdx); }
485

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
private:
    Size origWinSize;
    Ptr<vector<Feature> > features;
    Feature* featuresPtr; // optimization
    bool hasTiltedFeatures;

    Mat sum0, sqsum0, tilted0;
    Mat sum, sqsum, tilted;
    
    Rect normrect;
    const int *p[4];
    const double *pq[4];
    
    int offset;
    double varianceNormFactor;    
};

inline HaarEvaluator::Feature :: Feature()
{
    tilted = false;
    rect[0].r = rect[1].r = rect[2].r = Rect();
    rect[0].weight = rect[1].weight = rect[2].weight = 0;
    p[0][0] = p[0][1] = p[0][2] = p[0][3] = 
        p[1][0] = p[1][1] = p[1][2] = p[1][3] = 
        p[2][0] = p[2][1] = p[2][2] = p[2][3] = 0;
}

inline float HaarEvaluator::Feature :: calc( int offset ) const
{
    float ret = rect[0].weight * CALC_SUM(p[0], offset) + rect[1].weight * CALC_SUM(p[1], offset);

    if( rect[2].weight != 0.0f )
        ret += rect[2].weight * CALC_SUM(p[2], offset);
    
    return ret;
}

inline void HaarEvaluator::Feature :: updatePtrs( const Mat& sum )
{
    const int* ptr = (const int*)sum.data;
    size_t step = sum.step/sizeof(ptr[0]);
    if (tilted)
    {
        CV_TILTED_PTRS( p[0][0], p[0][1], p[0][2], p[0][3], ptr, rect[0].r, step );
        CV_TILTED_PTRS( p[1][0], p[1][1], p[1][2], p[1][3], ptr, rect[1].r, step );
        if (rect[2].weight)
            CV_TILTED_PTRS( p[2][0], p[2][1], p[2][2], p[2][3], ptr, rect[2].r, step );
    }
    else
    {
        CV_SUM_PTRS( p[0][0], p[0][1], p[0][2], p[0][3], ptr, rect[0].r, step );
        CV_SUM_PTRS( p[1][0], p[1][1], p[1][2], p[1][3], ptr, rect[1].r, step );
        if (rect[2].weight)
            CV_SUM_PTRS( p[2][0], p[2][1], p[2][2], p[2][3], ptr, rect[2].r, step );
    }
}

bool HaarEvaluator::Feature :: read( const FileNode& node )
{
    FileNode rnode = node[CC_RECTS];
    FileNodeIterator it = rnode.begin(), it_end = rnode.end();
    
    int ri;
    for( ri = 0; ri < RECT_NUM; ri++ )
    {
        rect[ri].r = Rect();
        rect[ri].weight = 0.f;
    }
    
    for(ri = 0; it != it_end; ++it, ri++)
    {
        FileNodeIterator it2 = (*it).begin();
        it2 >> rect[ri].r.x >> rect[ri].r.y >>
            rect[ri].r.width >> rect[ri].r.height >> rect[ri].weight;
    }
    
    tilted = (int)node[CC_TILTED] != 0;
    return true;
}

HaarEvaluator::HaarEvaluator()
{
    features = new vector<Feature>();
}
HaarEvaluator::~HaarEvaluator()
{
}

bool HaarEvaluator::read(const FileNode& node)
{
    features->resize(node.size());
    featuresPtr = &(*features)[0];
    FileNodeIterator it = node.begin(), it_end = node.end();
    hasTiltedFeatures = false;
    
    for(int i = 0; it != it_end; ++it, i++)
    {
        if(!featuresPtr[i].read(*it))
            return false;
        if( featuresPtr[i].tilted )
            hasTiltedFeatures = true;
    }
    return true;
}
    
Ptr<FeatureEvaluator> HaarEvaluator::clone() const
{
    HaarEvaluator* ret = new HaarEvaluator;
    ret->origWinSize = origWinSize;
    ret->features = features;
    ret->featuresPtr = &(*ret->features)[0];
    ret->hasTiltedFeatures = hasTiltedFeatures;
    ret->sum0 = sum0, ret->sqsum0 = sqsum0, ret->tilted0 = tilted0;
    ret->sum = sum, ret->sqsum = sqsum, ret->tilted = tilted;
    ret->normrect = normrect;
    memcpy( ret->p, p, 4*sizeof(p[0]) );
    memcpy( ret->pq, pq, 4*sizeof(pq[0]) );
    ret->offset = offset;
    ret->varianceNormFactor = varianceNormFactor; 
    return ret;
}

bool HaarEvaluator::setImage( const Mat &image, Size _origWinSize )
{
    int rn = image.rows+1, cn = image.cols+1;
    origWinSize = _origWinSize;
    normrect = Rect(1, 1, origWinSize.width-2, origWinSize.height-2);
    
    if (image.cols < origWinSize.width || image.rows < origWinSize.height)
        return false;
    
    if( sum0.rows < rn || sum0.cols < cn )
    {
        sum0.create(rn, cn, CV_32S);
        sqsum0.create(rn, cn, CV_64F);
        if (hasTiltedFeatures)
            tilted0.create( rn, cn, CV_32S);
    }
    sum = Mat(rn, cn, CV_32S, sum0.data);
625
    sqsum = Mat(rn, cn, CV_64F, sqsum0.data);
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667

    if( hasTiltedFeatures )
    {
        tilted = Mat(rn, cn, CV_32S, tilted0.data);
        integral(image, sum, sqsum, tilted);
    }
    else
        integral(image, sum, sqsum);
    const int* sdata = (const int*)sum.data;
    const double* sqdata = (const double*)sqsum.data;
    size_t sumStep = sum.step/sizeof(sdata[0]);
    size_t sqsumStep = sqsum.step/sizeof(sqdata[0]);
    
    CV_SUM_PTRS( p[0], p[1], p[2], p[3], sdata, normrect, sumStep );
    CV_SUM_PTRS( pq[0], pq[1], pq[2], pq[3], sqdata, normrect, sqsumStep );
    
    size_t fi, nfeatures = features->size();

    for( fi = 0; fi < nfeatures; fi++ )
        featuresPtr[fi].updatePtrs( !featuresPtr[fi].tilted ? sum : tilted );
    return true;
}

bool  HaarEvaluator::setWindow( Point pt )
{
    if( pt.x < 0 || pt.y < 0 ||
        pt.x + origWinSize.width >= sum.cols-2 ||
        pt.y + origWinSize.height >= sum.rows-2 )
        return false;

    size_t pOffset = pt.y * (sum.step/sizeof(int)) + pt.x;
    size_t pqOffset = pt.y * (sqsum.step/sizeof(double)) + pt.x;
    int valsum = CALC_SUM(p, pOffset);
    double valsqsum = CALC_SUM(pq, pqOffset);

    double nf = (double)normrect.area() * valsqsum - (double)valsum * valsum;
    if( nf > 0. )
        nf = sqrt(nf);
    else
        nf = 1.;
    varianceNormFactor = 1./nf;
    offset = (int)pOffset;
668

669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
    return true;
}

//----------------------------------------------  LBPEvaluator -------------------------------------

class LBPEvaluator : public FeatureEvaluator
{
public:
    struct Feature
    {
        Feature();
        Feature( int x, int y, int _block_w, int _block_h  ) : 
        rect(x, y, _block_w, _block_h) {}
        
        int calc( int offset ) const;
        void updatePtrs( const Mat& sum );
        bool read(const FileNode& node );
        
        Rect rect; // weight and height for block
        const int* p[16]; // fast
    };
    
    LBPEvaluator();
    virtual ~LBPEvaluator();
    
    virtual bool read( const FileNode& node );
    virtual Ptr<FeatureEvaluator> clone() const;
    virtual int getFeatureType() const { return FeatureEvaluator::LBP; }

    virtual bool setImage(const Mat& image, Size _origWinSize);
    virtual bool setWindow(Point pt);
    
    int operator()(int featureIdx) const
    { return featuresPtr[featureIdx].calc(offset); }
    virtual int calcCat(int featureIdx) const
    { return (*this)(featureIdx); }
private:
    Size origWinSize;
    Ptr<vector<Feature> > features;
    Feature* featuresPtr; // optimization
    Mat sum0, sum;
    Rect normrect;

    int offset;
};    
    
    
inline LBPEvaluator::Feature :: Feature()
{
    rect = Rect();
    for( int i = 0; i < 16; i++ )
        p[i] = 0;
}

inline int LBPEvaluator::Feature :: calc( int offset ) const
{
    int cval = CALC_SUM_( p[5], p[6], p[9], p[10], offset );
    
    return (CALC_SUM_( p[0], p[1], p[4], p[5], offset ) >= cval ? 128 : 0) |   // 0
           (CALC_SUM_( p[1], p[2], p[5], p[6], offset ) >= cval ? 64 : 0) |    // 1
           (CALC_SUM_( p[2], p[3], p[6], p[7], offset ) >= cval ? 32 : 0) |    // 2
           (CALC_SUM_( p[6], p[7], p[10], p[11], offset ) >= cval ? 16 : 0) |  // 5
           (CALC_SUM_( p[10], p[11], p[14], p[15], offset ) >= cval ? 8 : 0)|  // 8
           (CALC_SUM_( p[9], p[10], p[13], p[14], offset ) >= cval ? 4 : 0)|   // 7
           (CALC_SUM_( p[8], p[9], p[12], p[13], offset ) >= cval ? 2 : 0)|    // 6
           (CALC_SUM_( p[4], p[5], p[8], p[9], offset ) >= cval ? 1 : 0);
}

inline void LBPEvaluator::Feature :: updatePtrs( const Mat& sum )
{
    const int* ptr = (const int*)sum.data;
    size_t step = sum.step/sizeof(ptr[0]);
    Rect tr = rect;
    CV_SUM_PTRS( p[0], p[1], p[4], p[5], ptr, tr, step );
    tr.x += 2*rect.width;
    CV_SUM_PTRS( p[2], p[3], p[6], p[7], ptr, tr, step );
    tr.y += 2*rect.height;
    CV_SUM_PTRS( p[10], p[11], p[14], p[15], ptr, tr, step );
    tr.x -= 2*rect.width;
    CV_SUM_PTRS( p[8], p[9], p[12], p[13], ptr, tr, step );
}

bool LBPEvaluator::Feature :: read(const FileNode& node )
{
    FileNode rnode = node[CC_RECT];
    FileNodeIterator it = rnode.begin();
    it >> rect.x >> rect.y >> rect.width >> rect.height;
    return true;
}

LBPEvaluator::LBPEvaluator()
{
    features = new vector<Feature>();
}
LBPEvaluator::~LBPEvaluator()
{
}

bool LBPEvaluator::read( const FileNode& node )
{
    features->resize(node.size());
    featuresPtr = &(*features)[0];
    FileNodeIterator it = node.begin(), it_end = node.end();
    for(int i = 0; it != it_end; ++it, i++)
    {
        if(!featuresPtr[i].read(*it))
            return false;
    }
    return true;
}

Ptr<FeatureEvaluator> LBPEvaluator::clone() const
{
    LBPEvaluator* ret = new LBPEvaluator;
    ret->origWinSize = origWinSize;
    ret->features = features;
    ret->featuresPtr = &(*ret->features)[0];
    ret->sum0 = sum0, ret->sum = sum;
    ret->normrect = normrect;
    ret->offset = offset;
    return ret;
}

bool LBPEvaluator::setImage( const Mat& image, Size _origWinSize )
{
    int rn = image.rows+1, cn = image.cols+1;
    origWinSize = _origWinSize;

    if( image.cols < origWinSize.width || image.rows < origWinSize.height )
        return false;
    
    if( sum0.rows < rn || sum0.cols < cn )
        sum0.create(rn, cn, CV_32S);
    sum = Mat(rn, cn, CV_32S, sum0.data);
    integral(image, sum);
    
    size_t fi, nfeatures = features->size();
    
    for( fi = 0; fi < nfeatures; fi++ )
        featuresPtr[fi].updatePtrs( sum );
    return true;
}
    
bool LBPEvaluator::setWindow( Point pt )
{
    if( pt.x < 0 || pt.y < 0 ||
        pt.x + origWinSize.width >= sum.cols-2 ||
        pt.y + origWinSize.height >= sum.rows-2 )
        return false;
    offset = pt.y * ((int)sum.step/sizeof(int)) + pt.x;
    return true;
}

Ptr<FeatureEvaluator> FeatureEvaluator::create(int featureType)
{
    return featureType == HAAR ? Ptr<FeatureEvaluator>(new HaarEvaluator) :
        featureType == LBP ? Ptr<FeatureEvaluator>(new LBPEvaluator) : Ptr<FeatureEvaluator>();
}
    
//---------------------------------------- Classifier Cascade --------------------------------------------

CascadeClassifier::CascadeClassifier()
{
}

CascadeClassifier::CascadeClassifier(const string& filename)
{ load(filename); }

CascadeClassifier::~CascadeClassifier()
{
}    

bool CascadeClassifier::empty() const
{
843
    return oldCascade.empty() && data.stages.empty();
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
}

bool CascadeClassifier::load(const string& filename)
{
    oldCascade.release();
    
    FileStorage fs(filename, FileStorage::READ);
    if( !fs.isOpened() )
        return false;
    
    if( read(fs.getFirstTopLevelNode()) )
        return true;
    
    fs.release();
    
    oldCascade = Ptr<CvHaarClassifierCascade>((CvHaarClassifierCascade*)cvLoad(filename.c_str(), 0, 0, 0));
    return !oldCascade.empty();
}
    
template<class FEval>
864
inline int predictOrdered( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &_featureEvaluator, double& sum )
865
{
866
    int nstages = (int)cascade.data.stages.size();
867
    int nodeOfs = 0, leafOfs = 0;
868 869 870 871 872
    FEval& featureEvaluator = (FEval&)*_featureEvaluator;
    float* cascadeLeaves = &cascade.data.leaves[0];
    CascadeClassifier::Data::DTreeNode* cascadeNodes = &cascade.data.nodes[0];
    CascadeClassifier::Data::DTree* cascadeWeaks = &cascade.data.classifiers[0];
    CascadeClassifier::Data::Stage* cascadeStages = &cascade.data.stages[0];
873
    
874
    for( int si = 0; si < nstages; si++ )
875
    {
876
        CascadeClassifier::Data::Stage& stage = cascadeStages[si];
877
        int wi, ntrees = stage.ntrees;
878
        sum = 0;
879 880 881
        
        for( wi = 0; wi < ntrees; wi++ )
        {
882
            CascadeClassifier::Data::DTree& weak = cascadeWeaks[stage.first + wi];
883 884 885 886
            int idx = 0, root = nodeOfs;

            do
            {
887 888
                CascadeClassifier::Data::DTreeNode& node = cascadeNodes[root + idx];
                double val = featureEvaluator(node.featureIdx);
889 890 891 892 893 894 895 896 897 898 899 900 901 902
                idx = val < node.threshold ? node.left : node.right;
            }
            while( idx > 0 );
            sum += cascadeLeaves[leafOfs - idx];
            nodeOfs += weak.nodeCount;
            leafOfs += weak.nodeCount + 1;
        }
        if( sum < stage.threshold )
            return -si;            
    }
    return 1;
}

template<class FEval>
903
inline int predictCategorical( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &_featureEvaluator, double& sum )
904
{
905
    int nstages = (int)cascade.data.stages.size();
906
    int nodeOfs = 0, leafOfs = 0;
907 908 909 910 911 912 913
    FEval& featureEvaluator = (FEval&)*_featureEvaluator;
    size_t subsetSize = (cascade.data.ncategories + 31)/32;
    int* cascadeSubsets = &cascade.data.subsets[0];
    float* cascadeLeaves = &cascade.data.leaves[0];
    CascadeClassifier::Data::DTreeNode* cascadeNodes = &cascade.data.nodes[0];
    CascadeClassifier::Data::DTree* cascadeWeaks = &cascade.data.classifiers[0];
    CascadeClassifier::Data::Stage* cascadeStages = &cascade.data.stages[0];
914
    
915
    for(int si = 0; si < nstages; si++ )
916
    {
917
        CascadeClassifier::Data::Stage& stage = cascadeStages[si];
918
        int wi, ntrees = stage.ntrees;
919
        sum = 0;
920 921 922
        
        for( wi = 0; wi < ntrees; wi++ )
        {
923
            CascadeClassifier::Data::DTree& weak = cascadeWeaks[stage.first + wi];
924 925 926
            int idx = 0, root = nodeOfs;
            do
            {
927 928
                CascadeClassifier::Data::DTreeNode& node = cascadeNodes[root + idx];
                int c = featureEvaluator(node.featureIdx);
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
                const int* subset = &cascadeSubsets[(root + idx)*subsetSize];
                idx = (subset[c>>5] & (1 << (c & 31))) ? node.left : node.right;
            }
            while( idx > 0 );
            sum += cascadeLeaves[leafOfs - idx];
            nodeOfs += weak.nodeCount;
            leafOfs += weak.nodeCount + 1;
        }
        if( sum < stage.threshold )
            return -si;            
    }
    return 1;
}

template<class FEval>
944
inline int predictOrderedStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &_featureEvaluator, double& sum )
945 946
{
    int nodeOfs = 0, leafOfs = 0;
947 948 949 950
    FEval& featureEvaluator = (FEval&)*_featureEvaluator;
    float* cascadeLeaves = &cascade.data.leaves[0];
    CascadeClassifier::Data::DTreeNode* cascadeNodes = &cascade.data.nodes[0];
    CascadeClassifier::Data::Stage* cascadeStages = &cascade.data.stages[0];
951

952
    int nstages = (int)cascade.data.stages.size();
953
    for( int stageIdx = 0; stageIdx < nstages; stageIdx++ )
954
    {
955
        CascadeClassifier::Data::Stage& stage = cascadeStages[stageIdx];
956
        sum = 0.0;
957 958 959

        int ntrees = stage.ntrees;
        for( int i = 0; i < ntrees; i++, nodeOfs++, leafOfs+= 2 )
960
        {
961 962
            CascadeClassifier::Data::DTreeNode& node = cascadeNodes[nodeOfs];
            double value = featureEvaluator(node.featureIdx);
963
            sum += cascadeLeaves[ value < node.threshold ? leafOfs : leafOfs + 1 ];
964
        }
965

966
        if( sum < stage.threshold )
967
            return -stageIdx;
968
    }
969

970 971 972 973
    return 1;
}

template<class FEval>
974
inline int predictCategoricalStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &_featureEvaluator, double& sum )
975
{
976
    int nstages = (int)cascade.data.stages.size();
977
    int nodeOfs = 0, leafOfs = 0;
978 979 980 981 982 983 984 985
    FEval& featureEvaluator = (FEval&)*_featureEvaluator;
    size_t subsetSize = (cascade.data.ncategories + 31)/32;
    int* cascadeSubsets = &cascade.data.subsets[0];
    float* cascadeLeaves = &cascade.data.leaves[0];
    CascadeClassifier::Data::DTreeNode* cascadeNodes = &cascade.data.nodes[0];
    CascadeClassifier::Data::Stage* cascadeStages = &cascade.data.stages[0];

    for( int si = 0; si < nstages; si++ )
986
    {
987
        CascadeClassifier::Data::Stage& stage = cascadeStages[si];
988
        int wi, ntrees = stage.ntrees;
989
        sum = 0;
990 991 992

        for( wi = 0; wi < ntrees; wi++ )
        {
993 994
            CascadeClassifier::Data::DTreeNode& node = cascadeNodes[nodeOfs];
            int c = featureEvaluator(node.featureIdx);
995 996 997 998 999 1000 1001 1002 1003 1004 1005
            const int* subset = &cascadeSubsets[nodeOfs*subsetSize];
            sum += cascadeLeaves[ subset[c>>5] & (1 << (c & 31)) ? leafOfs : leafOfs+1];
            nodeOfs++;
            leafOfs += 2;
        }
        if( sum < stage.threshold )
            return -si;            
    }
    return 1;
}

1006
int CascadeClassifier::runAt( Ptr<FeatureEvaluator>& featureEvaluator, Point pt, double& weight )
1007 1008 1009
{
    CV_Assert( oldCascade.empty() );
        
1010 1011
    assert(data.featureType == FeatureEvaluator::HAAR ||
           data.featureType == FeatureEvaluator::LBP);
1012 1013

    return !featureEvaluator->setWindow(pt) ? -1 :
1014
                data.isStumpBased ? ( data.featureType == FeatureEvaluator::HAAR ?
1015 1016
                    predictOrderedStump<HaarEvaluator>( *this, featureEvaluator, weight ) :
                    predictCategoricalStump<LBPEvaluator>( *this, featureEvaluator, weight ) ) :
1017
                                 ( data.featureType == FeatureEvaluator::HAAR ?
1018 1019
                    predictOrdered<HaarEvaluator>( *this, featureEvaluator, weight ) :
                    predictCategorical<LBPEvaluator>( *this, featureEvaluator, weight ) );
1020 1021
}
    
1022
bool CascadeClassifier::setImage( Ptr<FeatureEvaluator>& featureEvaluator, const Mat& image )
1023
{
1024
    return empty() ? false : featureEvaluator->setImage(image, data.origWinSize);
1025
}
1026

1027 1028
struct CascadeClassifierInvoker
{
1029
    CascadeClassifierInvoker( CascadeClassifier& _cc, Size _sz1, int _stripSize, int _yStep, double _factor, 
1030
        ConcurrentRectVector& _vec, vector<int>& _levels, vector<double>& _weights, bool outputLevels = false  )
1031
    {
1032
        classifier = &_cc;
1033
        processingRectSize = _sz1;
1034 1035
        stripSize = _stripSize;
        yStep = _yStep;
1036 1037
        scalingFactor = _factor;
        rectangles = &_vec;
1038
        rejectLevels  = outputLevels ? &_levels : 0;
1039
        levelWeights  = outputLevels ? &_weights : 0;
1040 1041 1042 1043
    }
    
    void operator()(const BlockedRange& range) const
    {
1044 1045
        Ptr<FeatureEvaluator> evaluator = classifier->featureEvaluator->clone();
        Size winSize(cvRound(classifier->data.origWinSize.width * scalingFactor), cvRound(classifier->data.origWinSize.height * scalingFactor));
1046 1047

        int y1 = range.begin() * stripSize;
1048
        int y2 = min(range.end() * stripSize, processingRectSize.height);
1049
        for( int y = y1; y < y2; y += yStep )
1050
        {
1051
            for( int x = 0; x < processingRectSize.width; x += yStep )
1052
            {
1053 1054
                double gypWeight;
                int result = classifier->runAt(evaluator, Point(x, y), gypWeight);
1055 1056 1057 1058
                if( rejectLevels )
                {
                    if( result == 1 )
                        result =  -1*classifier->data.stages.size();
1059
                    if( classifier->data.stages.size() + result < 4 )
1060 1061 1062
                    {
                        rectangles->push_back(Rect(cvRound(x*scalingFactor), cvRound(y*scalingFactor), winSize.width, winSize.height)); 
                        rejectLevels->push_back(-result);
1063
                        levelWeights->push_back(gypWeight);
1064 1065 1066
                    }
                }                    
                else if( result > 0 )
1067
                    rectangles->push_back(Rect(cvRound(x*scalingFactor), cvRound(y*scalingFactor),
1068
                                               winSize.width, winSize.height));
1069
                if( result == 0 )
1070 1071
                    x += yStep;
            }
1072
        }
1073 1074
    }
    
1075 1076
    CascadeClassifier* classifier;
    ConcurrentRectVector* rectangles;
1077
    Size processingRectSize;
1078
    int stripSize, yStep;
1079
    double scalingFactor;
1080
    vector<int> *rejectLevels;
1081
    vector<double> *levelWeights;
1082 1083 1084 1085
};
    
struct getRect { Rect operator ()(const CvAvgComp& e) const { return e.rect; } };

1086
bool CascadeClassifier::detectSingleScale( const Mat& image, int stripCount, Size processingRectSize,
1087
                                           int stripSize, int yStep, double factor, vector<Rect>& candidates,
1088
                                           vector<int>& levels, vector<double>& weights, bool outputRejectLevels )
1089 1090 1091 1092 1093
{
    if( !featureEvaluator->setImage( image, data.origWinSize ) )
        return false;

    ConcurrentRectVector concurrentCandidates;
1094
    vector<int> rejectLevels;
1095
    vector<double> levelWeights;
1096 1097 1098
    if( outputRejectLevels )
    {
        parallel_for(BlockedRange(0, stripCount), CascadeClassifierInvoker( *this, processingRectSize, stripSize, yStep, factor,
1099
            concurrentCandidates, rejectLevels, levelWeights, true));
1100
        levels.insert( levels.end(), rejectLevels.begin(), rejectLevels.end() );
1101
        weights.insert( weights.end(), levelWeights.begin(), levelWeights.end() );
1102 1103 1104 1105
    }
    else
    {
         parallel_for(BlockedRange(0, stripCount), CascadeClassifierInvoker( *this, processingRectSize, stripSize, yStep, factor,
1106
            concurrentCandidates, rejectLevels, levelWeights, false));
1107
    }
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
    candidates.insert( candidates.end(), concurrentCandidates.begin(), concurrentCandidates.end() );

    return true;
}

bool CascadeClassifier::isOldFormatCascade() const
{
    return !oldCascade.empty();
}

1118

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
int CascadeClassifier::getFeatureType() const
{
    return featureEvaluator->getFeatureType();
}

Size CascadeClassifier::getOriginalWindowSize() const
{
    return data.origWinSize;
}

bool CascadeClassifier::setImage(const Mat& image)
{
K
Kirill Kornyakov 已提交
1131
    return featureEvaluator->setImage(image, data.origWinSize);
1132 1133
}

A
Alexey Kazakov 已提交
1134 1135
void CascadeClassifier::detectMultiScale( const Mat& image, vector<Rect>& objects, 
                                          vector<int>& rejectLevels,
1136
                                          vector<double>& levelWeights,
1137
                                          double scaleFactor, int minNeighbors,
1138
                                          int flags, Size minObjectSize, Size maxObjectSize, 
A
Alexey Kazakov 已提交
1139
                                          bool outputRejectLevels )
1140 1141 1142 1143 1144 1145 1146 1147
{
    const double GROUP_EPS = 0.2;
    
    CV_Assert( scaleFactor > 1 && image.depth() == CV_8U );
    
    if( empty() )
        return;

1148
    if( isOldFormatCascade() )
1149 1150 1151
    {
        MemStorage storage(cvCreateMemStorage(0));
        CvMat _image = image;
1152 1153
        CvSeq* _objects = cvHaarDetectObjectsForROC( &_image, oldCascade, storage, rejectLevels, levelWeights, scaleFactor,
                                              minNeighbors, flags, minObjectSize, maxObjectSize, outputRejectLevels );
1154 1155 1156 1157 1158 1159
        vector<CvAvgComp> vecAvgComp;
        Seq<CvAvgComp>(_objects).copyTo(vecAvgComp);
        objects.resize(vecAvgComp.size());
        std::transform(vecAvgComp.begin(), vecAvgComp.end(), objects.begin(), getRect());
        return;
    }
1160

1161
    objects.clear();
1162 1163 1164

    if( maxObjectSize.height == 0 || maxObjectSize.width == 0 )
        maxObjectSize = image.size();
1165
    
1166 1167
    Mat grayImage = image;
    if( grayImage.channels() > 1 )
1168 1169
    {
        Mat temp;
1170 1171
        cvtColor(grayImage, temp, CV_BGR2GRAY);
        grayImage = temp;
1172 1173
    }
    
1174
    Mat imageBuffer(image.rows + 1, image.cols + 1, CV_8U);
1175
    vector<Rect> candidates;
1176 1177 1178

    for( double factor = 1; ; factor *= scaleFactor )
    {
1179
        Size originalWindowSize = getOriginalWindowSize();
1180

1181
        Size windowSize( cvRound(originalWindowSize.width*factor), cvRound(originalWindowSize.height*factor) );
1182
        Size scaledImageSize( cvRound( grayImage.cols/factor ), cvRound( grayImage.rows/factor ) );
1183
        Size processingRectSize( scaledImageSize.width - originalWindowSize.width, scaledImageSize.height - originalWindowSize.height );
1184
        
1185
        if( processingRectSize.width <= 0 || processingRectSize.height <= 0 )
1186
            break;
1187
        if( windowSize.width > maxObjectSize.width || windowSize.height > maxObjectSize.height )
1188
            break;
1189
        if( windowSize.width < minObjectSize.width || windowSize.height < minObjectSize.height )
1190 1191
            continue;
        
1192 1193 1194
        Mat scaledImage( scaledImageSize, CV_8U, imageBuffer.data );
        resize( grayImage, scaledImage, scaledImageSize, 0, 0, CV_INTER_LINEAR );

1195
        int yStep = factor > 2. ? 1 : 2;
1196
        int stripCount, stripSize;
1197

1198
    #if defined(HAVE_TBB) || defined(HAVE_THREADING_FRAMEWORK)
1199
        const int PTS_PER_THREAD = 1000;
1200
        stripCount = ((processingRectSize.width/yStep)*(processingRectSize.height + yStep-1)/yStep + PTS_PER_THREAD/2)/PTS_PER_THREAD;
1201
        stripCount = std::min(std::max(stripCount, 1), 100);
1202
        stripSize = (((processingRectSize.height + stripCount - 1)/stripCount + yStep-1)/yStep)*yStep;
1203 1204
    #else
        stripCount = 1;
1205
        stripSize = processingRectSize.height;
1206 1207
    #endif

1208
        if( !detectSingleScale( scaledImage, stripCount, processingRectSize, stripSize, yStep, factor, candidates, 
1209
            rejectLevels, levelWeights, outputRejectLevels ) )
1210 1211
            break;
    }
1212

1213
    
1214 1215 1216
    objects.resize(candidates.size());
    std::copy(candidates.begin(), candidates.end(), objects.begin());

1217 1218 1219 1220 1221 1222 1223 1224
    if( outputRejectLevels )
    {
        groupRectangles( objects, rejectLevels, levelWeights, minNeighbors, GROUP_EPS );
    }
    else
    {
        groupRectangles( objects, minNeighbors, GROUP_EPS );
    }
A
Alexey Kazakov 已提交
1225 1226 1227 1228 1229 1230 1231
}

void CascadeClassifier::detectMultiScale( const Mat& image, vector<Rect>& objects,
                                          double scaleFactor, int minNeighbors,
                                          int flags, Size minObjectSize, Size maxObjectSize)
{
    vector<int> fakeLevels;
1232 1233
    vector<double> fakeWeights;
    detectMultiScale( image, objects, fakeLevels, fakeWeights, scaleFactor, 
A
Alexey Kazakov 已提交
1234
        minNeighbors, flags, minObjectSize, maxObjectSize, false );
1235 1236
}    

1237
bool CascadeClassifier::Data::read(const FileNode &root)
1238 1239 1240 1241 1242 1243 1244
{
    // load stage params
    string stageTypeStr = (string)root[CC_STAGE_TYPE];
    if( stageTypeStr == CC_BOOST )
        stageType = BOOST;
    else
        return false;
1245

1246 1247 1248 1249 1250 1251 1252
    string featureTypeStr = (string)root[CC_FEATURE_TYPE];
    if( featureTypeStr == CC_HAAR )
        featureType = FeatureEvaluator::HAAR;
    else if( featureTypeStr == CC_LBP )
        featureType = FeatureEvaluator::LBP;
    else
        return false;
1253

1254 1255 1256
    origWinSize.width = (int)root[CC_WIDTH];
    origWinSize.height = (int)root[CC_HEIGHT];
    CV_Assert( origWinSize.height > 0 && origWinSize.width > 0 );
1257

1258
    isStumpBased = (int)(root[CC_STAGE_PARAMS][CC_MAX_DEPTH]) == 1 ? true : false;
1259 1260 1261 1262 1263

    // load feature params
    FileNode fn = root[CC_FEATURE_PARAMS];
    if( fn.empty() )
        return false;
1264

1265 1266 1267
    ncategories = fn[CC_MAX_CAT_COUNT];
    int subsetSize = (ncategories + 31)/32,
        nodeStep = 3 + ( ncategories>0 ? subsetSize : 1 );
1268

1269 1270 1271 1272
    // load stages
    fn = root[CC_STAGES];
    if( fn.empty() )
        return false;
1273

1274 1275 1276
    stages.reserve(fn.size());
    classifiers.clear();
    nodes.clear();
1277

1278
    FileNodeIterator it = fn.begin(), it_end = fn.end();
1279

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
    for( int si = 0; it != it_end; si++, ++it )
    {
        FileNode fns = *it;
        Stage stage;
        stage.threshold = fns[CC_STAGE_THRESHOLD];
        fns = fns[CC_WEAK_CLASSIFIERS];
        if(fns.empty())
            return false;
        stage.ntrees = (int)fns.size();
        stage.first = (int)classifiers.size();
        stages.push_back(stage);
        classifiers.reserve(stages[si].first + stages[si].ntrees);
1292

1293 1294 1295 1296 1297 1298 1299 1300
        FileNodeIterator it1 = fns.begin(), it1_end = fns.end();
        for( ; it1 != it1_end; ++it1 ) // weak trees
        {
            FileNode fnw = *it1;
            FileNode internalNodes = fnw[CC_INTERNAL_NODES];
            FileNode leafValues = fnw[CC_LEAF_VALUES];
            if( internalNodes.empty() || leafValues.empty() )
                return false;
1301

1302 1303 1304
            DTree tree;
            tree.nodeCount = (int)internalNodes.size()/nodeStep;
            classifiers.push_back(tree);
1305

1306 1307 1308 1309
            nodes.reserve(nodes.size() + tree.nodeCount);
            leaves.reserve(leaves.size() + leafValues.size());
            if( subsetSize > 0 )
                subsets.reserve(subsets.size() + tree.nodeCount*subsetSize);
1310 1311 1312 1313

            FileNodeIterator internalNodesIter = internalNodes.begin(), internalNodesEnd = internalNodes.end();

            for( ; internalNodesIter != internalNodesEnd; ) // nodes
1314 1315
            {
                DTreeNode node;
1316 1317 1318
                node.left = (int)*internalNodesIter; ++internalNodesIter;
                node.right = (int)*internalNodesIter; ++internalNodesIter;
                node.featureIdx = (int)*internalNodesIter; ++internalNodesIter;
1319 1320
                if( subsetSize > 0 )
                {
1321 1322
                    for( int j = 0; j < subsetSize; j++, ++internalNodesIter )
                        subsets.push_back((int)*internalNodesIter);
1323 1324 1325 1326
                    node.threshold = 0.f;
                }
                else
                {
1327
                    node.threshold = (float)*internalNodesIter; ++internalNodesIter;
1328 1329 1330
                }
                nodes.push_back(node);
            }
1331 1332 1333 1334 1335

            internalNodesIter = leafValues.begin(), internalNodesEnd = leafValues.end();

            for( ; internalNodesIter != internalNodesEnd; ++internalNodesIter ) // leaves
                leaves.push_back((float)*internalNodesIter);
1336 1337 1338
        }
    }

1339 1340 1341 1342 1343 1344 1345 1346
    return true;
}

bool CascadeClassifier::read(const FileNode& root)
{
    if( !data.read(root) )
        return false;

1347
    // load features
1348 1349
    featureEvaluator = FeatureEvaluator::create(data.featureType);
    FileNode fn = root[CC_FEATURES];
1350 1351 1352
    if( fn.empty() )
        return false;
    
1353
    return featureEvaluator->read(fn);
1354 1355 1356 1357 1358 1359
}
    
template<> void Ptr<CvHaarClassifierCascade>::delete_obj()
{ cvReleaseHaarClassifierCascade(&obj); }    

} // namespace cv