stardetector.cpp 17.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
13
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved.
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

44 45 46
namespace cv
{

47
static void
48
computeIntegralImages( const Mat& matI, Mat& matS, Mat& matT, Mat& _FT )
49
{
50 51 52 53 54 55 56
    CV_Assert( matI.type() == CV_8U );
    
    int x, y, rows = matI.rows, cols = matI.cols;
    
    matS.create(rows + 1, cols + 1, CV_32S);
    matT.create(rows + 1, cols + 1, CV_32S);
    _FT.create(rows + 1, cols + 1, CV_32S);
57
    
58 59 60
    const uchar* I = matI.ptr<uchar>();
    int *S = matS.ptr<int>(), *T = matT.ptr<int>(), *FT = _FT.ptr<int>();
    int istep = matI.step, step = matS.step/sizeof(S[0]);
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

    for( x = 0; x <= cols; x++ )
        S[x] = T[x] = FT[x] = 0;

    S += step; T += step; FT += step;
    S[0] = T[0] = 0;
    FT[0] = I[0];
    for( x = 1; x < cols; x++ )
    {
        S[x] = S[x-1] + I[x-1];
        T[x] = I[x-1];
        FT[x] = I[x] + I[x-1];
    }
    S[cols] = S[cols-1] + I[cols-1];
    T[cols] = FT[cols] = I[cols-1];

    for( y = 2; y <= rows; y++ )
    {
        I += istep, S += step, T += step, FT += step;

        S[0] = S[-step]; S[1] = S[-step+1] + I[0];
        T[0] = T[-step + 1];
        T[1] = FT[0] = T[-step + 2] + I[-istep] + I[0];
        FT[1] = FT[-step + 2] + I[-istep] + I[1] + I[0];

        for( x = 2; x < cols; x++ )
        {
            S[x] = S[x - 1] + S[-step + x] - S[-step + x - 1] + I[x - 1];
            T[x] = T[-step + x - 1] + T[-step + x + 1] - T[-step*2 + x] + I[-istep + x - 1] + I[x - 1];
            FT[x] = FT[-step + x - 1] + FT[-step + x + 1] - FT[-step*2 + x] + I[x] + I[x-1];
        }

        S[cols] = S[cols - 1] + S[-step + cols] - S[-step + cols - 1] + I[cols - 1];
        T[cols] = FT[cols] = T[-step + cols - 1] + I[-istep + cols - 1] + I[cols - 1];
    }
}

98
struct StarFeature
99 100 101
{
    int area;
    int* p[8];
102
};
103 104

static int
105
StarDetectorComputeResponses( const Mat& img, Mat& responses, Mat& sizes, int maxSize )
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
{
    const int MAX_PATTERN = 17;
    static const int sizes0[] = {1, 2, 3, 4, 6, 8, 11, 12, 16, 22, 23, 32, 45, 46, 64, 90, 128, -1};
    static const int pairs[][2] = {{1, 0}, {3, 1}, {4, 2}, {5, 3}, {7, 4}, {8, 5}, {9, 6},
                                   {11, 8}, {13, 10}, {14, 11}, {15, 12}, {16, 14}, {-1, -1}};
    float invSizes[MAX_PATTERN][2];
    int sizes1[MAX_PATTERN];

#if CV_SSE2
    __m128 invSizes4[MAX_PATTERN][2];
    __m128 sizes1_4[MAX_PATTERN];
    Cv32suf absmask;
    absmask.i = 0x7fffffff;
    volatile bool useSIMD = cv::checkHardwareSupport(CV_CPU_SSE2);
#endif
121
    StarFeature f[MAX_PATTERN];
122

123 124
    Mat sum, tilted, flatTilted;
    int y, i=0, rows = img.rows, cols = img.cols;
125 126
    int border, npatterns=0, maxIdx=0;

127 128 129 130
    CV_Assert( img.type() == CV_8UC1 );
    
    responses.create( img.size(), CV_32F );
    sizes.create( img.size(), CV_16S );
131 132

    while( pairs[i][0] >= 0 && !
133
          ( sizes0[pairs[i][0]] >= maxSize 
134 135 136 137 138 139 140 141
           || sizes0[pairs[i+1][0]] + sizes0[pairs[i+1][0]]/2 >= std::min(rows, cols) ) )
    {
        ++i;
    }
    
    npatterns = i;
    npatterns += (pairs[npatterns-1][0] >= 0);
    maxIdx = pairs[npatterns-1][0];
142 143 144
    
    computeIntegralImages( img, sum, tilted, flatTilted );
    int step = (int)(sum.step/sum.elemSize());
145 146 147 148 149 150 151

    for( i = 0; i <= maxIdx; i++ )
    {
        int ur_size = sizes0[i], t_size = sizes0[i] + sizes0[i]/2;
        int ur_area = (2*ur_size + 1)*(2*ur_size + 1);
        int t_area = t_size*t_size + (t_size + 1)*(t_size + 1);

152 153 154 155
        f[i].p[0] = sum.ptr<int>() + (ur_size + 1)*step + ur_size + 1;
        f[i].p[1] = sum.ptr<int>() - ur_size*step + ur_size + 1;
        f[i].p[2] = sum.ptr<int>() + (ur_size + 1)*step - ur_size;
        f[i].p[3] = sum.ptr<int>() - ur_size*step - ur_size;
156

157 158 159 160
        f[i].p[4] = tilted.ptr<int>() + (t_size + 1)*step + 1;
        f[i].p[5] = flatTilted.ptr<int>() - t_size;
        f[i].p[6] = flatTilted.ptr<int>() + t_size + 1;
        f[i].p[7] = tilted.ptr<int>() - t_size*step + 1;
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195

        f[i].area = ur_area + t_area;
        sizes1[i] = sizes0[i];
    }
    // negate end points of the size range
    // for a faster rejection of very small or very large features in non-maxima suppression.
    sizes1[0] = -sizes1[0];
    sizes1[1] = -sizes1[1];
    sizes1[maxIdx] = -sizes1[maxIdx];
    border = sizes0[maxIdx] + sizes0[maxIdx]/2;

    for( i = 0; i < npatterns; i++ )
    {
        int innerArea = f[pairs[i][1]].area;
        int outerArea = f[pairs[i][0]].area - innerArea;
        invSizes[i][0] = 1.f/outerArea;
        invSizes[i][1] = 1.f/innerArea;
    }
    
#if CV_SSE2
    if( useSIMD )
    {
        for( i = 0; i < npatterns; i++ )
        {
            _mm_store_ps((float*)&invSizes4[i][0], _mm_set1_ps(invSizes[i][0]));
            _mm_store_ps((float*)&invSizes4[i][1], _mm_set1_ps(invSizes[i][1]));
        }

        for( i = 0; i <= maxIdx; i++ )
            _mm_store_ps((float*)&sizes1_4[i], _mm_set1_ps((float)sizes1[i]));
    }
#endif

    for( y = 0; y < border; y++ )
    {
196 197 198 199
        float* r_ptr = responses.ptr<float>(y);
        float* r_ptr2 = responses.ptr<float>(rows - 1 - y);
        short* s_ptr = sizes.ptr<short>(y);
        short* s_ptr2 = sizes.ptr<short>(rows - 1 - y);
200 201 202 203 204 205 206 207 208 209
        
        memset( r_ptr, 0, cols*sizeof(r_ptr[0]));
        memset( r_ptr2, 0, cols*sizeof(r_ptr2[0]));
        memset( s_ptr, 0, cols*sizeof(s_ptr[0]));
        memset( s_ptr2, 0, cols*sizeof(s_ptr2[0]));
    }

    for( y = border; y < rows - border; y++ )
    {
        int x = border, i;
210 211
        float* r_ptr = responses.ptr<float>(y);
        short* s_ptr = sizes.ptr<short>(y);
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
        
        memset( r_ptr, 0, border*sizeof(r_ptr[0]));
        memset( s_ptr, 0, border*sizeof(s_ptr[0]));
        memset( r_ptr + cols - border, 0, border*sizeof(r_ptr[0]));
        memset( s_ptr + cols - border, 0, border*sizeof(s_ptr[0]));

#if CV_SSE2
        if( useSIMD )
        {
            __m128 absmask4 = _mm_set1_ps(absmask.f);
            for( ; x <= cols - border - 4; x += 4 )
            {
                int ofs = y*step + x;
                __m128 vals[MAX_PATTERN];
                __m128 bestResponse = _mm_setzero_ps();
                __m128 bestSize = _mm_setzero_ps();

                for( i = 0; i <= maxIdx; i++ )
                {
                    const int** p = (const int**)&f[i].p[0];
                    __m128i r0 = _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(p[0]+ofs)),
                                               _mm_loadu_si128((const __m128i*)(p[1]+ofs)));
                    __m128i r1 = _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(p[3]+ofs)),
                                               _mm_loadu_si128((const __m128i*)(p[2]+ofs)));
                    __m128i r2 = _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(p[4]+ofs)),
                                               _mm_loadu_si128((const __m128i*)(p[5]+ofs)));
                    __m128i r3 = _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(p[7]+ofs)),
                                               _mm_loadu_si128((const __m128i*)(p[6]+ofs)));
                    r0 = _mm_add_epi32(_mm_add_epi32(r0,r1), _mm_add_epi32(r2,r3));
                    _mm_store_ps((float*)&vals[i], _mm_cvtepi32_ps(r0));
                }

                for( i = 0; i < npatterns; i++ )
                {
                    __m128 inner_sum = vals[pairs[i][1]];
                    __m128 outer_sum = _mm_sub_ps(vals[pairs[i][0]], inner_sum);
                    __m128 response = _mm_sub_ps(_mm_mul_ps(inner_sum, invSizes4[i][1]),
                        _mm_mul_ps(outer_sum, invSizes4[i][0]));
                    __m128 swapmask = _mm_cmpgt_ps(_mm_and_ps(response,absmask4),
                        _mm_and_ps(bestResponse,absmask4));
                    bestResponse = _mm_xor_ps(bestResponse,
                        _mm_and_ps(_mm_xor_ps(response,bestResponse), swapmask));
                    bestSize = _mm_xor_ps(bestSize,
                        _mm_and_ps(_mm_xor_ps(sizes1_4[pairs[i][0]], bestSize), swapmask));
                }

                _mm_storeu_ps(r_ptr + x, bestResponse);
                _mm_storel_epi64((__m128i*)(s_ptr + x),
                    _mm_packs_epi32(_mm_cvtps_epi32(bestSize),_mm_setzero_si128()));
            }
        }
#endif        
        for( ; x < cols - border; x++ )
        {
            int ofs = y*step + x;
            int vals[MAX_PATTERN];
            float bestResponse = 0;
            int bestSize = 0;

            for( i = 0; i <= maxIdx; i++ )
            {
                const int** p = (const int**)&f[i].p[0];
                vals[i] = p[0][ofs] - p[1][ofs] - p[2][ofs] + p[3][ofs] +
                    p[4][ofs] - p[5][ofs] - p[6][ofs] + p[7][ofs];
            }
            for( i = 0; i < npatterns; i++ )
            {
                int inner_sum = vals[pairs[i][1]];
                int outer_sum = vals[pairs[i][0]] - inner_sum;
                float response = inner_sum*invSizes[i][1] - outer_sum*invSizes[i][0];
                if( fabs(response) > fabs(bestResponse) )
                {
                    bestResponse = response;
                    bestSize = sizes1[pairs[i][0]];
                }
            }

            r_ptr[x] = bestResponse;
            s_ptr[x] = (short)bestSize;
        }
    }

    return border;
}


298 299
static bool StarDetectorSuppressLines( const Mat& responses, const Mat& sizes, Point pt,
                                       int lineThresholdProjected, int lineThresholdBinarized )
300
{
301 302 303 304
    const float* r_ptr = responses.ptr<float>();
    int rstep = (int)(responses.step/sizeof(r_ptr[0]));
    const short* s_ptr = sizes.ptr<short>();
    int sstep = (int)(sizes.step/sizeof(s_ptr[0]));
305 306 307 308 309 310 311 312 313 314 315 316 317
    int sz = s_ptr[pt.y*sstep + pt.x];
    int x, y, delta = sz/4, radius = delta*4;
    float Lxx = 0, Lyy = 0, Lxy = 0;
    int Lxxb = 0, Lyyb = 0, Lxyb = 0;
    
    for( y = pt.y - radius; y <= pt.y + radius; y += delta )
        for( x = pt.x - radius; x <= pt.x + radius; x += delta )
        {
            float Lx = r_ptr[y*rstep + x + 1] - r_ptr[y*rstep + x - 1];
            float Ly = r_ptr[(y+1)*rstep + x] - r_ptr[(y-1)*rstep + x];
            Lxx += Lx*Lx; Lyy += Ly*Ly; Lxy += Lx*Ly;
        }
    
318
    if( (Lxx + Lyy)*(Lxx + Lyy) >= lineThresholdProjected*(Lxx*Lyy - Lxy*Lxy) )
319 320 321 322 323 324 325 326 327 328
        return true;

    for( y = pt.y - radius; y <= pt.y + radius; y += delta )
        for( x = pt.x - radius; x <= pt.x + radius; x += delta )
        {
            int Lxb = (s_ptr[y*sstep + x + 1] == sz) - (s_ptr[y*sstep + x - 1] == sz);
            int Lyb = (s_ptr[(y+1)*sstep + x] == sz) - (s_ptr[(y-1)*sstep + x] == sz);
            Lxxb += Lxb * Lxb; Lyyb += Lyb * Lyb; Lxyb += Lxb * Lyb;
        }

329
    if( (Lxxb + Lyyb)*(Lxxb + Lyyb) >= lineThresholdBinarized*(Lxxb*Lyyb - Lxyb*Lxyb) )
330 331 332 333 334 335 336
        return true;

    return false;
}


static void
337 338 339 340 341 342
StarDetectorSuppressNonmax( const Mat& responses, const Mat& sizes,
                            vector<KeyPoint>& keypoints, int border,
                            int responseThreshold,
                            int lineThresholdProjected,
                            int lineThresholdBinarized,
                            int suppressNonmaxSize )
343
{
344 345 346 347 348 349
    int x, y, x1, y1, delta = suppressNonmaxSize/2;
    int rows = responses.rows, cols = responses.cols;
    const float* r_ptr = responses.ptr<float>();
    int rstep = (int)(responses.step/sizeof(r_ptr[0]));
    const short* s_ptr = sizes.ptr<short>();
    int sstep = (int)(sizes.step/sizeof(s_ptr[0]));
350 351 352 353 354
    short featureSize = 0;

    for( y = border; y < rows - border; y += delta+1 )
        for( x = border; x < cols - border; x += delta+1 )
        {
355 356 357
            float maxResponse = (float)responseThreshold;
            float minResponse = (float)-responseThreshold;
            Point maxPt(-1, -1), minPt(-1, -1);
358 359 360 361 362 363 364 365 366 367
            int tileEndY = MIN(y + delta, rows - border - 1);
            int tileEndX = MIN(x + delta, cols - border - 1);

            for( y1 = y; y1 <= tileEndY; y1++ )
                for( x1 = x; x1 <= tileEndX; x1++ )
                {
                    float val = r_ptr[y1*rstep + x1];
                    if( maxResponse < val )
                    {
                        maxResponse = val;
368
                        maxPt = Point(x1, y1);
369 370 371 372
                    }
                    else if( minResponse > val )
                    {
                        minResponse = val;
373
                        minPt = Point(x1, y1);
374 375 376 377 378 379 380 381 382 383 384 385 386 387
                    }
                }

            if( maxPt.x >= 0 )
            {
                for( y1 = maxPt.y - delta; y1 <= maxPt.y + delta; y1++ )
                    for( x1 = maxPt.x - delta; x1 <= maxPt.x + delta; x1++ )
                    {
                        float val = r_ptr[y1*rstep + x1];
                        if( val >= maxResponse && (y1 != maxPt.y || x1 != maxPt.x))
                            goto skip_max;
                    }

                if( (featureSize = s_ptr[maxPt.y*sstep + maxPt.x]) >= 4 &&
388 389
                    !StarDetectorSuppressLines( responses, sizes, maxPt, lineThresholdProjected,
                                                lineThresholdBinarized ))
390
                {
391 392
                    KeyPoint kpt((float)maxPt.x, (float)maxPt.y, featureSize, -1, maxResponse);
                    keypoints.push_back(kpt);
393 394 395 396 397 398 399 400 401 402 403 404 405 406
                }
            }
        skip_max:
            if( minPt.x >= 0 )
            {
                for( y1 = minPt.y - delta; y1 <= minPt.y + delta; y1++ )
                    for( x1 = minPt.x - delta; x1 <= minPt.x + delta; x1++ )
                    {
                        float val = r_ptr[y1*rstep + x1];
                        if( val <= minResponse && (y1 != minPt.y || x1 != minPt.x))
                            goto skip_min;
                    }

                if( (featureSize = s_ptr[minPt.y*sstep + minPt.x]) >= 4 &&
407 408
                    !StarDetectorSuppressLines( responses, sizes, minPt,
                                               lineThresholdProjected, lineThresholdBinarized))
409
                {
410 411
                    KeyPoint kpt((float)minPt.x, (float)minPt.y, featureSize, -1, maxResponse);
                    keypoints.push_back(kpt);
412 413 414 415 416 417
                }
            }
        skip_min:
            ;
        }
}
418
    
419 420 421 422
StarDetector::StarDetector(int _maxSize, int _responseThreshold,
                           int _lineThresholdProjected,
                           int _lineThresholdBinarized,
                           int _suppressNonmaxSize)
423 424 425 426 427 428 429 430
: maxSize(_maxSize), responseThreshold(_responseThreshold),
    lineThresholdProjected(_lineThresholdProjected),
    lineThresholdBinarized(_lineThresholdBinarized),
    suppressNonmaxSize(_suppressNonmaxSize)
{}


void StarDetector::detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask ) const
431
{
432 433 434 435 436 437
    Mat grayImage = image;
    if( image.type() != CV_8U ) cvtColor( image, grayImage, CV_BGR2GRAY );
    
    (*this)(grayImage, keypoints);
    KeyPointsFilter::runByPixelsMask( keypoints, mask );
}    
438

439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
void StarDetector::operator()(const Mat& img, vector<KeyPoint>& keypoints) const
{
    Mat responses, sizes;
    int border = StarDetectorComputeResponses( img, responses, sizes, maxSize );
    keypoints.clear();
    if( border >= 0 )
        StarDetectorSuppressNonmax( responses, sizes, keypoints, border,
                                    responseThreshold, lineThresholdProjected,
                                    lineThresholdBinarized, suppressNonmaxSize );
}
    
    
static Algorithm* createStarDetector() { return new StarDetector; }
static AlgorithmInfo star_info("Feature2D.STAR", createStarDetector);
    
AlgorithmInfo* StarDetector::info() const
455
{
456 457
    static volatile bool initialized = false;
    if( !initialized )
458
    {
459 460 461 462 463 464 465
        star_info.addParam(this, "maxSize", maxSize);
        star_info.addParam(this, "responseThreshold", responseThreshold);
        star_info.addParam(this, "lineThresholdProjected", lineThresholdProjected);
        star_info.addParam(this, "lineThresholdBinarized", lineThresholdBinarized);
        star_info.addParam(this, "suppressNonmaxSize", suppressNonmaxSize);
        
        initialized = true;
466
    }
467 468
    return &star_info;
}    
469 470

}