mser.cpp 37.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/* Redistribution and use in source and binary forms, with or
 * without modification, are permitted provided that the following
 * conditions are met:
 * 	Redistributions of source code must retain the above
 * 	copyright notice, this list of conditions and the following
 * 	disclaimer.
 * 	Redistributions in binary form must reproduce the above
 * 	copyright notice, this list of conditions and the following
 * 	disclaimer in the documentation and/or other materials
 * 	provided with the distribution.
 * 	The name of Contributor may not be used to endorse or
 * 	promote products derived from this software without
 * 	specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
 * OF SUCH DAMAGE.
 * Copyright© 2009, Liu Liu All rights reserved.
 * 
 * OpenCV functions for MSER extraction
 * 
 * 1. there are two different implementation of MSER, one for grey image, one for color image
 * 2. the grey image algorithm is taken from: Linear Time Maximally Stable Extremal Regions;
 *    the paper claims to be faster than union-find method;
 *    it actually get 1.5~2m/s on my centrino L7200 1.2GHz laptop.
 * 3. the color image algorithm is taken from: Maximally Stable Colour Regions for Recognition and Match;
 *    it should be much slower than grey image method ( 3~4 times );
 *    the chi_table.h file is taken directly from paper's source code which is distributed under GPL.
 * 4. though the name is *contours*, the result actually is a list of point set.
 */

#include "precomp.hpp"

44 45 46 47
namespace cv
{

const int TABLE_SIZE = 400;
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149

static double chitab3[]={0,  0.0150057,  0.0239478,  0.0315227,
                  0.0383427,  0.0446605,  0.0506115,  0.0562786,
                  0.0617174,  0.0669672,  0.0720573,  0.0770099,
                  0.081843,  0.0865705,  0.0912043,  0.0957541,
                  0.100228,  0.104633,  0.108976,  0.113261,
                  0.117493,  0.121676,  0.125814,  0.12991,
                  0.133967,  0.137987,  0.141974,  0.145929,
                  0.149853,  0.15375,  0.15762,  0.161466,
                  0.165287,  0.169087,  0.172866,  0.176625,
                  0.180365,  0.184088,  0.187794,  0.191483,
                  0.195158,  0.198819,  0.202466,  0.2061,
                  0.209722,  0.213332,  0.216932,  0.220521,
                  0.2241,  0.22767,  0.231231,  0.234783,
                  0.238328,  0.241865,  0.245395,  0.248918,
                  0.252435,  0.255947,  0.259452,  0.262952,
                  0.266448,  0.269939,  0.273425,  0.276908,
                  0.280386,  0.283862,  0.287334,  0.290803,
                  0.29427,  0.297734,  0.301197,  0.304657,
                  0.308115,  0.311573,  0.315028,  0.318483,
                  0.321937,  0.32539,  0.328843,  0.332296,
                  0.335749,  0.339201,  0.342654,  0.346108,
                  0.349562,  0.353017,  0.356473,  0.35993,
                  0.363389,  0.366849,  0.37031,  0.373774,
                  0.377239,  0.380706,  0.384176,  0.387648,
                  0.391123,  0.3946,  0.39808,  0.401563,
                  0.405049,  0.408539,  0.412032,  0.415528,
                  0.419028,  0.422531,  0.426039,  0.429551,
                  0.433066,  0.436586,  0.440111,  0.44364,
                  0.447173,  0.450712,  0.454255,  0.457803,
                  0.461356,  0.464915,  0.468479,  0.472049,
                  0.475624,  0.479205,  0.482792,  0.486384,
                  0.489983,  0.493588,  0.4972,  0.500818,
                  0.504442,  0.508073,  0.511711,  0.515356,
                  0.519008,  0.522667,  0.526334,  0.530008,
                  0.533689,  0.537378,  0.541075,  0.54478,
                  0.548492,  0.552213,  0.555942,  0.55968,
                  0.563425,  0.56718,  0.570943,  0.574715,
                  0.578497,  0.582287,  0.586086,  0.589895,
                  0.593713,  0.597541,  0.601379,  0.605227,
                  0.609084,  0.612952,  0.61683,  0.620718,
                  0.624617,  0.628526,  0.632447,  0.636378,
                  0.64032,  0.644274,  0.648239,  0.652215,
                  0.656203,  0.660203,  0.664215,  0.668238,
                  0.672274,  0.676323,  0.680384,  0.684457,
                  0.688543,  0.692643,  0.696755,  0.700881,
                  0.70502,  0.709172,  0.713339,  0.717519,
                  0.721714,  0.725922,  0.730145,  0.734383,
                  0.738636,  0.742903,  0.747185,  0.751483,
                  0.755796,  0.760125,  0.76447,  0.768831,
                  0.773208,  0.777601,  0.782011,  0.786438,
                  0.790882,  0.795343,  0.799821,  0.804318,
                  0.808831,  0.813363,  0.817913,  0.822482,
                  0.827069,  0.831676,  0.836301,  0.840946,
                  0.84561,  0.850295,  0.854999,  0.859724,
                  0.864469,  0.869235,  0.874022,  0.878831,
                  0.883661,  0.888513,  0.893387,  0.898284,
                  0.903204,  0.908146,  0.913112,  0.918101,
                  0.923114,  0.928152,  0.933214,  0.938301,
                  0.943413,  0.94855,  0.953713,  0.958903,
                  0.964119,  0.969361,  0.974631,  0.979929,
                  0.985254,  0.990608,  0.99599,  1.0014,
                  1.00684,  1.01231,  1.01781,  1.02335,
                  1.02891,  1.0345,  1.04013,  1.04579,
                  1.05148,  1.05721,  1.06296,  1.06876,
                  1.07459,  1.08045,  1.08635,  1.09228,
                  1.09826,  1.10427,  1.11032,  1.1164,
                  1.12253,  1.1287,  1.1349,  1.14115,
                  1.14744,  1.15377,  1.16015,  1.16656,
                  1.17303,  1.17954,  1.18609,  1.19269,
                  1.19934,  1.20603,  1.21278,  1.21958,
                  1.22642,  1.23332,  1.24027,  1.24727,
                  1.25433,  1.26144,  1.26861,  1.27584,
                  1.28312,  1.29047,  1.29787,  1.30534,
                  1.31287,  1.32046,  1.32812,  1.33585,
                  1.34364,  1.3515,  1.35943,  1.36744,
                  1.37551,  1.38367,  1.39189,  1.4002,
                  1.40859,  1.41705,  1.42561,  1.43424,
                  1.44296,  1.45177,  1.46068,  1.46967,
                  1.47876,  1.48795,  1.49723,  1.50662,
                  1.51611,  1.52571,  1.53541,  1.54523,
                  1.55517,  1.56522,  1.57539,  1.58568,
                  1.59611,  1.60666,  1.61735,  1.62817,
                  1.63914,  1.65025,  1.66152,  1.67293,
                  1.68451,  1.69625,  1.70815,  1.72023,
                  1.73249,  1.74494,  1.75757,  1.77041,
                  1.78344,  1.79669,  1.81016,  1.82385,
                  1.83777,  1.85194,  1.86635,  1.88103,
                  1.89598,  1.91121,  1.92674,  1.94257,
                  1.95871,  1.97519,  1.99201,  2.0092,
                  2.02676,  2.04471,  2.06309,  2.08189,
                  2.10115,  2.12089,  2.14114,  2.16192,
                  2.18326,  2.2052,  2.22777,  2.25101,
                  2.27496,  2.29966,  2.32518,  2.35156,
                  2.37886,  2.40717,  2.43655,  2.46709,
                  2.49889,  2.53206,  2.56673,  2.60305,
                  2.64117,  2.6813,  2.72367,  2.76854,
                  2.81623,  2.86714,  2.92173,  2.98059,
                  3.04446,  3.1143,  3.19135,  3.27731,
                  3.37455,  3.48653,  3.61862,  3.77982,
                  3.98692,  4.2776,  4.77167,  133.333 };

150
typedef struct LinkedPoint
151
{
152 153 154
	struct LinkedPoint* prev;
	struct LinkedPoint* next;
	Point pt;
155
}
156
LinkedPoint;
157 158

// the history of region grown
159
typedef struct MSERGrowHistory
160
{
161 162
	struct MSERGrowHistory* shortcut;
	struct MSERGrowHistory* child;
163 164 165 166
	int stable; // when it ever stabled before, record the size
	int val;
	int size;
}
167
MSERGrowHistory;
168

169
typedef struct MSERConnectedComp
170
{
171 172 173
	LinkedPoint* head;
	LinkedPoint* tail;
	MSERGrowHistory* history;
174 175 176 177 178
	unsigned long grey_level;
	int size;
	int dvar; // the derivative of last var
	float var; // the current variation (most time is the variation of one-step back)
}
179
MSERConnectedComp;
180 181 182 183 184 185 186 187 188 189 190 191

// Linear Time MSER claims by using bsf can get performance gain, here is the implementation
// however it seems that will not do any good in real world test
inline void _bitset(unsigned long * a, unsigned long b)
{
	*a |= 1<<b;
}
inline void _bitreset(unsigned long * a, unsigned long b)
{
	*a &= ~(1<<b);
}

192
struct MSERParams
193
{
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
    MSERParams( int _delta, int _minArea, int _maxArea, float _maxVariation,
                float _minDiversity, int _maxEvolution, double _areaThreshold,
                double _minMargin, int _edgeBlurSize )
        : delta(_delta), minArea(_minArea), maxArea(_maxArea), maxVariation(_maxVariation),
        minDiversity(_minDiversity), maxEvolution(_maxEvolution), areaThreshold(_areaThreshold),
        minMargin(_minMargin), edgeBlurSize(_edgeBlurSize)
    {}
    int delta;
    int minArea;
    int maxArea;
    float maxVariation;
    float minDiversity;
    int maxEvolution;
    double areaThreshold;
    double minMargin;
    int edgeBlurSize;
};
211 212

// clear the connected component in stack
213 214
static void
initMSERComp( MSERConnectedComp* comp )
215 216 217 218 219 220 221 222
{
	comp->size = 0;
	comp->var = 0;
	comp->dvar = 1;
	comp->history = NULL;
}

// add history of size to a connected component
223 224
static void
MSERNewHistory( MSERConnectedComp* comp, MSERGrowHistory* history )
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
{
	history->child = history;
	if ( NULL == comp->history )
	{
		history->shortcut = history;
		history->stable = 0;
	} else {
		comp->history->child = history;
		history->shortcut = comp->history->shortcut;
		history->stable = comp->history->stable;
	}
	history->val = comp->grey_level;
	history->size = comp->size;
	comp->history = history;
}

// merging two connected component
242 243 244 245 246
static void
MSERMergeComp( MSERConnectedComp* comp1,
		  MSERConnectedComp* comp2,
		  MSERConnectedComp* comp,
		  MSERGrowHistory* history )
247
{
248 249
	LinkedPoint* head;
	LinkedPoint* tail;
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
	comp->grey_level = comp2->grey_level;
	history->child = history;
	// select the winner by size
	if ( comp1->size >= comp2->size )
	{
		if ( NULL == comp1->history )
		{
			history->shortcut = history;
			history->stable = 0;
		} else {
			comp1->history->child = history;
			history->shortcut = comp1->history->shortcut;
			history->stable = comp1->history->stable;
		}
		if ( NULL != comp2->history && comp2->history->stable > history->stable )
			history->stable = comp2->history->stable;
		history->val = comp1->grey_level;
		history->size = comp1->size;
		// put comp1 to history
		comp->var = comp1->var;
		comp->dvar = comp1->dvar;
		if ( comp1->size > 0 && comp2->size > 0 )
		{
			comp1->tail->next = comp2->head;
			comp2->head->prev = comp1->tail;
		}
		head = ( comp1->size > 0 ) ? comp1->head : comp2->head;
		tail = ( comp2->size > 0 ) ? comp2->tail : comp1->tail;
		// always made the newly added in the last of the pixel list (comp1 ... comp2)
	} else {
		if ( NULL == comp2->history )
		{
			history->shortcut = history;
			history->stable = 0;
		} else {
			comp2->history->child = history;
			history->shortcut = comp2->history->shortcut;
			history->stable = comp2->history->stable;
		}
		if ( NULL != comp1->history && comp1->history->stable > history->stable )
			history->stable = comp1->history->stable;
		history->val = comp2->grey_level;
		history->size = comp2->size;
		// put comp2 to history
		comp->var = comp2->var;
		comp->dvar = comp2->dvar;
		if ( comp1->size > 0 && comp2->size > 0 )
		{
			comp2->tail->next = comp1->head;
			comp1->head->prev = comp2->tail;
		}
		head = ( comp2->size > 0 ) ? comp2->head : comp1->head;
		tail = ( comp1->size > 0 ) ? comp1->tail : comp2->tail;
		// always made the newly added in the last of the pixel list (comp2 ... comp1)
	}
	comp->head = head;
	comp->tail = tail;
	comp->history = history;
	comp->size = comp1->size + comp2->size;
}

311 312
static float
MSERVariationCalc( MSERConnectedComp* comp, int delta )
313
{
314
	MSERGrowHistory* history = comp->history;
315 316 317
	int val = comp->grey_level;
	if ( NULL != history )
	{
318
		MSERGrowHistory* shortcut = history->shortcut;
319 320
		while ( shortcut != shortcut->shortcut && shortcut->val + delta > val )
			shortcut = shortcut->shortcut;
321
		MSERGrowHistory* child = shortcut->child;
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
		while ( child != child->child && child->val + delta <= val )
		{
			shortcut = child;
			child = child->child;
		}
		// get the position of history where the shortcut->val <= delta+val and shortcut->child->val >= delta+val
		history->shortcut = shortcut;
		return (float)(comp->size-shortcut->size)/(float)shortcut->size;
		// here is a small modification of MSER where cal ||R_{i}-R_{i-delta}||/||R_{i-delta}||
		// in standard MSER, cal ||R_{i+delta}-R_{i-delta}||/||R_{i}||
		// my calculation is simpler and much easier to implement
	}
	return 1.;
}

337
static bool MSERStableCheck( MSERConnectedComp* comp, MSERParams params )
338 339 340 341 342
{
	// tricky part: it actually check the stablity of one-step back
	if ( comp->history == NULL || comp->history->size <= params.minArea || comp->history->size >= params.maxArea )
		return 0;
	float div = (float)(comp->history->size-comp->history->stable)/(float)comp->history->size;
343
	float var = MSERVariationCalc( comp, params.delta );
344 345 346 347 348 349 350 351 352 353
	int dvar = ( comp->var < var || (unsigned long)(comp->history->val + 1) < comp->grey_level );
	int stable = ( dvar && !comp->dvar && comp->var < params.maxVariation && div > params.minDiversity );
	comp->var = var;
	comp->dvar = dvar;
	if ( stable )
		comp->history->stable = comp->history->size;
	return stable != 0;
}

// add a pixel to the pixel list
354
static void accumulateMSERComp( MSERConnectedComp* comp, LinkedPoint* point )
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
{
	if ( comp->size > 0 )
	{
		point->prev = comp->tail;
		comp->tail->next = point;
		point->next = NULL;
	} else {
		point->prev = NULL;
		point->next = NULL;
		comp->head = point;
	}
	comp->tail = point;
	comp->size++;
}

// convert the point set to CvSeq
371
static CvContour* MSERToContour( MSERConnectedComp* comp, CvMemStorage* storage )
372 373 374 375
{
	CvSeq* _contour = cvCreateSeq( CV_SEQ_KIND_GENERIC|CV_32SC2, sizeof(CvContour), sizeof(CvPoint), storage );
	CvContour* contour = (CvContour*)_contour;
	cvSeqPushMulti( _contour, 0, comp->history->size );
376
	LinkedPoint* lpt = comp->head;
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
	for ( int i = 0; i < comp->history->size; i++ )
	{
		CvPoint* pt = CV_GET_SEQ_ELEM( CvPoint, _contour, i );
		pt->x = lpt->pt.x;
		pt->y = lpt->pt.y;
		lpt = lpt->next;
	}
	cvBoundingRect( contour );
	return contour;
}

// to preprocess src image to following format
// 32-bit image
// > 0 is available, < 0 is visited
// 17~19 bits is the direction
// 8~11 bits is the bucket it falls to (for BitScanForward)
// 0~8 bits is the color
394
static int* preprocessMSER_8UC1( CvMat* img,
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
			int*** heap_cur,
			CvMat* src,
			CvMat* mask )
{
	int srccpt = src->step-src->cols;
	int cpt_1 = img->cols-src->cols-1;
	int* imgptr = img->data.i;
	int* startptr;

	int level_size[256];
	for ( int i = 0; i < 256; i++ )
		level_size[i] = 0;

	for ( int i = 0; i < src->cols+2; i++ )
	{
		*imgptr = -1;
		imgptr++;
	}
	imgptr += cpt_1-1;
	uchar* srcptr = src->data.ptr;
	if ( mask )
	{
		startptr = 0;
		uchar* maskptr = mask->data.ptr;
		for ( int i = 0; i < src->rows; i++ )
		{
			*imgptr = -1;
			imgptr++;
			for ( int j = 0; j < src->cols; j++ )
			{
				if ( *maskptr )
				{
					if ( !startptr )
						startptr = imgptr;
					*srcptr = 0xff-*srcptr;
					level_size[*srcptr]++;
					*imgptr = ((*srcptr>>5)<<8)|(*srcptr);
				} else {
					*imgptr = -1;
				}
				imgptr++;
				srcptr++;
				maskptr++;
			}
			*imgptr = -1;
			imgptr += cpt_1;
			srcptr += srccpt;
			maskptr += srccpt;
		}
	} else {
		startptr = imgptr+img->cols+1;
		for ( int i = 0; i < src->rows; i++ )
		{
			*imgptr = -1;
			imgptr++;
			for ( int j = 0; j < src->cols; j++ )
			{
				*srcptr = 0xff-*srcptr;
				level_size[*srcptr]++;
				*imgptr = ((*srcptr>>5)<<8)|(*srcptr);
				imgptr++;
				srcptr++;
			}
			*imgptr = -1;
			imgptr += cpt_1;
			srcptr += srccpt;
		}
	}
	for ( int i = 0; i < src->cols+2; i++ )
	{
		*imgptr = -1;
		imgptr++;
	}

	heap_cur[0][0] = 0;
	for ( int i = 1; i < 256; i++ )
	{
		heap_cur[i] = heap_cur[i-1]+level_size[i-1]+1;
		heap_cur[i][0] = 0;
	}
	return startptr;
}

478
static void extractMSER_8UC1_Pass( int* ioptr,
479 480
			  int* imgptr,
			  int*** heap_cur,
481 482 483
			  LinkedPoint* ptsptr,
			  MSERGrowHistory* histptr,
			  MSERConnectedComp* comptr,
484 485 486
			  int step,
			  int stepmask,
			  int stepgap,
487
			  MSERParams params,
488 489 490 491 492 493 494
			  int color,
			  CvSeq* contours,
			  CvMemStorage* storage )
{
	comptr->grey_level = 256;
	comptr++;
	comptr->grey_level = (*imgptr)&0xff;
495
	initMSERComp( comptr );
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
	*imgptr |= 0x80000000;
	heap_cur += (*imgptr)&0xff;
	int dir[] = { 1, step, -1, -step };
#ifdef __INTRIN_ENABLED__
	unsigned long heapbit[] = { 0, 0, 0, 0, 0, 0, 0, 0 };
	unsigned long* bit_cur = heapbit+(((*imgptr)&0x700)>>8);
#endif
	for ( ; ; )
	{
		// take tour of all the 4 directions
		while ( ((*imgptr)&0x70000) < 0x40000 )
		{
			// get the neighbor
			int* imgptr_nbr = imgptr+dir[((*imgptr)&0x70000)>>16];
			if ( *imgptr_nbr >= 0 ) // if the neighbor is not visited yet
			{
				*imgptr_nbr |= 0x80000000; // mark it as visited
				if ( ((*imgptr_nbr)&0xff) < ((*imgptr)&0xff) )
				{
					// when the value of neighbor smaller than current
					// push current to boundary heap and make the neighbor to be the current one
					// create an empty comp
					(*heap_cur)++;
					**heap_cur = imgptr;
					*imgptr += 0x10000;
					heap_cur += ((*imgptr_nbr)&0xff)-((*imgptr)&0xff);
#ifdef __INTRIN_ENABLED__
					_bitset( bit_cur, (*imgptr)&0x1f );
					bit_cur += (((*imgptr_nbr)&0x700)-((*imgptr)&0x700))>>8;
#endif
					imgptr = imgptr_nbr;
					comptr++;
528
					initMSERComp( comptr );
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
					comptr->grey_level = (*imgptr)&0xff;
					continue;
				} else {
					// otherwise, push the neighbor to boundary heap
					heap_cur[((*imgptr_nbr)&0xff)-((*imgptr)&0xff)]++;
					*heap_cur[((*imgptr_nbr)&0xff)-((*imgptr)&0xff)] = imgptr_nbr;
#ifdef __INTRIN_ENABLED__
					_bitset( bit_cur+((((*imgptr_nbr)&0x700)-((*imgptr)&0x700))>>8), (*imgptr_nbr)&0x1f );
#endif
				}
			}
			*imgptr += 0x10000;
		}
		int i = (int)(imgptr-ioptr);
		ptsptr->pt = cvPoint( i&stepmask, i>>stepgap );
		// get the current location
545
		accumulateMSERComp( comptr, ptsptr );
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
		ptsptr++;
		// get the next pixel from boundary heap
		if ( **heap_cur )
		{
			imgptr = **heap_cur;
			(*heap_cur)--;
#ifdef __INTRIN_ENABLED__
			if ( !**heap_cur )
				_bitreset( bit_cur, (*imgptr)&0x1f );
#endif
		} else {
#ifdef __INTRIN_ENABLED__
			bool found_pixel = 0;
			unsigned long pixel_val;
			for ( int i = ((*imgptr)&0x700)>>8; i < 8; i++ )
			{
				if ( _BitScanForward( &pixel_val, *bit_cur ) )
				{
					found_pixel = 1;
					pixel_val += i<<5;
					heap_cur += pixel_val-((*imgptr)&0xff);
					break;
				}
				bit_cur++;
			}
			if ( found_pixel )
#else
			heap_cur++;
			unsigned long pixel_val = 0;
			for ( unsigned long i = ((*imgptr)&0xff)+1; i < 256; i++ )
			{
				if ( **heap_cur )
				{
					pixel_val = i;
					break;
				}
				heap_cur++;
			}
			if ( pixel_val )
#endif
			{
				imgptr = **heap_cur;
				(*heap_cur)--;
#ifdef __INTRIN_ENABLED__
				if ( !**heap_cur )
					_bitreset( bit_cur, pixel_val&0x1f );
#endif
				if ( pixel_val < comptr[-1].grey_level )
				{
					// check the stablity and push a new history, increase the grey level
596
					if ( MSERStableCheck( comptr, params ) )
597
					{
598
						CvContour* contour = MSERToContour( comptr, storage );
599 600 601
						contour->color = color;
						cvSeqPush( contours, &contour );
					}
602
					MSERNewHistory( comptr, histptr );
603 604 605 606 607 608 609
					comptr[0].grey_level = pixel_val;
					histptr++;
				} else {
					// keep merging top two comp in stack until the grey level >= pixel_val
					for ( ; ; )
					{
						comptr--;
610
						MSERMergeComp( comptr+1, comptr, comptr, histptr );
611 612 613 614 615 616
						histptr++;
						if ( pixel_val <= comptr[0].grey_level )
							break;
						if ( pixel_val < comptr[-1].grey_level )
						{
							// check the stablity here otherwise it wouldn't be an ER
617
							if ( MSERStableCheck( comptr, params ) )
618
							{
619
								CvContour* contour = MSERToContour( comptr, storage );
620 621 622
								contour->color = color;
								cvSeqPush( contours, &contour );
							}
623
							MSERNewHistory( comptr, histptr );
624 625 626 627 628 629 630 631 632 633 634 635
							comptr[0].grey_level = pixel_val;
							histptr++;
							break;
						}
					}
				}
			} else
				break;
		}
	}
}

636
static void extractMSER_8UC1( CvMat* src,
637 638 639
		     CvMat* mask,
		     CvSeq* contours,
		     CvMemStorage* storage,
640
		     MSERParams params )
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
{
	int step = 8;
	int stepgap = 3;
	while ( step < src->step+2 )
	{
		step <<= 1;
		stepgap++;
	}
	int stepmask = step-1;

	// to speedup the process, make the width to be 2^N
	CvMat* img = cvCreateMat( src->rows+2, step, CV_32SC1 );
	int* ioptr = img->data.i+step+1;
	int* imgptr;

	// pre-allocate boundary heap
	int** heap = (int**)cvAlloc( (src->rows*src->cols+256)*sizeof(heap[0]) );
	int** heap_start[256];
	heap_start[0] = heap;

	// pre-allocate linked point and grow history
662 663 664
	LinkedPoint* pts = (LinkedPoint*)cvAlloc( src->rows*src->cols*sizeof(pts[0]) );
	MSERGrowHistory* history = (MSERGrowHistory*)cvAlloc( src->rows*src->cols*sizeof(history[0]) );
	MSERConnectedComp comp[257];
665 666

	// darker to brighter (MSER-)
667 668
	imgptr = preprocessMSER_8UC1( img, heap_start, src, mask );
	extractMSER_8UC1_Pass( ioptr, imgptr, heap_start, pts, history, comp, step, stepmask, stepgap, params, -1, contours, storage );
669
	// brighter to darker (MSER+)
670 671
	imgptr = preprocessMSER_8UC1( img, heap_start, src, mask );
	extractMSER_8UC1_Pass( ioptr, imgptr, heap_start, pts, history, comp, step, stepmask, stepgap, params, 1, contours, storage );
672 673 674 675 676 677 678 679

	// clean up
	cvFree( &history );
	cvFree( &heap );
	cvFree( &pts );
	cvReleaseMat( &img );
}

680
struct MSCRNode;
681

682
struct TempMSCR
683
{
684 685
	MSCRNode* head;
	MSCRNode* tail;
686 687
	double m; // the margin used to prune area later
	int size;
688
};
689

690
struct MSCRNode
691
{
692
	MSCRNode* shortcut;
693
	// to make the finding of root less painful
694 695
	MSCRNode* prev;
	MSCRNode* next;
696
	// a point double-linked list
697
	TempMSCR* tmsr;
698
	// the temporary msr (set to NULL at every re-initialise)
699
	TempMSCR* gmsr;
700 701 702 703 704 705 706 707
	// the global msr (once set, never to NULL)
	int index;
	// the index of the node, at this point, it should be x at the first 16-bits, and y at the last 16-bits.
	int rank;
	int reinit;
	int size, sizei;
	double dt, di;
	double s;
708
};
709

710
struct MSCREdge
711 712
{
	double chi;
713 714 715
	MSCRNode* left;
	MSCRNode* right;
};
716

717
static double ChiSquaredDistance( uchar* x, uchar* y )
718 719 720 721 722 723
{
	return (double)((x[0]-y[0])*(x[0]-y[0]))/(double)(x[0]+y[0]+1e-10)+
	       (double)((x[1]-y[1])*(x[1]-y[1]))/(double)(x[1]+y[1]+1e-10)+
	       (double)((x[2]-y[2])*(x[2]-y[2]))/(double)(x[2]+y[2]+1e-10);
}

724
static void initMSCRNode( MSCRNode* node )
725 726 727 728 729 730 731 732 733
{
	node->gmsr = node->tmsr = NULL;
	node->reinit = 0xffff;
	node->rank = 0;
	node->sizei = node->size = 1;
	node->prev = node->next = node->shortcut = node;
}

// the preprocess to get the edge list with proper gaussian blur
734 735
static int preprocessMSER_8UC3( MSCRNode* node,
			MSCREdge* edge,
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
			double* total,
			CvMat* src,
			CvMat* mask,
			CvMat* dx,
			CvMat* dy,
			int Ne,
			int edgeBlurSize )
{
	int srccpt = src->step-src->cols*3;
	uchar* srcptr = src->data.ptr;
	uchar* lastptr = src->data.ptr+3;
	double* dxptr = dx->data.db;
	for ( int i = 0; i < src->rows; i++ )
	{
		for ( int j = 0; j < src->cols-1; j++ )
		{
752
			*dxptr = ChiSquaredDistance( srcptr, lastptr );
753 754 755 756 757 758 759 760 761 762 763 764 765 766
			dxptr++;
			srcptr += 3;
			lastptr += 3;
		}
		srcptr += srccpt+3;
		lastptr += srccpt+3;
	}
	srcptr = src->data.ptr;
	lastptr = src->data.ptr+src->step;
	double* dyptr = dy->data.db;
	for ( int i = 0; i < src->rows-1; i++ )
	{
		for ( int j = 0; j < src->cols; j++ )
		{
767
			*dyptr = ChiSquaredDistance( srcptr, lastptr );
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
			dyptr++;
			srcptr += 3;
			lastptr += 3;
		}
		srcptr += srccpt;
		lastptr += srccpt;
	}
	// get dx and dy and blur it
	if ( edgeBlurSize >= 1 )
	{
		cvSmooth( dx, dx, CV_GAUSSIAN, edgeBlurSize, edgeBlurSize );
		cvSmooth( dy, dy, CV_GAUSSIAN, edgeBlurSize, edgeBlurSize );
	}
	dxptr = dx->data.db;
	dyptr = dy->data.db;
	// assian dx, dy to proper edge list and initialize mscr node
	// the nasty code here intended to avoid extra loops
	if ( mask )
	{
		Ne = 0;
		int maskcpt = mask->step-mask->cols+1;
		uchar* maskptr = mask->data.ptr;
790 791
		MSCRNode* nodeptr = node;
		initMSCRNode( nodeptr );
792 793 794 795 796 797 798 799 800 801 802 803 804 805
		nodeptr->index = 0;
		*total += edge->chi = *dxptr;
		if ( maskptr[0] && maskptr[1] )
		{
			edge->left = nodeptr;
			edge->right = nodeptr+1;
			edge++;
			Ne++;
		}
		dxptr++;
		nodeptr++;
		maskptr++;
		for ( int i = 1; i < src->cols-1; i++ )
		{
806
			initMSCRNode( nodeptr );
807 808 809 810 811 812 813 814 815 816 817 818 819
			nodeptr->index = i;
			if ( maskptr[0] && maskptr[1] )
			{
				*total += edge->chi = *dxptr;
				edge->left = nodeptr;
				edge->right = nodeptr+1;
				edge++;
				Ne++;
			}
			dxptr++;
			nodeptr++;
			maskptr++;
		}
820
		initMSCRNode( nodeptr );
821 822 823 824 825
		nodeptr->index = src->cols-1;
		nodeptr++;
		maskptr += maskcpt;
		for ( int i = 1; i < src->rows-1; i++ )
		{
826
			initMSCRNode( nodeptr );
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
			nodeptr->index = i<<16;
			if ( maskptr[0] )
			{
				if ( maskptr[-mask->step] )
				{
					*total += edge->chi = *dyptr;
					edge->left = nodeptr-src->cols;
					edge->right = nodeptr;
					edge++;
					Ne++;
				}
				if ( maskptr[1] )
				{
					*total += edge->chi = *dxptr;
					edge->left = nodeptr;
					edge->right = nodeptr+1;
					edge++;
					Ne++;
				}
			}
			dyptr++;
			dxptr++;
			nodeptr++;
			maskptr++;
			for ( int j = 1; j < src->cols-1; j++ )
			{
853
				initMSCRNode( nodeptr );
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
				nodeptr->index = (i<<16)|j;
				if ( maskptr[0] )
				{
					if ( maskptr[-mask->step] )
					{
						*total += edge->chi = *dyptr;
						edge->left = nodeptr-src->cols;
						edge->right = nodeptr;
						edge++;
						Ne++;
					}
					if ( maskptr[1] )
					{
						*total += edge->chi = *dxptr;
						edge->left = nodeptr;
						edge->right = nodeptr+1;
						edge++;
						Ne++;
					}
				}
				dyptr++;
				dxptr++;
				nodeptr++;
				maskptr++;
			}
879
			initMSCRNode( nodeptr );
880 881 882 883 884 885 886 887 888 889 890 891 892
			nodeptr->index = (i<<16)|(src->cols-1);
			if ( maskptr[0] && maskptr[-mask->step] )
			{
				*total += edge->chi = *dyptr;
				edge->left = nodeptr-src->cols;
				edge->right = nodeptr;
				edge++;
				Ne++;
			}
			dyptr++;
			nodeptr++;
			maskptr += maskcpt;
		}
893
		initMSCRNode( nodeptr );
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
		nodeptr->index = (src->rows-1)<<16;
		if ( maskptr[0] )
		{
			if ( maskptr[1] )
			{
				*total += edge->chi = *dxptr;
				edge->left = nodeptr;
				edge->right = nodeptr+1;
				edge++;
				Ne++;
			}
			if ( maskptr[-mask->step] )
			{
				*total += edge->chi = *dyptr;
				edge->left = nodeptr-src->cols;
				edge->right = nodeptr;
				edge++;
				Ne++;
			}
		}
		dxptr++;
		dyptr++;
		nodeptr++;
		maskptr++;
		for ( int i = 1; i < src->cols-1; i++ )
		{
920
			initMSCRNode( nodeptr );
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
			nodeptr->index = ((src->rows-1)<<16)|i;
			if ( maskptr[0] )
			{
				if ( maskptr[1] )
				{
					*total += edge->chi = *dxptr;
					edge->left = nodeptr;
					edge->right = nodeptr+1;
					edge++;
					Ne++;
				}
				if ( maskptr[-mask->step] )
				{
					*total += edge->chi = *dyptr;
					edge->left = nodeptr-src->cols;
					edge->right = nodeptr;
					edge++;
					Ne++;
				}
			}
			dxptr++;
			dyptr++;
			nodeptr++;
			maskptr++;
		}
946
		initMSCRNode( nodeptr );
947 948 949 950 951 952 953 954 955
		nodeptr->index = ((src->rows-1)<<16)|(src->cols-1);
		if ( maskptr[0] && maskptr[-mask->step] )
		{
			*total += edge->chi = *dyptr;
			edge->left = nodeptr-src->cols;
			edge->right = nodeptr;
			Ne++;
		}
	} else {
956 957
		MSCRNode* nodeptr = node;
		initMSCRNode( nodeptr );
958 959 960 961 962 963 964 965 966
		nodeptr->index = 0;
		*total += edge->chi = *dxptr;
		dxptr++;
		edge->left = nodeptr;
		edge->right = nodeptr+1;
		edge++;
		nodeptr++;
		for ( int i = 1; i < src->cols-1; i++ )
		{
967
			initMSCRNode( nodeptr );
968 969 970 971 972 973 974 975
			nodeptr->index = i;
			*total += edge->chi = *dxptr;
			dxptr++;
			edge->left = nodeptr;
			edge->right = nodeptr+1;
			edge++;
			nodeptr++;
		}
976
		initMSCRNode( nodeptr );
977 978 979 980
		nodeptr->index = src->cols-1;
		nodeptr++;
		for ( int i = 1; i < src->rows-1; i++ )
		{
981
			initMSCRNode( nodeptr );
982 983 984 985 986 987 988 989 990 991 992 993 994 995
			nodeptr->index = i<<16;
			*total += edge->chi = *dyptr;
			dyptr++;
			edge->left = nodeptr-src->cols;
			edge->right = nodeptr;
			edge++;
			*total += edge->chi = *dxptr;
			dxptr++;
			edge->left = nodeptr;
			edge->right = nodeptr+1;
			edge++;
			nodeptr++;
			for ( int j = 1; j < src->cols-1; j++ )
			{
996
				initMSCRNode( nodeptr );
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
				nodeptr->index = (i<<16)|j;
				*total += edge->chi = *dyptr;
				dyptr++;
				edge->left = nodeptr-src->cols;
				edge->right = nodeptr;
				edge++;
				*total += edge->chi = *dxptr;
				dxptr++;
				edge->left = nodeptr;
				edge->right = nodeptr+1;
				edge++;
				nodeptr++;
			}
1010
			initMSCRNode( nodeptr );
1011 1012 1013 1014 1015 1016 1017 1018
			nodeptr->index = (i<<16)|(src->cols-1);
			*total += edge->chi = *dyptr;
			dyptr++;
			edge->left = nodeptr-src->cols;
			edge->right = nodeptr;
			edge++;
			nodeptr++;
		}
1019
		initMSCRNode( nodeptr );
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
		nodeptr->index = (src->rows-1)<<16;
		*total += edge->chi = *dxptr;
		dxptr++;
		edge->left = nodeptr;
		edge->right = nodeptr+1;
		edge++;
		*total += edge->chi = *dyptr;
		dyptr++;
		edge->left = nodeptr-src->cols;
		edge->right = nodeptr;
		edge++;
		nodeptr++;
		for ( int i = 1; i < src->cols-1; i++ )
		{
1034
			initMSCRNode( nodeptr );
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
			nodeptr->index = ((src->rows-1)<<16)|i;
			*total += edge->chi = *dxptr;
			dxptr++;
			edge->left = nodeptr;
			edge->right = nodeptr+1;
			edge++;
			*total += edge->chi = *dyptr;
			dyptr++;
			edge->left = nodeptr-src->cols;
			edge->right = nodeptr;
			edge++;
			nodeptr++;
		}
1048
		initMSCRNode( nodeptr );
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
		nodeptr->index = ((src->rows-1)<<16)|(src->cols-1);
		*total += edge->chi = *dyptr;
		edge->left = nodeptr-src->cols;
		edge->right = nodeptr;
	}
	return Ne;
}

#define cmp_mscr_edge(edge1, edge2) \
	((edge1).chi < (edge2).chi)

1060
static CV_IMPLEMENT_QSORT( QuickSortMSCREdge, MSCREdge, cmp_mscr_edge )
1061 1062

// to find the root of one region
1063
static MSCRNode* findMSCR( MSCRNode* x )
1064
{
1065 1066
	MSCRNode* prev = x;
	MSCRNode* next;
1067 1068 1069 1070 1071 1072 1073 1074
	for ( ; ; )
	{
		next = x->shortcut;
		x->shortcut = prev;
		if ( next == x ) break;
		prev= x;
		x = next;
	}
1075
	MSCRNode* root = x;
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
	for ( ; ; )
	{
		prev = x->shortcut;
		x->shortcut = root;
		if ( prev == x ) break;
		x = prev;
	}
	return root;
}

// the stable mscr should be:
// bigger than minArea and smaller than maxArea
// differ from its ancestor more than minDiversity
1089
static bool MSCRStableCheck( MSCRNode* x, MSERParams params )
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
{
	if ( x->size <= params.minArea || x->size >= params.maxArea )
		return 0;
	if ( x->gmsr == NULL )
		return 1;
	double div = (double)(x->size-x->gmsr->size)/(double)x->size;
	return div > params.minDiversity;
}

static void
1100
extractMSER_8UC3( CvMat* src,
1101 1102 1103
		     CvMat* mask,
		     CvSeq* contours,
		     CvMemStorage* storage,
1104
		     MSERParams params )
1105
{
1106
	MSCRNode* map = (MSCRNode*)cvAlloc( src->cols*src->rows*sizeof(map[0]) );
1107
	int Ne = src->cols*src->rows*2-src->cols-src->rows;
1108 1109
	MSCREdge* edge = (MSCREdge*)cvAlloc( Ne*sizeof(edge[0]) );
	TempMSCR* mscr = (TempMSCR*)cvAlloc( src->cols*src->rows*sizeof(mscr[0]) );
1110 1111 1112
	double emean = 0;
	CvMat* dx = cvCreateMat( src->rows, src->cols-1, CV_64FC1 );
	CvMat* dy = cvCreateMat( src->rows-1, src->cols, CV_64FC1 );
1113
	Ne = preprocessMSER_8UC3( map, edge, &emean, src, mask, dx, dy, Ne, params.edgeBlurSize );
1114
	emean = emean / (double)Ne;
1115 1116 1117 1118
	QuickSortMSCREdge( edge, Ne, 0 );
	MSCREdge* edge_ub = edge+Ne;
	MSCREdge* edgeptr = edge;
	TempMSCR* mscrptr = mscr;
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
	// the evolution process
	for ( int i = 0; i < params.maxEvolution; i++ )
	{
		double k = (double)i/(double)params.maxEvolution*(TABLE_SIZE-1);
		int ti = cvFloor(k);
		double reminder = k-ti;
		double thres = emean*(chitab3[ti]*(1-reminder)+chitab3[ti+1]*reminder);
		// to process all the edges in the list that chi < thres
		while ( edgeptr < edge_ub && edgeptr->chi < thres )
		{
1129 1130
			MSCRNode* lr = findMSCR( edgeptr->left );
			MSCRNode* rr = findMSCR( edgeptr->right );
1131 1132 1133 1134 1135 1136
			// get the region root (who is responsible)
			if ( lr != rr )
			{
				// rank idea take from: N-tree Disjoint-Set Forests for Maximally Stable Extremal Regions
				if ( rr->rank > lr->rank )
				{
1137
					MSCRNode* tmp;
1138 1139 1140 1141 1142
					CV_SWAP( lr, rr, tmp );
				} else if ( lr->rank == rr->rank ) {
					// at the same rank, we will compare the size
					if ( lr->size > rr->size )
					{
1143
						MSCRNode* tmp;
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
						CV_SWAP( lr, rr, tmp );
					}
					lr->rank++;
				}
				rr->shortcut = lr;
				lr->size += rr->size;
				// join rr to the end of list lr (lr is a endless double-linked list)
				lr->prev->next = rr;
				lr->prev = rr->prev;
				rr->prev->next = lr;
				rr->prev = lr;
				// area threshold force to reinitialize
				if ( lr->size > (lr->size-rr->size)*params.areaThreshold )
				{
					lr->sizei = lr->size;
					lr->reinit = i;
					if ( lr->tmsr != NULL )
					{
						lr->tmsr->m = lr->dt-lr->di;
						lr->tmsr = NULL;
					}
					lr->di = edgeptr->chi;
					lr->s = 1e10;
				}
				lr->dt = edgeptr->chi;
				if ( i > lr->reinit )
				{
					double s = (double)(lr->size-lr->sizei)/(lr->dt-lr->di);
					if ( s < lr->s )
					{
						// skip the first one and check stablity
1175
						if ( i > lr->reinit+1 && MSCRStableCheck( lr, params ) )
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
						{
							if ( lr->tmsr == NULL )
							{
								lr->gmsr = lr->tmsr = mscrptr;
								mscrptr++;
							}
							lr->tmsr->size = lr->size;
							lr->tmsr->head = lr;
							lr->tmsr->tail = lr->prev;
							lr->tmsr->m = 0;
						}
						lr->s = s;
					}
				}
			}
			edgeptr++;
		}
		if ( edgeptr >= edge_ub )
			break;
	}
1196
	for ( TempMSCR* ptr = mscr; ptr < mscrptr; ptr++ )
1197 1198 1199 1200 1201
		// to prune area with margin less than minMargin
		if ( ptr->m > params.minMargin )
		{
			CvSeq* _contour = cvCreateSeq( CV_SEQ_KIND_GENERIC|CV_32SC2, sizeof(CvContour), sizeof(CvPoint), storage );
			cvSeqPushMulti( _contour, 0, ptr->size );
1202
			MSCRNode* lpt = ptr->head;
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
			for ( int i = 0; i < ptr->size; i++ )
			{
				CvPoint* pt = CV_GET_SEQ_ELEM( CvPoint, _contour, i );
				pt->x = (lpt->index)&0xffff;
				pt->y = (lpt->index)>>16;
				lpt = lpt->next;
			}
			CvContour* contour = (CvContour*)_contour;
			cvBoundingRect( contour );
			contour->color = 0;
			cvSeqPush( contours, &contour );
		}
	cvReleaseMat( &dx );
	cvReleaseMat( &dy );
	cvFree( &mscr );
	cvFree( &edge );
	cvFree( &map );
}

1222 1223
static void
extractMSER( CvArr* _img,
1224 1225 1226
	       CvArr* _mask,
	       CvSeq** _contours,
	       CvMemStorage* storage,
1227
	       MSERParams params )
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
{
	CvMat srchdr, *src = cvGetMat( _img, &srchdr );
	CvMat maskhdr, *mask = _mask ? cvGetMat( _mask, &maskhdr ) : 0;
	CvSeq* contours = 0;

	CV_Assert(src != 0);
	CV_Assert(CV_MAT_TYPE(src->type) == CV_8UC1 || CV_MAT_TYPE(src->type) == CV_8UC3);
	CV_Assert(mask == 0 || (CV_ARE_SIZES_EQ(src, mask) && CV_MAT_TYPE(mask->type) == CV_8UC1));
	CV_Assert(storage != 0);

	contours = *_contours = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvSeq*), storage );

	// choose different method for different image type
	// for grey image, it is: Linear Time Maximally Stable Extremal Regions
	// for color image, it is: Maximally Stable Colour Regions for Recognition and Matching
	switch ( CV_MAT_TYPE(src->type) )
	{
		case CV_8UC1:
1246
			extractMSER_8UC1( src, mask, contours, storage, params );
1247 1248
			break;
		case CV_8UC3:
1249
			extractMSER_8UC3( src, mask, contours, storage, params );
1250 1251 1252 1253 1254 1255
			break;
	}
}


MSER::MSER( int _delta, int _min_area, int _max_area,
1256
      double _max_variation, double _min_diversity,
1257 1258
      int _max_evolution, double _area_threshold,
      double _min_margin, int _edge_blur_size )
1259 1260 1261 1262
    : delta(_delta), minArea(_min_area), maxArea(_max_area),
    maxVariation(_max_variation), minDiversity(_min_diversity),
    maxEvolution(_max_evolution), areaThreshold(_area_threshold),
    minMargin(_min_margin), edgeBlurSize(_edge_blur_size)
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
{
}

void MSER::operator()( const Mat& image, vector<vector<Point> >& dstcontours, const Mat& mask ) const
{
    CvMat _image = image, _mask, *pmask = 0;
    if( mask.data )
        pmask = &(_mask = mask);
    MemStorage storage(cvCreateMemStorage(0));
    Seq<CvSeq*> contours;
1273 1274 1275
    extractMSER( &_image, pmask, &contours.seq, storage,
                 MSERParams(delta, minArea, maxArea, maxVariation, minDiversity,
                            maxEvolution, areaThreshold, minMargin, edgeBlurSize));
1276 1277 1278 1279 1280 1281
    SeqIterator<CvSeq*> it = contours.begin();
    size_t i, ncontours = contours.size();
    dstcontours.resize(ncontours);
    for( i = 0; i < ncontours; i++, ++it )
        Seq<Point>(*it).copyTo(dstcontours[i]);
}
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
    

void MserFeatureDetector::detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask ) const
{
    vector<vector<Point> > msers;
    
    (*this)(image, msers, mask);
    
    vector<vector<Point> >::const_iterator contour_it = msers.begin();
    for( ; contour_it != msers.end(); ++contour_it )
    {
        // TODO check transformation from MSER region to KeyPoint
        RotatedRect rect = fitEllipse(Mat(*contour_it));
        float diam = sqrt(rect.size.height*rect.size.width);
        
        if( diam > std::numeric_limits<float>::epsilon() )
            keypoints.push_back( KeyPoint( rect.center, diam, rect.angle) );
    }
}
    
static Algorithm* createMSER() { return new MSER; }
static AlgorithmInfo mser_info("Feature2D.MSER", createMSER);
    
AlgorithmInfo* MSER::info() const
{
    static volatile bool initialized = false;
    if( !initialized )
    {
        mser_info.addParam(this, "delta", delta);
        mser_info.addParam(this, "minArea", minArea);
        mser_info.addParam(this, "maxArea", maxArea);
        mser_info.addParam(this, "maxVariation", maxVariation);
        mser_info.addParam(this, "minDiversity", minDiversity);
        mser_info.addParam(this, "maxEvolution", maxEvolution);
        mser_info.addParam(this, "areaThreshold", areaThreshold);
        mser_info.addParam(this, "minMargin", minMargin);
        mser_info.addParam(this, "edgeBlurSize", edgeBlurSize);
        
        initialized = true;
    }
    return &mser_info;
}    
1324 1325

}