android_ocl_intro.markdown 15.4 KB
Newer Older
1 2 3
Use OpenCL in Android camera preview based CV application {#tutorial_android_ocl_intro}
=====================================

4 5 6 7
@prev_tutorial{tutorial_dev_with_OCV_on_Android}
@next_tutorial{tutorial_macos_install}


8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
This guide was designed to help you in use of [OpenCL ™](https://www.khronos.org/opencl/) in Android camera preview based CV application.
It was written for [Eclipse-based ADT tools](http://developer.android.com/tools/help/adt.html)
(deprecated by Google now), but it easily can be reproduced with [Android Studio](http://developer.android.com/tools/studio/index.html).

This tutorial assumes you have the following installed and configured:

-   JDK
-   Android SDK and NDK
-   Eclipse IDE with ADT and CDT plugins

It also assumes that you are familiar with Android Java and JNI programming basics.
If you need help with anything of the above, you may refer to our @ref tutorial_android_dev_intro guide.

This tutorial also assumes you have an Android operated device with OpenCL enabled.

The related source code is located within OpenCV samples at
24
[opencv/samples/android/tutorial-4-opencl](https://github.com/opencv/opencv/tree/3.4/samples/android/tutorial-4-opencl/) directory.
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250

Preface
-------

Using [GPGPU](https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units)
via OpenCL for applications performance enhancements is quite a modern trend now.
Some CV algo-s (e.g. image filtering) run much faster on a GPU than on a CPU.
Recently it has become possible on Android OS.

The most popular CV application scenario for an Android operated device is starting camera in preview mode, applying some CV algo to every frame
and displaying the preview frames modified by that CV algo.

Let's consider how we can use OpenCL in this scenario. In particular let's try two ways: direct calls to OpenCL API and recently introduced OpenCV T-API
(aka [Transparent API](https://docs.google.com/presentation/d/1qoa29N_B-s297-fp0-b3rBirvpzJQp8dCtllLQ4DVCY/present)) - implicit OpenCL accelerations of some OpenCV algo-s.

Application structure
---------------------

Starting Android API level 11 (Android 3.0) [Camera API](http://developer.android.com/reference/android/hardware/Camera.html)
allows use of OpenGL texture as a target for preview frames.
Android API level 21 brings a new [Camera2 API](http://developer.android.com/reference/android/hardware/camera2/package-summary.html)
that provides much more control over the camera settings and usage modes,
it allows several targets for preview frames and OpenGL texture in particular.

Having a preview frame in an OpenGL texture is a good deal for using OpenCL because there is an
[OpenGL-OpenCL Interoperability API (cl_khr_gl_sharing)](https://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/cl_khr_gl_sharing.html),
allowing sharing OpenGL texture data with OpenCL functions without copying (with some restrictions of course).

Let's create a base for our application that just configures Android camera to send preview frames to OpenGL texture and displays these frames
on display without any processing.

A minimal `Activity` class for that purposes looks like following:

@code{.java}
public class Tutorial4Activity extends Activity {

    private MyGLSurfaceView mView;

    @Override
    public void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        requestWindowFeature(Window.FEATURE_NO_TITLE);
        getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
                WindowManager.LayoutParams.FLAG_FULLSCREEN);
        getWindow().setFlags(WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON,
                WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON);
        setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_LANDSCAPE);

        mView = new MyGLSurfaceView(this);
        setContentView(mView);
    }

    @Override
    protected void onPause() {
        mView.onPause();
        super.onPause();
    }

    @Override
    protected void onResume() {
        super.onResume();
        mView.onResume();
    }
}
@endcode

And a minimal `View` class respectively:

@code{.java}
public class MyGLSurfaceView extends GLSurfaceView {

    MyGLRendererBase mRenderer;

    public MyGLSurfaceView(Context context) {
        super(context);

        if(android.os.Build.VERSION.SDK_INT >= 21)
            mRenderer = new Camera2Renderer(this);
        else
            mRenderer = new CameraRenderer(this);

        setEGLContextClientVersion(2);
        setRenderer(mRenderer);
        setRenderMode(GLSurfaceView.RENDERMODE_WHEN_DIRTY);
    }

    @Override
    public void surfaceCreated(SurfaceHolder holder) {
        super.surfaceCreated(holder);
    }

    @Override
    public void surfaceDestroyed(SurfaceHolder holder) {
        super.surfaceDestroyed(holder);
    }

    @Override
    public void surfaceChanged(SurfaceHolder holder, int format, int w, int h) {
        super.surfaceChanged(holder, format, w, h);
    }

    @Override
    public void onResume() {
        super.onResume();
        mRenderer.onResume();
    }

    @Override
    public void onPause() {
        mRenderer.onPause();
        super.onPause();
    }
}
@endcode

__Note__: we use two renderer classes: one for legacy [Camera](http://developer.android.com/reference/android/hardware/Camera.html) API
and another for modern [Camera2](http://developer.android.com/reference/android/hardware/camera2/package-summary.html).

A minimal `Renderer` class can be implemented in Java (OpenGL ES 2.0 [available](http://developer.android.com/reference/android/opengl/GLES20.html) in Java),
but since we are going to modify the preview texture with OpenCL let's move OpenGL stuff to JNI.
Here is a simple Java wrapper for our JNI stuff:

@code{.java}
public class NativeGLRenderer {
    static
    {
        System.loadLibrary("opencv_java3"); // comment this when using OpenCV Manager
        System.loadLibrary("JNIrender");
    }

    public static native int initGL();
    public static native void closeGL();
    public static native void drawFrame();
    public static native void changeSize(int width, int height);
}
@endcode

Since `Camera` and `Camera2` APIs differ significantly in camera setup and control, let's create a base class for the two corresponding renderers:

@code{.java}
public abstract class MyGLRendererBase implements GLSurfaceView.Renderer, SurfaceTexture.OnFrameAvailableListener {
    protected final String LOGTAG = "MyGLRendererBase";

    protected SurfaceTexture mSTex;
    protected MyGLSurfaceView mView;

    protected boolean mGLInit = false;
    protected boolean mTexUpdate = false;

    MyGLRendererBase(MyGLSurfaceView view) {
        mView = view;
    }

    protected abstract void openCamera();
    protected abstract void closeCamera();
    protected abstract void setCameraPreviewSize(int width, int height);

    public void onResume() {
        Log.i(LOGTAG, "onResume");
    }

    public void onPause() {
        Log.i(LOGTAG, "onPause");
        mGLInit = false;
        mTexUpdate = false;
        closeCamera();
        if(mSTex != null) {
            mSTex.release();
            mSTex = null;
            NativeGLRenderer.closeGL();
        }
    }

    @Override
    public synchronized void onFrameAvailable(SurfaceTexture surfaceTexture) {
        //Log.i(LOGTAG, "onFrameAvailable");
        mTexUpdate = true;
        mView.requestRender();
    }

    @Override
    public void onDrawFrame(GL10 gl) {
        //Log.i(LOGTAG, "onDrawFrame");
        if (!mGLInit)
            return;

        synchronized (this) {
            if (mTexUpdate) {
                mSTex.updateTexImage();
                mTexUpdate = false;
            }
        }
        NativeGLRenderer.drawFrame();
    }

    @Override
    public void onSurfaceChanged(GL10 gl, int surfaceWidth, int surfaceHeight) {
        Log.i(LOGTAG, "onSurfaceChanged("+surfaceWidth+"x"+surfaceHeight+")");
        NativeGLRenderer.changeSize(surfaceWidth, surfaceHeight);
        setCameraPreviewSize(surfaceWidth, surfaceHeight);
    }

    @Override
    public void onSurfaceCreated(GL10 gl, EGLConfig config) {
        Log.i(LOGTAG, "onSurfaceCreated");
        String strGLVersion = GLES20.glGetString(GLES20.GL_VERSION);
        if (strGLVersion != null)
            Log.i(LOGTAG, "OpenGL ES version: " + strGLVersion);

        int hTex = NativeGLRenderer.initGL();
        mSTex = new SurfaceTexture(hTex);
        mSTex.setOnFrameAvailableListener(this);
        openCamera();
        mGLInit = true;
    }
}
@endcode

As you can see, inheritors for `Camera` and `Camera2` APIs should implement the following abstract methods:
@code{.java}
    protected abstract void openCamera();
    protected abstract void closeCamera();
    protected abstract void setCameraPreviewSize(int width, int height);
@endcode

Let's leave the details of their implementation beyond of this tutorial, please refer the
251
[source code](https://github.com/opencv/opencv/tree/3.4/samples/android/tutorial-4-opencl/) to see them.
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399

Preview Frames modification
---------------------------

The details OpenGL ES 2.0 initialization are also quite straightforward and noisy to be quoted here,
but the important point here is that the OpeGL texture to be the target for camera preview should be of type `GL_TEXTURE_EXTERNAL_OES`
(not `GL_TEXTURE_2D`), internally it keeps picture data in _YUV_ format.
That makes unable sharing it via CL-GL interop (`cl_khr_gl_sharing`) and accessing its pixel data via C/C++ code.
To overcome this restriction we have to perform an OpenGL rendering from this texture to another regular `GL_TEXTURE_2D` one
using _FrameBuffer Object_ (aka FBO).

### C/C++ code

After that we can read (_copy_) pixel data from C/C++ via `glReadPixels()` and write them back to texture after modification via `glTexSubImage2D()`.

### Direct OpenCL calls

Also that `GL_TEXTURE_2D` texture can be shared with OpenCL without copying, but we have to create OpenCL context with special way for that:

@code{.cpp}
void initCL()
{
    EGLDisplay mEglDisplay = eglGetCurrentDisplay();
    if (mEglDisplay == EGL_NO_DISPLAY)
        LOGE("initCL: eglGetCurrentDisplay() returned 'EGL_NO_DISPLAY', error = %x", eglGetError());

    EGLContext mEglContext = eglGetCurrentContext();
    if (mEglContext == EGL_NO_CONTEXT)
        LOGE("initCL: eglGetCurrentContext() returned 'EGL_NO_CONTEXT', error = %x", eglGetError());

    cl_context_properties props[] =
    {   CL_GL_CONTEXT_KHR,   (cl_context_properties) mEglContext,
        CL_EGL_DISPLAY_KHR,  (cl_context_properties) mEglDisplay,
        CL_CONTEXT_PLATFORM, 0,
        0 };

    try
    {
        cl::Platform p = cl::Platform::getDefault();
        std::string ext = p.getInfo<CL_PLATFORM_EXTENSIONS>();
        if(ext.find("cl_khr_gl_sharing") == std::string::npos)
            LOGE("Warning: CL-GL sharing isn't supported by PLATFORM");
        props[5] = (cl_context_properties) p();

        theContext = cl::Context(CL_DEVICE_TYPE_GPU, props);
        std::vector<cl::Device> devs = theContext.getInfo<CL_CONTEXT_DEVICES>();
        LOGD("Context returned %d devices, taking the 1st one", devs.size());
        ext = devs[0].getInfo<CL_DEVICE_EXTENSIONS>();
        if(ext.find("cl_khr_gl_sharing") == std::string::npos)
            LOGE("Warning: CL-GL sharing isn't supported by DEVICE");

        theQueue = cl::CommandQueue(theContext, devs[0]);

        // ...
    }
    catch(cl::Error& e)
    {
        LOGE("cl::Error: %s (%d)", e.what(), e.err());
    }
    catch(std::exception& e)
    {
        LOGE("std::exception: %s", e.what());
    }
    catch(...)
    {
        LOGE( "OpenCL info: unknown error while initializing OpenCL stuff" );
    }
    LOGD("initCL completed");
}
@endcode

@note To build this JNI code you need __OpenCL 1.2__ headers from [Khronos web site](https://www.khronos.org/registry/cl/api/1.2/) and
the __libOpenCL.so__ downloaded from the device you'll run the application.

Then the texture can be wrapped by a `cl::ImageGL` object and processed via OpenCL calls:
@code{.cpp}
    cl::ImageGL imgIn (theContext, CL_MEM_READ_ONLY,  GL_TEXTURE_2D, 0, texIn);
    cl::ImageGL imgOut(theContext, CL_MEM_WRITE_ONLY, GL_TEXTURE_2D, 0, texOut);

    std::vector < cl::Memory > images;
    images.push_back(imgIn);
    images.push_back(imgOut);
    theQueue.enqueueAcquireGLObjects(&images);
    theQueue.finish();

    cl::Kernel Laplacian = ...
    Laplacian.setArg(0, imgIn);
    Laplacian.setArg(1, imgOut);
    theQueue.finish();

    theQueue.enqueueNDRangeKernel(Laplacian, cl::NullRange, cl::NDRange(w, h), cl::NullRange);
    theQueue.finish();

    theQueue.enqueueReleaseGLObjects(&images);
    theQueue.finish();
@endcode

### OpenCV T-API

But instead of writing OpenCL code by yourselves you may want to use __OpenCV T-API__ that calls OpenCL implicitly.
All that you need is to pass the created OpenCL context to OpenCV (via `cv::ocl::attachContext()`) and somehow wrap OpenGL texture with `cv::UMat`.
Unfortunately `UMat` keeps OpenCL _buffer_ internally, that can't be wrapped over either OpenGL _texture_ or OpenCL _image_ - so we have to copy image data here:
@code{.cpp}
    cl::ImageGL imgIn (theContext, CL_MEM_READ_ONLY,  GL_TEXTURE_2D, 0, tex);
    std::vector < cl::Memory > images(1, imgIn);
    theQueue.enqueueAcquireGLObjects(&images);
    theQueue.finish();

    cv::UMat uIn, uOut, uTmp;
    cv::ocl::convertFromImage(imgIn(), uIn);
    theQueue.enqueueReleaseGLObjects(&images);

    cv::Laplacian(uIn, uTmp, CV_8U);
    cv:multiply(uTmp, 10, uOut);
    cv::ocl::finish();

    cl::ImageGL imgOut(theContext, CL_MEM_WRITE_ONLY, GL_TEXTURE_2D, 0, tex);
    images.clear();
    images.push_back(imgOut);
    theQueue.enqueueAcquireGLObjects(&images);
    cl_mem clBuffer = (cl_mem)uOut.handle(cv::ACCESS_READ);
    cl_command_queue q = (cl_command_queue)cv::ocl::Queue::getDefault().ptr();
    size_t offset = 0;
    size_t origin[3] = { 0, 0, 0 };
    size_t region[3] = { w, h, 1 };
    CV_Assert(clEnqueueCopyBufferToImage (q, clBuffer, imgOut(), offset, origin, region, 0, NULL, NULL) == CL_SUCCESS);
    theQueue.enqueueReleaseGLObjects(&images);
    cv::ocl::finish();
@endcode

- @note We have to make one more image data copy when placing back the modified image to the original OpenGL texture via OpenCL image wrapper.
- @note By default the OpenCL support (T-API) is disabled in OpenCV builds for Android OS (so it's absent in official packages as of version 3.0),
  but it's possible to rebuild locally OpenCV for Android with OpenCL/T-API enabled: use `-DWITH_OPENCL=YES` option for CMake.
  @code{.cmd}
  cd opencv-build-android
  path/to/cmake.exe -GNinja -DCMAKE_MAKE_PROGRAM="path/to/ninja.exe" -DCMAKE_TOOLCHAIN_FILE=path/to/opencv/platforms/android/android.toolchain.cmake -DANDROID_ABI="armeabi-v7a with NEON" -DCMAKE_BUILD_WITH_INSTALL_RPATH=ON path/to/opencv
  path/to/ninja.exe install/strip
  @endcode
  To use your own modified `libopencv_java3.so` you have to keep inside your APK, not to use OpenCV Manager and load it manually via `System.loadLibrary("opencv_java3")`.

Performance notes
-----------------

To compare the performance we measured FPS of the same preview frames modification (_Laplacian_) done by C/C++ code (call to `cv::Laplacian` with `cv::Mat`),
by direct OpenCL calls (using OpenCL _images_ for input and output), and by OpenCV _T-API_ (call to `cv::Laplacian` with `cv::UMat`) on _Sony Xperia Z3_ with 720p camera resolution:
* __C/C++ version__ shows __3-4 fps__
* __direct OpenCL calls__ shows __25-27 fps__
* __OpenCV T-API__ shows __11-13 fps__ (due to extra copying from `cl_image` to `cl_buffer` and back)