test_hog.cpp 11.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "test_precomp.hpp"

44
#ifdef HAVE_CUDA
45 46 47

//#define DUMP

48
struct CV_GpuHogDetectTestRunner : cv::gpu::HOGDescriptor
49
{
50
    void run() 
51
    {       
52 53
        cv::Mat img_rgb = readImage("hog/road.png");
        ASSERT_TRUE(!img_rgb.empty());
54 55

#ifdef DUMP
56 57
        f.open((std::string(cvtest::TS::ptr()->get_data_path()) + "hog/expected_output.bin").c_str(), std::ios_base::binary);
        ASSERT_TRUE(f.is_open());
58
#else
59 60
        f.open((std::string(cvtest::TS::ptr()->get_data_path()) + "hog/expected_output.bin").c_str(), std::ios_base::binary);
        ASSERT_TRUE(f.is_open());
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
#endif

        // Test on color image
        cv::Mat img;
        cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
        test(img);

        // Test on gray image
        cv::cvtColor(img_rgb, img, CV_BGR2GRAY);
        test(img);

        f.close();
    }

#ifdef DUMP
    void dump(const cv::Mat& block_hists, const std::vector<cv::Point>& locations) 
    {
        f.write((char*)&block_hists.rows, sizeof(block_hists.rows));
        f.write((char*)&block_hists.cols, sizeof(block_hists.cols));
        for (int i = 0; i < block_hists.rows; ++i)
        {
            for (int j = 0; j < block_hists.cols; ++j)
            {
                float val = block_hists.at<float>(i, j);
                f.write((char*)&val, sizeof(val));
            }
        }
88
        int nlocations = locations.size();
89
        f.write((char*)&nlocations, sizeof(nlocations));
90
        for (int i = 0; i < locations.size(); ++i)
91 92 93 94 95 96
            f.write((char*)&locations[i], sizeof(locations[i]));
    }
#else
    void compare(const cv::Mat& block_hists, const std::vector<cv::Point>& locations) 
    {
        int rows, cols;
97
        int nlocations;
98 99 100

        f.read((char*)&rows, sizeof(rows));
        f.read((char*)&cols, sizeof(cols));
101 102
        ASSERT_EQ(rows, block_hists.rows);
        ASSERT_EQ(cols, block_hists.cols);
103 104 105 106 107 108
        for (int i = 0; i < block_hists.rows; ++i)
        {
            for (int j = 0; j < block_hists.cols; ++j)
            {
                float val;
                f.read((char*)&val, sizeof(val));
109
                ASSERT_NEAR(val, block_hists.at<float>(i, j), 1e-3);
110 111 112
            }
        }
        f.read((char*)&nlocations, sizeof(nlocations));
113
        ASSERT_EQ(nlocations, static_cast<int>(locations.size()));
114
        for (int i = 0; i < nlocations; ++i)
115 116 117
        {
            cv::Point location;
            f.read((char*)&location, sizeof(location));
118
            ASSERT_EQ(location, locations[i]);
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
        }
    }
#endif

    void test(const cv::Mat& img) 
    {
        cv::gpu::GpuMat d_img(img);

        gamma_correction = false;
        setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector());
        //cpu detector may be updated soon
        //hog.setSVMDetector(cv::HOGDescriptor::getDefaultPeopleDetector());

        std::vector<cv::Point> locations;

        // Test detect
        detect(d_img, locations, 0);

#ifdef DUMP
        dump(block_hists, locations);
#else
        compare(block_hists, locations);
#endif

        // Test detect on smaller image
        cv::Mat img2;
        cv::resize(img, img2, cv::Size(img.cols / 2, img.rows / 2)); 
        detect(cv::gpu::GpuMat(img2), locations, 0);

#ifdef DUMP
        dump(block_hists, locations);
#else
        compare(block_hists, locations);
#endif

        // Test detect on greater image
        cv::resize(img, img2, cv::Size(img.cols * 2, img.rows * 2)); 
        detect(cv::gpu::GpuMat(img2), locations, 0);
        
#ifdef DUMP
        dump(block_hists, locations);
#else
        compare(block_hists, locations);
#endif
    }

#ifdef DUMP
    std::ofstream f;
#else
    std::ifstream f;
#endif
};

172
struct HogDetect : testing::TestWithParam<cv::gpu::DeviceInfo>
173
{
174 175 176
    cv::gpu::DeviceInfo devInfo;
    
    virtual void SetUp()
177
    {
178 179 180
        devInfo = GetParam();

        cv::gpu::setDevice(devInfo.deviceID());
181 182 183
    }
};

184 185 186 187 188 189 190 191 192 193 194
TEST_P(HogDetect, Accuracy)
{
    PRINT_PARAM(devInfo);

    ASSERT_NO_THROW(
        CV_GpuHogDetectTestRunner runner;
        runner.run();
    );
}

INSTANTIATE_TEST_CASE_P(HOG, HogDetect, testing::ValuesIn(devices()));
195

196
struct CV_GpuHogGetDescriptorsTestRunner : cv::gpu::HOGDescriptor
197
{
198
    CV_GpuHogGetDescriptorsTestRunner(): cv::gpu::HOGDescriptor(cv::Size(64, 128)) {}
199

200
    void run()
201 202
    {
        // Load image (e.g. train data, composed from windows)
203 204
        cv::Mat img_rgb = readImage("hog/train_data.png");
        ASSERT_TRUE(!img_rgb.empty());
205 206 207 208 209

        // Convert to C4
        cv::Mat img;
        cv::cvtColor(img_rgb, img, CV_BGR2BGRA);

210
        cv::gpu::GpuMat d_img(img);
211 212 213 214 215 216 217 218 219 220 221 222 223 224

        // Convert train images into feature vectors (train table)
        cv::gpu::GpuMat descriptors, descriptors_by_cols;
        getDescriptors(d_img, win_size, descriptors, DESCR_FORMAT_ROW_BY_ROW);
        getDescriptors(d_img, win_size, descriptors_by_cols, DESCR_FORMAT_COL_BY_COL);

        // Check size of the result train table
        wins_per_img_x = 3;
        wins_per_img_y = 2;
        blocks_per_win_x = 7;
        blocks_per_win_y = 15;
        block_hist_size = 36;
        cv::Size descr_size_expected = cv::Size(blocks_per_win_x * blocks_per_win_y * block_hist_size,
                                                wins_per_img_x * wins_per_img_y);
225
        ASSERT_EQ(descr_size_expected, descriptors.size());
226 227 228 229 230 231 232 233 234 235 236

        // Check both formats of output descriptors are handled correctly
        cv::Mat dr(descriptors);
        cv::Mat dc(descriptors_by_cols);
        for (int i = 0; i < wins_per_img_x * wins_per_img_y; ++i)
        {
            const float* l = dr.rowRange(i, i + 1).ptr<float>();
            const float* r = dc.rowRange(i, i + 1).ptr<float>();
            for (int y = 0; y < blocks_per_win_y; ++y)
                for (int x = 0; x < blocks_per_win_x; ++x)
                    for (int k = 0; k < block_hist_size; ++k)
237 238
                        ASSERT_EQ(l[(y * blocks_per_win_x + x) * block_hist_size + k],
                                  r[(x * blocks_per_win_y + y) * block_hist_size + k]);
239 240 241 242 243 244 245
        }

        /* Now we want to extract the same feature vectors, but from single images. NOTE: results will
        be defferent, due to border values interpolation. Using of many small images is slower, however we
        wont't call getDescriptors and will use computeBlockHistograms instead of. computeBlockHistograms
        works good, it can be checked in the gpu_hog sample */

246 247
        img_rgb = readImage("hog/positive1.png");
        ASSERT_TRUE(!img_rgb.empty());
248 249 250
        cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
        computeBlockHistograms(cv::gpu::GpuMat(img));
        // Everything is fine with interpolation for left top subimage
251
        ASSERT_EQ(0.0, cv::norm((cv::Mat)block_hists, (cv::Mat)descriptors.rowRange(0, 1)));
252

253 254
        img_rgb = readImage("hog/positive2.png");
        ASSERT_TRUE(!img_rgb.empty());
255 256 257 258
        cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
        computeBlockHistograms(cv::gpu::GpuMat(img));
        compare_inner_parts(block_hists, descriptors.rowRange(1, 2));

259 260
        img_rgb = readImage("hog/negative1.png");
        ASSERT_TRUE(!img_rgb.empty());
261 262 263 264
        cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
        computeBlockHistograms(cv::gpu::GpuMat(img));
        compare_inner_parts(block_hists, descriptors.rowRange(2, 3));

265 266
        img_rgb = readImage("hog/negative2.png");
        ASSERT_TRUE(!img_rgb.empty());
267 268 269 270
        cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
        computeBlockHistograms(cv::gpu::GpuMat(img));
        compare_inner_parts(block_hists, descriptors.rowRange(3, 4));

271 272
        img_rgb = readImage("hog/positive3.png");
        ASSERT_TRUE(!img_rgb.empty());
273 274 275 276
        cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
        computeBlockHistograms(cv::gpu::GpuMat(img));
        compare_inner_parts(block_hists, descriptors.rowRange(4, 5));

277 278
        img_rgb = readImage("hog/negative3.png");
        ASSERT_TRUE(!img_rgb.empty());
279 280 281 282 283 284 285 286 287 288 289 290 291 292
        cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
        computeBlockHistograms(cv::gpu::GpuMat(img));
        compare_inner_parts(block_hists, descriptors.rowRange(5, 6));
    }

    // Does not compare border value, as interpolation leads to delta
    void compare_inner_parts(cv::Mat d1, cv::Mat d2)
    {
        for (int i = 1; i < blocks_per_win_y - 1; ++i)
            for (int j = 1; j < blocks_per_win_x - 1; ++j)
                for (int k = 0; k < block_hist_size; ++k)
                {
                    float a = d1.at<float>(0, (i * blocks_per_win_x + j) * block_hist_size);
                    float b = d2.at<float>(0, (i * blocks_per_win_x + j) * block_hist_size);
293
                    ASSERT_FLOAT_EQ(a, b);
294 295 296 297 298 299 300 301 302 303
                }
    }

    int wins_per_img_x;
    int wins_per_img_y;
    int blocks_per_win_x;
    int blocks_per_win_y;
    int block_hist_size;
};

304
struct HogGetDescriptors : testing::TestWithParam<cv::gpu::DeviceInfo>
305
{
306 307 308
    cv::gpu::DeviceInfo devInfo;
    
    virtual void SetUp()
309
    {
310 311 312
        devInfo = GetParam();

        cv::gpu::setDevice(devInfo.deviceID());
313 314 315
    }
};

316 317 318 319 320 321 322 323 324 325 326 327 328
TEST_P(HogGetDescriptors, Accuracy)
{
    PRINT_PARAM(devInfo);

    ASSERT_NO_THROW(
        CV_GpuHogGetDescriptorsTestRunner runner;
        runner.run();
    );
}

INSTANTIATE_TEST_CASE_P(HOG, HogGetDescriptors, testing::ValuesIn(devices()));

#endif // HAVE_CUDA