imgproc.cpp 76.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

using namespace cv;
using namespace cv::gpu;

#if !defined (HAVE_CUDA)

50
void cv::gpu::remap(const GpuMat&, GpuMat&, const GpuMat&, const GpuMat&, int, int, const Scalar&, Stream&){ throw_nogpu(); }
51
void cv::gpu::meanShiftFiltering(const GpuMat&, GpuMat&, int, int, TermCriteria) { throw_nogpu(); }
52
void cv::gpu::meanShiftProc(const GpuMat&, GpuMat&, GpuMat&, int, int, TermCriteria) { throw_nogpu(); }
53 54 55
void cv::gpu::drawColorDisp(const GpuMat&, GpuMat&, int, Stream&) { throw_nogpu(); }
void cv::gpu::reprojectImageTo3D(const GpuMat&, GpuMat&, const Mat&, Stream&) { throw_nogpu(); }
void cv::gpu::resize(const GpuMat&, GpuMat&, Size, double, double, int, Stream&) { throw_nogpu(); }
56
void cv::gpu::copyMakeBorder(const GpuMat&, GpuMat&, int, int, int, int, int, const Scalar&, Stream&) { throw_nogpu(); }
57 58
void cv::gpu::warpAffine(const GpuMat&, GpuMat&, const Mat&, Size, int, Stream&) { throw_nogpu(); }
void cv::gpu::warpPerspective(const GpuMat&, GpuMat&, const Mat&, Size, int, Stream&) { throw_nogpu(); }
59
void cv::gpu::buildWarpPlaneMaps(Size, Rect, const Mat&, const Mat&, const Mat&, float, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
60 61
void cv::gpu::buildWarpCylindricalMaps(Size, Rect, const Mat&, const Mat&, float, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::buildWarpSphericalMaps(Size, Rect, const Mat&, const Mat&, float, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
62 63 64 65 66
void cv::gpu::rotate(const GpuMat&, GpuMat&, Size, double, double, double, int, Stream&) { throw_nogpu(); }
void cv::gpu::integral(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::integralBuffered(const GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::integral(const GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::sqrIntegral(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
67
void cv::gpu::columnSum(const GpuMat&, GpuMat&) { throw_nogpu(); }
68
void cv::gpu::rectStdDev(const GpuMat&, const GpuMat&, GpuMat&, const Rect&, Stream&) { throw_nogpu(); }
69
void cv::gpu::evenLevels(GpuMat&, int, int, int) { throw_nogpu(); }
70
void cv::gpu::histEven(const GpuMat&, GpuMat&, int, int, int, Stream&) { throw_nogpu(); }
71
void cv::gpu::histEven(const GpuMat&, GpuMat&, GpuMat&, int, int, int, Stream&) { throw_nogpu(); }
72
void cv::gpu::histEven(const GpuMat&, GpuMat*, int*, int*, int*, Stream&) { throw_nogpu(); }
73
void cv::gpu::histEven(const GpuMat&, GpuMat*, GpuMat&, int*, int*, int*, Stream&) { throw_nogpu(); }
74
void cv::gpu::histRange(const GpuMat&, GpuMat&, const GpuMat&, Stream&) { throw_nogpu(); }
75
void cv::gpu::histRange(const GpuMat&, GpuMat&, const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
76
void cv::gpu::histRange(const GpuMat&, GpuMat*, const GpuMat*, Stream&) { throw_nogpu(); }
77
void cv::gpu::histRange(const GpuMat&, GpuMat*, const GpuMat*, GpuMat&, Stream&) { throw_nogpu(); }
78 79
void cv::gpu::calcHist(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::calcHist(const GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
80 81 82
void cv::gpu::equalizeHist(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::equalizeHist(const GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::equalizeHist(const GpuMat&, GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
83
void cv::gpu::cornerHarris(const GpuMat&, GpuMat&, int, int, double, int) { throw_nogpu(); }
84
void cv::gpu::cornerHarris(const GpuMat&, GpuMat&, GpuMat&, GpuMat&, int, int, double, int) { throw_nogpu(); }
85
void cv::gpu::cornerMinEigenVal(const GpuMat&, GpuMat&, int, int, int) { throw_nogpu(); }
86
void cv::gpu::cornerMinEigenVal(const GpuMat&, GpuMat&, GpuMat&, GpuMat&, int, int, int) { throw_nogpu(); }
87 88
void cv::gpu::mulSpectrums(const GpuMat&, const GpuMat&, GpuMat&, int, bool) { throw_nogpu(); }
void cv::gpu::mulAndScaleSpectrums(const GpuMat&, const GpuMat&, GpuMat&, int, float, bool) { throw_nogpu(); }
A
Alexey Spizhevoy 已提交
89
void cv::gpu::dft(const GpuMat&, GpuMat&, Size, int) { throw_nogpu(); }
90
void cv::gpu::ConvolveBuf::create(Size, Size) { throw_nogpu(); }
91
void cv::gpu::convolve(const GpuMat&, const GpuMat&, GpuMat&, bool) { throw_nogpu(); }
92
void cv::gpu::convolve(const GpuMat&, const GpuMat&, GpuMat&, bool, ConvolveBuf&) { throw_nogpu(); }
93 94
void cv::gpu::pyrDown(const GpuMat&, GpuMat&, int, Stream&) { throw_nogpu(); }
void cv::gpu::pyrUp(const GpuMat&, GpuMat&, int, Stream&) { throw_nogpu(); }
V
Vladislav Vinogradov 已提交
95 96 97 98 99 100 101
void cv::gpu::Canny(const GpuMat&, GpuMat&, double, double, int, bool) { throw_nogpu(); }
void cv::gpu::Canny(const GpuMat&, CannyBuf&, GpuMat&, double, double, int, bool) { throw_nogpu(); }
void cv::gpu::Canny(const GpuMat&, const GpuMat&, GpuMat&, double, double, bool) { throw_nogpu(); }
void cv::gpu::Canny(const GpuMat&, const GpuMat&, CannyBuf&, GpuMat&, double, double, bool) { throw_nogpu(); }
cv::gpu::CannyBuf::CannyBuf(const GpuMat&, const GpuMat&) { throw_nogpu(); }
void cv::gpu::CannyBuf::create(const Size&, int) { throw_nogpu(); }
void cv::gpu::CannyBuf::release() { throw_nogpu(); }
102 103 104

#else /* !defined (HAVE_CUDA) */

105 106 107
////////////////////////////////////////////////////////////////////////
// remap

108
namespace cv { namespace gpu {  namespace imgproc
109
{
110
    template <typename T> void remap_gpu(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, 
111
                                         int interpolation, int borderMode, const float* borderValue, cudaStream_t stream);
112
}}}
113

114
void cv::gpu::remap(const GpuMat& src, GpuMat& dst, const GpuMat& xmap, const GpuMat& ymap, int interpolation, int borderMode, const Scalar& borderValue, Stream& stream)
115 116
{
    using namespace cv::gpu::imgproc;
117

118
    typedef void (*caller_t)(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream);
119 120
    static const caller_t callers[6][4] = 
    {
121 122 123 124 125 126
        {remap_gpu<uchar>, 0/*remap_gpu<uchar2>*/, remap_gpu<uchar3>, remap_gpu<uchar4>},
        {0/*remap_gpu<schar>*/, 0/*remap_gpu<char2>*/, 0/*remap_gpu<char3>*/, 0/*remap_gpu<char4>*/},
        {remap_gpu<ushort>, 0/*remap_gpu<ushort2>*/, remap_gpu<ushort3>, remap_gpu<ushort4>},
        {remap_gpu<short>, 0/*remap_gpu<short2>*/, remap_gpu<short3>, remap_gpu<short4>},
        {0/*remap_gpu<int>*/, 0/*remap_gpu<int2>*/, 0/*remap_gpu<int3>*/, 0/*remap_gpu<int4>*/},
        {remap_gpu<float>, 0/*remap_gpu<float2>*/, remap_gpu<float3>, remap_gpu<float4>}
127
    };
128

129 130
    CV_Assert(src.depth() <= CV_32F && src.channels() <= 4);
    CV_Assert(xmap.type() == CV_32F && ymap.type() == CV_32F && xmap.size() == ymap.size());
131

132 133 134
    caller_t func = callers[src.depth()][src.channels() - 1];
    CV_Assert(func != 0);

135
    CV_Assert(interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC);
136

137
    CV_Assert(borderMode == BORDER_REFLECT101 || borderMode == BORDER_REPLICATE || borderMode == BORDER_CONSTANT || borderMode == BORDER_REFLECT || borderMode == BORDER_WRAP);
138 139
    int gpuBorderType;
    CV_Assert(tryConvertToGpuBorderType(borderMode, gpuBorderType));
140

141
    dst.create(xmap.size(), src.type());
142 143 144
    
    Scalar_<float> borderValueFloat;
    borderValueFloat = borderValue;
145

146
    func(src, xmap, ymap, dst, interpolation, gpuBorderType, borderValueFloat.val, StreamAccessor::getStream(stream));
147 148
}

149 150
////////////////////////////////////////////////////////////////////////
// meanShiftFiltering_GPU
151

152 153
namespace cv { namespace gpu {  namespace imgproc
{
154
    extern "C" void meanShiftFiltering_gpu(const DevMem2Db& src, DevMem2Db dst, int sp, int sr, int maxIter, float eps);
155 156
}}}

157
void cv::gpu::meanShiftFiltering(const GpuMat& src, GpuMat& dst, int sp, int sr, TermCriteria criteria)
158
{
159 160 161 162 163 164
    if( src.empty() )
        CV_Error( CV_StsBadArg, "The input image is empty" );

    if( src.depth() != CV_8U || src.channels() != 4 )
        CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported" );

165
    dst.create( src.size(), CV_8UC4 );
166

167 168
    if( !(criteria.type & TermCriteria::MAX_ITER) )
        criteria.maxCount = 5;
169

170
    int maxIter = std::min(std::max(criteria.maxCount, 1), 100);
171

172
    float eps;
173 174
    if( !(criteria.type & TermCriteria::EPS) )
        eps = 1.f;
175
    eps = (float)std::max(criteria.epsilon, 0.0);
176

177
    imgproc::meanShiftFiltering_gpu(src, dst, sp, sr, maxIter, eps);
178 179
}

180
////////////////////////////////////////////////////////////////////////
181 182
// meanShiftProc_GPU

183 184
namespace cv { namespace gpu {  namespace imgproc
{
185
    extern "C" void meanShiftProc_gpu(const DevMem2Db& src, DevMem2Db dstr, DevMem2Db dstsp, int sp, int sr, int maxIter, float eps);
186 187
}}}

188
void cv::gpu::meanShiftProc(const GpuMat& src, GpuMat& dstr, GpuMat& dstsp, int sp, int sr, TermCriteria criteria)
189
{
190 191 192 193 194 195 196 197
    if( src.empty() )
        CV_Error( CV_StsBadArg, "The input image is empty" );

    if( src.depth() != CV_8U || src.channels() != 4 )
        CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported" );

    dstr.create( src.size(), CV_8UC4 );
    dstsp.create( src.size(), CV_16SC2 );
198

199 200
    if( !(criteria.type & TermCriteria::MAX_ITER) )
        criteria.maxCount = 5;
201

202
    int maxIter = std::min(std::max(criteria.maxCount, 1), 100);
203

204 205 206
    float eps;
    if( !(criteria.type & TermCriteria::EPS) )
        eps = 1.f;
207
    eps = (float)std::max(criteria.epsilon, 0.0);
208

209
    imgproc::meanShiftProc_gpu(src, dstr, dstsp, sp, sr, maxIter, eps);
210 211 212
}

////////////////////////////////////////////////////////////////////////
213 214
// drawColorDisp

215 216
namespace cv { namespace gpu {  namespace imgproc
{
217 218
    void drawColorDisp_gpu(const DevMem2Db& src, const DevMem2Db& dst, int ndisp, const cudaStream_t& stream);
    void drawColorDisp_gpu(const DevMem2D_<short>& src, const DevMem2Db& dst, int ndisp, const cudaStream_t& stream);
219 220
}}}

221 222 223
namespace
{
    template <typename T>
224
    void drawColorDisp_caller(const GpuMat& src, GpuMat& dst, int ndisp, const cudaStream_t& stream)
225
    {
226
        dst.create(src.size(), CV_8UC4);
227

228
        imgproc::drawColorDisp_gpu((DevMem2D_<T>)src, dst, ndisp, stream);
229
    }
230 231 232 233

    typedef void (*drawColorDisp_caller_t)(const GpuMat& src, GpuMat& dst, int ndisp, const cudaStream_t& stream);

    const drawColorDisp_caller_t drawColorDisp_callers[] = {drawColorDisp_caller<unsigned char>, 0, 0, drawColorDisp_caller<short>, 0, 0, 0, 0};
234 235
}

236
void cv::gpu::drawColorDisp(const GpuMat& src, GpuMat& dst, int ndisp, Stream& stream)
237 238
{
    CV_Assert(src.type() == CV_8U || src.type() == CV_16S);
239

240
    drawColorDisp_callers[src.type()](src, dst, ndisp, StreamAccessor::getStream(stream));
241
}
242

243 244 245
////////////////////////////////////////////////////////////////////////
// reprojectImageTo3D

246 247
namespace cv { namespace gpu {  namespace imgproc
{
248
    void reprojectImageTo3D_gpu(const DevMem2Db& disp, const DevMem2Df& xyzw, const float* q, const cudaStream_t& stream);
249 250 251
    void reprojectImageTo3D_gpu(const DevMem2D_<short>& disp, const DevMem2Df& xyzw, const float* q, const cudaStream_t& stream);
}}}

252 253 254
namespace
{
    template <typename T>
255
    void reprojectImageTo3D_caller(const GpuMat& disp, GpuMat& xyzw, const Mat& Q, const cudaStream_t& stream)
256
    {
257
        xyzw.create(disp.rows, disp.cols, CV_32FC4);
258
        imgproc::reprojectImageTo3D_gpu((DevMem2D_<T>)disp, xyzw, Q.ptr<float>(), stream);
259
    }
260

261
    typedef void (*reprojectImageTo3D_caller_t)(const GpuMat& disp, GpuMat& xyzw, const Mat& Q, const cudaStream_t& stream);
262

263
    const reprojectImageTo3D_caller_t reprojectImageTo3D_callers[] = {reprojectImageTo3D_caller<unsigned char>, 0, 0, reprojectImageTo3D_caller<short>, 0, 0, 0, 0};
264 265
}

266
void cv::gpu::reprojectImageTo3D(const GpuMat& disp, GpuMat& xyzw, const Mat& Q, Stream& stream)
267 268
{
    CV_Assert((disp.type() == CV_8U || disp.type() == CV_16S) && Q.type() == CV_32F && Q.rows == 4 && Q.cols == 4);
269

270
    reprojectImageTo3D_callers[disp.type()](disp, xyzw, Q, StreamAccessor::getStream(stream));
271 272
}

273 274 275
////////////////////////////////////////////////////////////////////////
// resize

276 277
namespace cv { namespace gpu {  namespace imgproc
{
278
    template <typename T> void resize_gpu(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
279 280
}}}

281
void cv::gpu::resize(const GpuMat& src, GpuMat& dst, Size dsize, double fx, double fy, int interpolation, Stream& s)
282
{
283 284
    CV_Assert( src.depth() <= CV_32F && src.channels() <= 4 );
    CV_Assert( interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC );
285 286 287 288 289 290 291 292 293 294 295 296 297 298
    CV_Assert( !(dsize == Size()) || (fx > 0 && fy > 0) );

    if( dsize == Size() )
    {
        dsize = Size(saturate_cast<int>(src.cols * fx), saturate_cast<int>(src.rows * fy));
    }
    else
    {
        fx = (double)dsize.width / src.cols;
        fy = (double)dsize.height / src.rows;
    }

    dst.create(dsize, src.type());

299 300 301 302 303 304 305 306 307
    if (dsize == src.size())
    {
        if (s)
            s.enqueueCopy(src, dst);
        else
            src.copyTo(dst);
        return;
    }

308 309
    cudaStream_t stream = StreamAccessor::getStream(s);

310
    if ((src.type() == CV_8UC1 || src.type() == CV_8UC4) && (interpolation == INTER_NEAREST || interpolation == INTER_LINEAR))
311
    {
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
        static const int npp_inter[] = {NPPI_INTER_NN, NPPI_INTER_LINEAR, NPPI_INTER_CUBIC, 0, NPPI_INTER_LANCZOS};

        NppiSize srcsz;
        srcsz.width  = src.cols;
        srcsz.height = src.rows;
        NppiRect srcrect;
        srcrect.x = srcrect.y = 0;
        srcrect.width  = src.cols;
        srcrect.height = src.rows;
        NppiSize dstsz;
        dstsz.width  = dst.cols;
        dstsz.height = dst.rows;

        NppStreamHandler h(stream);

        if (src.type() == CV_8UC1)
        {
            nppSafeCall( nppiResize_8u_C1R(src.ptr<Npp8u>(), srcsz, static_cast<int>(src.step), srcrect,
                dst.ptr<Npp8u>(), static_cast<int>(dst.step), dstsz, fx, fy, npp_inter[interpolation]) );
        }
        else
        {
            nppSafeCall( nppiResize_8u_C4R(src.ptr<Npp8u>(), srcsz, static_cast<int>(src.step), srcrect,
                dst.ptr<Npp8u>(), static_cast<int>(dst.step), dstsz, fx, fy, npp_inter[interpolation]) );
        }

        if (stream == 0)
            cudaSafeCall( cudaDeviceSynchronize() );
340 341 342
    }
    else
    {
343 344
        using namespace cv::gpu::imgproc;

345
        typedef void (*caller_t)(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
346 347 348 349 350 351 352 353 354 355
        static const caller_t callers[6][4] = 
        {
            {resize_gpu<uchar>, 0/*resize_gpu<uchar2>*/, resize_gpu<uchar3>, resize_gpu<uchar4>},
            {0/*resize_gpu<schar>*/, 0/*resize_gpu<char2>*/, 0/*resize_gpu<char3>*/, 0/*resize_gpu<char4>*/},
            {resize_gpu<ushort>, 0/*resize_gpu<ushort2>*/, resize_gpu<ushort3>, resize_gpu<ushort4>},
            {resize_gpu<short>, 0/*resize_gpu<short2>*/, resize_gpu<short3>, resize_gpu<short4>},
            {0/*resize_gpu<int>*/, 0/*resize_gpu<int2>*/, 0/*resize_gpu<int3>*/, 0/*resize_gpu<int4>*/},
            {resize_gpu<float>, 0/*resize_gpu<float2>*/, resize_gpu<float3>, resize_gpu<float4>}
        };

356
        callers[src.depth()][src.channels() - 1](src, static_cast<float>(fx), static_cast<float>(fy), dst, interpolation, stream);
357 358 359 360 361 362
    }
}

////////////////////////////////////////////////////////////////////////
// copyMakeBorder

363
namespace cv { namespace gpu {  namespace imgproc
364
{
365
    template <typename T, int cn> void copyMakeBorder_gpu(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const T* borderValue, cudaStream_t stream);
366
}}}
367

368 369
namespace
{
370
    template <typename T, int cn> void copyMakeBorder_caller(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderType, const Scalar& value, cudaStream_t stream)
371 372
    {
        Scalar_<T> val(saturate_cast<T>(value[0]), saturate_cast<T>(value[1]), saturate_cast<T>(value[2]), saturate_cast<T>(value[3]));
373

374 375 376
        imgproc::copyMakeBorder_gpu<T, cn>(src, dst, top, left, borderType, val.val, stream);
    }
}
377

378 379 380 381
void cv::gpu::copyMakeBorder(const GpuMat& src, GpuMat& dst, int top, int bottom, int left, int right, int borderType, const Scalar& value, Stream& s)
{
    CV_Assert(src.depth() <= CV_32F && src.channels() <= 4);
    CV_Assert(borderType == BORDER_REFLECT101 || borderType == BORDER_REPLICATE || borderType == BORDER_CONSTANT || borderType == BORDER_REFLECT || borderType == BORDER_WRAP);
382

383 384 385
    dst.create(src.rows + top + bottom, src.cols + left + right, src.type());

    cudaStream_t stream = StreamAccessor::getStream(s);
386

387
    if (borderType == BORDER_CONSTANT && (src.type() == CV_8UC1 || src.type() == CV_8UC4 || src.type() == CV_32SC1 || src.type() == CV_32FC1))
388
    {
389 390 391 392 393 394 395 396 397 398 399
        NppiSize srcsz;
        srcsz.width  = src.cols;
        srcsz.height = src.rows;

        NppiSize dstsz;
        dstsz.width  = dst.cols;
        dstsz.height = dst.rows;

        NppStreamHandler h(stream);

        switch (src.type())
V
Vladislav Vinogradov 已提交
400
        {
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
        case CV_8UC1:
            {
                Npp8u nVal = saturate_cast<Npp8u>(value[0]);
                nppSafeCall( nppiCopyConstBorder_8u_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step), srcsz,
                    dst.ptr<Npp8u>(), static_cast<int>(dst.step), dstsz, top, left, nVal) );
                break;
            }
        case CV_8UC4:
            {
                Npp8u nVal[] = {saturate_cast<Npp8u>(value[0]), saturate_cast<Npp8u>(value[1]), saturate_cast<Npp8u>(value[2]), saturate_cast<Npp8u>(value[3])};
                nppSafeCall( nppiCopyConstBorder_8u_C4R(src.ptr<Npp8u>(), static_cast<int>(src.step), srcsz,
                    dst.ptr<Npp8u>(), static_cast<int>(dst.step), dstsz, top, left, nVal) );
                break;
            }
        case CV_32SC1:
            {
                Npp32s nVal = saturate_cast<Npp32s>(value[0]);
                nppSafeCall( nppiCopyConstBorder_32s_C1R(src.ptr<Npp32s>(), static_cast<int>(src.step), srcsz,
                    dst.ptr<Npp32s>(), static_cast<int>(dst.step), dstsz, top, left, nVal) );
                break;
            }
        case CV_32FC1:
            {
                Npp32f val = saturate_cast<Npp32f>(value[0]);
                Npp32s nVal = *(reinterpret_cast<Npp32s*>(&val));
                nppSafeCall( nppiCopyConstBorder_32s_C1R(src.ptr<Npp32s>(), static_cast<int>(src.step), srcsz,
                    dst.ptr<Npp32s>(), static_cast<int>(dst.step), dstsz, top, left, nVal) );
                break;
            }
V
Vladislav Vinogradov 已提交
430
        }
431 432 433

        if (stream == 0)
            cudaSafeCall( cudaDeviceSynchronize() );
434
    }
435 436
    else
    {
437
        typedef void (*caller_t)(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderType, const Scalar& value, cudaStream_t stream);
438 439 440 441 442 443 444 445 446 447 448 449
        static const caller_t callers[6][4] = 
        {
            {   copyMakeBorder_caller<uchar, 1>  , 0/*copyMakeBorder_caller<uchar, 2>*/ ,    copyMakeBorder_caller<uchar, 3>  ,    copyMakeBorder_caller<uchar, 4>},
            {0/*copyMakeBorder_caller<schar, 1>*/, 0/*copyMakeBorder_caller<schar, 2>*/ , 0/*copyMakeBorder_caller<schar, 3>*/, 0/*copyMakeBorder_caller<schar, 4>*/},
            {   copyMakeBorder_caller<ushort, 1> , 0/*copyMakeBorder_caller<ushort, 2>*/,    copyMakeBorder_caller<ushort, 3> ,    copyMakeBorder_caller<ushort, 4>},
            {   copyMakeBorder_caller<short, 1>  , 0/*copyMakeBorder_caller<short, 2>*/ ,    copyMakeBorder_caller<short, 3>  ,    copyMakeBorder_caller<short, 4>},
            {0/*copyMakeBorder_caller<int, 1>*/  , 0/*copyMakeBorder_caller<int, 2>*/   , 0/*copyMakeBorder_caller<int, 3>*/  , 0/*copyMakeBorder_caller<int, 4>*/},
            {   copyMakeBorder_caller<float, 1>  , 0/*copyMakeBorder_caller<float, 2>*/ ,    copyMakeBorder_caller<float, 3>  ,    copyMakeBorder_caller<float ,4>}
        };

        caller_t func = callers[src.depth()][src.channels() - 1];
        CV_Assert(func != 0);
450

451 452 453 454 455
        int gpuBorderType;
        CV_Assert(tryConvertToGpuBorderType(borderType, gpuBorderType));

        func(src, dst, top, left, gpuBorderType, value, stream);
    }
456 457 458 459 460 461
}

////////////////////////////////////////////////////////////////////////
// warp

namespace
462 463 464
{
    typedef NppStatus (*npp_warp_8u_t)(const Npp8u* pSrc, NppiSize srcSize, int srcStep, NppiRect srcRoi, Npp8u* pDst,
                                       int dstStep, NppiRect dstRoi, const double coeffs[][3],
465
                                       int interpolation);
466 467
    typedef NppStatus (*npp_warp_16u_t)(const Npp16u* pSrc, NppiSize srcSize, int srcStep, NppiRect srcRoi, Npp16u* pDst,
                                       int dstStep, NppiRect dstRoi, const double coeffs[][3],
468
                                       int interpolation);
469 470
    typedef NppStatus (*npp_warp_32s_t)(const Npp32s* pSrc, NppiSize srcSize, int srcStep, NppiRect srcRoi, Npp32s* pDst,
                                       int dstStep, NppiRect dstRoi, const double coeffs[][3],
471
                                       int interpolation);
472 473
    typedef NppStatus (*npp_warp_32f_t)(const Npp32f* pSrc, NppiSize srcSize, int srcStep, NppiRect srcRoi, Npp32f* pDst,
                                       int dstStep, NppiRect dstRoi, const double coeffs[][3],
474 475
                                       int interpolation);

476 477
    void nppWarpCaller(const GpuMat& src, GpuMat& dst, double coeffs[][3], const Size& dsize, int flags,
                       npp_warp_8u_t npp_warp_8u[][2], npp_warp_16u_t npp_warp_16u[][2],
478
                       npp_warp_32s_t npp_warp_32s[][2], npp_warp_32f_t npp_warp_32f[][2], cudaStream_t stream)
479 480
    {
        static const int npp_inter[] = {NPPI_INTER_NN, NPPI_INTER_LINEAR, NPPI_INTER_CUBIC};
481

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
        int interpolation = flags & INTER_MAX;

        CV_Assert((src.depth() == CV_8U || src.depth() == CV_16U || src.depth() == CV_32S || src.depth() == CV_32F) && src.channels() != 2);
        CV_Assert(interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC);

        dst.create(dsize, src.type());

        NppiSize srcsz;
        srcsz.height = src.rows;
        srcsz.width = src.cols;
        NppiRect srcroi;
        srcroi.x = srcroi.y = 0;
        srcroi.height = src.rows;
        srcroi.width = src.cols;
        NppiRect dstroi;
        dstroi.x = dstroi.y = 0;
        dstroi.height = dst.rows;
        dstroi.width = dst.cols;

        int warpInd = (flags & WARP_INVERSE_MAP) >> 4;

503 504
        NppStreamHandler h(stream);

505 506 507
        switch (src.depth())
        {
        case CV_8U:
508 509
            nppSafeCall( npp_warp_8u[src.channels()][warpInd](src.ptr<Npp8u>(), srcsz, static_cast<int>(src.step), srcroi,
                dst.ptr<Npp8u>(), static_cast<int>(dst.step), dstroi, coeffs, npp_inter[interpolation]) );
510 511
            break;
        case CV_16U:
512 513
            nppSafeCall( npp_warp_16u[src.channels()][warpInd](src.ptr<Npp16u>(), srcsz, static_cast<int>(src.step), srcroi,
                dst.ptr<Npp16u>(), static_cast<int>(dst.step), dstroi, coeffs, npp_inter[interpolation]) );
514 515
            break;
        case CV_32S:
516 517
            nppSafeCall( npp_warp_32s[src.channels()][warpInd](src.ptr<Npp32s>(), srcsz, static_cast<int>(src.step), srcroi,
                dst.ptr<Npp32s>(), static_cast<int>(dst.step), dstroi, coeffs, npp_inter[interpolation]) );
518 519
            break;
        case CV_32F:
520 521
            nppSafeCall( npp_warp_32f[src.channels()][warpInd](src.ptr<Npp32f>(), srcsz, static_cast<int>(src.step), srcroi,
                dst.ptr<Npp32f>(), static_cast<int>(dst.step), dstroi, coeffs, npp_inter[interpolation]) );
522 523 524 525
            break;
        default:
            CV_Assert(!"Unsupported source type");
        }
526

527 528
        if (stream == 0)
            cudaSafeCall( cudaDeviceSynchronize() );
529 530 531
    }
}

532
void cv::gpu::warpAffine(const GpuMat& src, GpuMat& dst, const Mat& M, Size dsize, int flags, Stream& s)
533
{
534
    static npp_warp_8u_t npp_warpAffine_8u[][2] =
535
        {
536 537 538 539
            {0, 0},
            {nppiWarpAffine_8u_C1R, nppiWarpAffineBack_8u_C1R},
            {0, 0},
            {nppiWarpAffine_8u_C3R, nppiWarpAffineBack_8u_C3R},
540 541
            {nppiWarpAffine_8u_C4R, nppiWarpAffineBack_8u_C4R}
        };
542
    static npp_warp_16u_t npp_warpAffine_16u[][2] =
543
        {
544 545 546 547
            {0, 0},
            {nppiWarpAffine_16u_C1R, nppiWarpAffineBack_16u_C1R},
            {0, 0},
            {nppiWarpAffine_16u_C3R, nppiWarpAffineBack_16u_C3R},
548 549
            {nppiWarpAffine_16u_C4R, nppiWarpAffineBack_16u_C4R}
        };
550
    static npp_warp_32s_t npp_warpAffine_32s[][2] =
551
        {
552 553 554 555
            {0, 0},
            {nppiWarpAffine_32s_C1R, nppiWarpAffineBack_32s_C1R},
            {0, 0},
            {nppiWarpAffine_32s_C3R, nppiWarpAffineBack_32s_C3R},
556 557
            {nppiWarpAffine_32s_C4R, nppiWarpAffineBack_32s_C4R}
        };
558
    static npp_warp_32f_t npp_warpAffine_32f[][2] =
559
        {
560 561 562 563
            {0, 0},
            {nppiWarpAffine_32f_C1R, nppiWarpAffineBack_32f_C1R},
            {0, 0},
            {nppiWarpAffine_32f_C3R, nppiWarpAffineBack_32f_C3R},
564 565 566 567 568 569 570 571 572
            {nppiWarpAffine_32f_C4R, nppiWarpAffineBack_32f_C4R}
        };

    CV_Assert(M.rows == 2 && M.cols == 3);

    double coeffs[2][3];
    Mat coeffsMat(2, 3, CV_64F, (void*)coeffs);
    M.convertTo(coeffsMat, coeffsMat.type());

573
    nppWarpCaller(src, dst, coeffs, dsize, flags, npp_warpAffine_8u, npp_warpAffine_16u, npp_warpAffine_32s, npp_warpAffine_32f, StreamAccessor::getStream(s));
574 575
}

576
void cv::gpu::warpPerspective(const GpuMat& src, GpuMat& dst, const Mat& M, Size dsize, int flags, Stream& s)
577
{
578
    static npp_warp_8u_t npp_warpPerspective_8u[][2] =
579
        {
580 581 582 583
            {0, 0},
            {nppiWarpPerspective_8u_C1R, nppiWarpPerspectiveBack_8u_C1R},
            {0, 0},
            {nppiWarpPerspective_8u_C3R, nppiWarpPerspectiveBack_8u_C3R},
584 585
            {nppiWarpPerspective_8u_C4R, nppiWarpPerspectiveBack_8u_C4R}
        };
586
    static npp_warp_16u_t npp_warpPerspective_16u[][2] =
587
        {
588 589 590 591
            {0, 0},
            {nppiWarpPerspective_16u_C1R, nppiWarpPerspectiveBack_16u_C1R},
            {0, 0},
            {nppiWarpPerspective_16u_C3R, nppiWarpPerspectiveBack_16u_C3R},
592 593
            {nppiWarpPerspective_16u_C4R, nppiWarpPerspectiveBack_16u_C4R}
        };
594
    static npp_warp_32s_t npp_warpPerspective_32s[][2] =
595
        {
596 597 598 599
            {0, 0},
            {nppiWarpPerspective_32s_C1R, nppiWarpPerspectiveBack_32s_C1R},
            {0, 0},
            {nppiWarpPerspective_32s_C3R, nppiWarpPerspectiveBack_32s_C3R},
600 601
            {nppiWarpPerspective_32s_C4R, nppiWarpPerspectiveBack_32s_C4R}
        };
602
    static npp_warp_32f_t npp_warpPerspective_32f[][2] =
603
        {
604 605 606 607
            {0, 0},
            {nppiWarpPerspective_32f_C1R, nppiWarpPerspectiveBack_32f_C1R},
            {0, 0},
            {nppiWarpPerspective_32f_C3R, nppiWarpPerspectiveBack_32f_C3R},
608 609 610 611 612 613 614 615 616
            {nppiWarpPerspective_32f_C4R, nppiWarpPerspectiveBack_32f_C4R}
        };

    CV_Assert(M.rows == 3 && M.cols == 3);

    double coeffs[3][3];
    Mat coeffsMat(3, 3, CV_64F, (void*)coeffs);
    M.convertTo(coeffsMat, coeffsMat.type());

617
    nppWarpCaller(src, dst, coeffs, dsize, flags, npp_warpPerspective_8u, npp_warpPerspective_16u, npp_warpPerspective_32s, npp_warpPerspective_32f, StreamAccessor::getStream(s));
618 619
}

620 621 622 623 624 625
//////////////////////////////////////////////////////////////////////////////
// buildWarpPlaneMaps

namespace cv { namespace gpu { namespace imgproc
{
    void buildWarpPlaneMaps(int tl_u, int tl_v, DevMem2Df map_x, DevMem2Df map_y,
626
                            const float k_rinv[9], const float r_kinv[9], const float t[3], float scale,
627
                            cudaStream_t stream);
628 629
}}}

630 631
void cv::gpu::buildWarpPlaneMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat& R, const Mat &T, 
                                 float scale, GpuMat& map_x, GpuMat& map_y, Stream& stream)
632
{
633 634
    CV_Assert(K.size() == Size(3,3) && K.type() == CV_32F);
    CV_Assert(R.size() == Size(3,3) && R.type() == CV_32F);
635
    CV_Assert((T.size() == Size(3,1) || T.size() == Size(1,3)) && T.type() == CV_32F && T.isContinuous());
636 637 638 639 640

    Mat K_Rinv = K * R.t();
    Mat R_Kinv = R * K.inv();
    CV_Assert(K_Rinv.isContinuous());
    CV_Assert(R_Kinv.isContinuous());
641 642 643

    map_x.create(dst_roi.size(), CV_32F);
    map_y.create(dst_roi.size(), CV_32F);
644 645
    imgproc::buildWarpPlaneMaps(dst_roi.tl().x, dst_roi.tl().y, map_x, map_y, K_Rinv.ptr<float>(), R_Kinv.ptr<float>(), 
                                T.ptr<float>(), scale, StreamAccessor::getStream(stream));
646 647 648 649 650 651 652 653
}

//////////////////////////////////////////////////////////////////////////////
// buildWarpCylyndricalMaps

namespace cv { namespace gpu { namespace imgproc
{
    void buildWarpCylindricalMaps(int tl_u, int tl_v, DevMem2Df map_x, DevMem2Df map_y,
654 655
                                  const float k_rinv[9], const float r_kinv[9], float scale,
                                  cudaStream_t stream);
656 657
}}}

658
void cv::gpu::buildWarpCylindricalMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat& R, float scale,
659 660
                                       GpuMat& map_x, GpuMat& map_y, Stream& stream)
{
661 662 663 664 665 666 667
    CV_Assert(K.size() == Size(3,3) && K.type() == CV_32F);
    CV_Assert(R.size() == Size(3,3) && R.type() == CV_32F);

    Mat K_Rinv = K * R.t();
    Mat R_Kinv = R * K.inv();
    CV_Assert(K_Rinv.isContinuous());
    CV_Assert(R_Kinv.isContinuous());
668 669 670

    map_x.create(dst_roi.size(), CV_32F);
    map_y.create(dst_roi.size(), CV_32F);
671 672
    imgproc::buildWarpCylindricalMaps(dst_roi.tl().x, dst_roi.tl().y, map_x, map_y, K_Rinv.ptr<float>(), R_Kinv.ptr<float>(),
                                      scale, StreamAccessor::getStream(stream));
673 674
}

675 676 677 678 679 680 681

//////////////////////////////////////////////////////////////////////////////
// buildWarpSphericalMaps

namespace cv { namespace gpu { namespace imgproc
{
    void buildWarpSphericalMaps(int tl_u, int tl_v, DevMem2Df map_x, DevMem2Df map_y,
682 683
                                const float k_rinv[9], const float r_kinv[9], float scale,
                                cudaStream_t stream);
684 685
}}}

686
void cv::gpu::buildWarpSphericalMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat& R, float scale,
687 688
                                     GpuMat& map_x, GpuMat& map_y, Stream& stream)
{
689 690 691 692 693 694 695
    CV_Assert(K.size() == Size(3,3) && K.type() == CV_32F);
    CV_Assert(R.size() == Size(3,3) && R.type() == CV_32F);

    Mat K_Rinv = K * R.t();
    Mat R_Kinv = R * K.inv();
    CV_Assert(K_Rinv.isContinuous());
    CV_Assert(R_Kinv.isContinuous());
696 697 698

    map_x.create(dst_roi.size(), CV_32F);
    map_y.create(dst_roi.size(), CV_32F);
699 700
    imgproc::buildWarpSphericalMaps(dst_roi.tl().x, dst_roi.tl().y, map_x, map_y, K_Rinv.ptr<float>(), R_Kinv.ptr<float>(),
                                    scale, StreamAccessor::getStream(stream));
701 702
}

703 704 705
////////////////////////////////////////////////////////////////////////
// rotate

706
void cv::gpu::rotate(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift, double yShift, int interpolation, Stream& s)
707 708
{
    static const int npp_inter[] = {NPPI_INTER_NN, NPPI_INTER_LINEAR, NPPI_INTER_CUBIC};
709

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
    CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8UC4);
    CV_Assert(interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC);

    dst.create(dsize, src.type());

    NppiSize srcsz;
    srcsz.height = src.rows;
    srcsz.width = src.cols;
    NppiRect srcroi;
    srcroi.x = srcroi.y = 0;
    srcroi.height = src.rows;
    srcroi.width = src.cols;
    NppiRect dstroi;
    dstroi.x = dstroi.y = 0;
    dstroi.height = dst.rows;
    dstroi.width = dst.cols;

727 728 729 730
    cudaStream_t stream = StreamAccessor::getStream(s);

    NppStreamHandler h(stream);

731 732
    if (src.type() == CV_8UC1)
    {
733 734
        nppSafeCall( nppiRotate_8u_C1R(src.ptr<Npp8u>(), srcsz, static_cast<int>(src.step), srcroi,
            dst.ptr<Npp8u>(), static_cast<int>(dst.step), dstroi, angle, xShift, yShift, npp_inter[interpolation]) );
735 736 737
    }
    else
    {
738 739
        nppSafeCall( nppiRotate_8u_C4R(src.ptr<Npp8u>(), srcsz, static_cast<int>(src.step), srcroi,
            dst.ptr<Npp8u>(), static_cast<int>(dst.step), dstroi, angle, xShift, yShift, npp_inter[interpolation]) );
740
    }
741

742 743
    if (stream == 0)
        cudaSafeCall( cudaDeviceSynchronize() );
744 745 746 747 748
}

////////////////////////////////////////////////////////////////////////
// integral

749
void cv::gpu::integral(const GpuMat& src, GpuMat& sum, Stream& s)
750 751
{
    GpuMat buffer;
752
    integralBuffered(src, sum, buffer, s);
753 754
}

755
void cv::gpu::integralBuffered(const GpuMat& src, GpuMat& sum, GpuMat& buffer, Stream& s)
756 757 758 759 760
{
    CV_Assert(src.type() == CV_8UC1);

    sum.create(src.rows + 1, src.cols + 1, CV_32S);
    
761
    NcvSize32u roiSize;
762 763 764
    roiSize.width = src.cols;
    roiSize.height = src.rows;

765 766 767 768 769
	cudaDeviceProp prop;
	cudaSafeCall( cudaGetDeviceProperties(&prop, cv::gpu::getDevice()) );

    Ncv32u bufSize;
    nppSafeCall( nppiStIntegralGetSize_8u32u(roiSize, &bufSize, prop) );
770
    ensureSizeIsEnough(1, bufSize, CV_8UC1, buffer);
771

772 773 774 775
    cudaStream_t stream = StreamAccessor::getStream(s);

    NppStStreamHandler h(stream);

776 777
    nppSafeCall( nppiStIntegral_8u32u_C1R(const_cast<Ncv8u*>(src.ptr<Ncv8u>()), static_cast<int>(src.step), 
        sum.ptr<Ncv32u>(), static_cast<int>(sum.step), roiSize, buffer.ptr<Ncv8u>(), bufSize, prop) );
778

779 780
    if (stream == 0)
        cudaSafeCall( cudaDeviceSynchronize() );
781 782
}

783
void cv::gpu::integral(const GpuMat& src, GpuMat& sum, GpuMat& sqsum, Stream& s)
784 785
{
    CV_Assert(src.type() == CV_8UC1);
786

787
    int width = src.cols + 1, height = src.rows + 1;
788

789 790
    sum.create(height, width, CV_32S);
    sqsum.create(height, width, CV_32F);
791 792 793 794 795

    NppiSize sz;
    sz.width = src.cols;
    sz.height = src.rows;

796 797 798 799
    cudaStream_t stream = StreamAccessor::getStream(s);

    NppStreamHandler h(stream);

800 801
    nppSafeCall( nppiSqrIntegral_8u32s32f_C1R(const_cast<Npp8u*>(src.ptr<Npp8u>()), static_cast<int>(src.step), 
        sum.ptr<Npp32s>(), static_cast<int>(sum.step), sqsum.ptr<Npp32f>(), static_cast<int>(sqsum.step), sz, 0, 0.0f, height) );
802

803 804
    if (stream == 0)
        cudaSafeCall( cudaDeviceSynchronize() );
805 806
}

807 808 809
//////////////////////////////////////////////////////////////////////////////
// sqrIntegral

810
void cv::gpu::sqrIntegral(const GpuMat& src, GpuMat& sqsum, Stream& s)
811 812 813
{
    CV_Assert(src.type() == CV_8U);

814
    NcvSize32u roiSize;
815 816 817
    roiSize.width = src.cols;
    roiSize.height = src.rows;

818 819 820 821 822
	cudaDeviceProp prop;
	cudaSafeCall( cudaGetDeviceProperties(&prop, cv::gpu::getDevice()) );

    Ncv32u bufSize;
    nppSafeCall(nppiStSqrIntegralGetSize_8u64u(roiSize, &bufSize, prop));	
823 824
    GpuMat buf(1, bufSize, CV_8U);

825 826 827 828
    cudaStream_t stream = StreamAccessor::getStream(s);

    NppStStreamHandler h(stream);

829
    sqsum.create(src.rows + 1, src.cols + 1, CV_64F);
830 831
    nppSafeCall(nppiStSqrIntegral_8u64u_C1R(const_cast<Ncv8u*>(src.ptr<Ncv8u>(0)), static_cast<int>(src.step), 
            sqsum.ptr<Ncv64u>(0), static_cast<int>(sqsum.step), roiSize, buf.ptr<Ncv8u>(0), bufSize, prop));
832

833 834
    if (stream == 0)
        cudaSafeCall( cudaDeviceSynchronize() );
835 836
}

837 838 839 840 841
//////////////////////////////////////////////////////////////////////////////
// columnSum

namespace cv { namespace gpu { namespace imgproc
{
842
    void columnSum_32F(const DevMem2Db src, const DevMem2Db dst);
843 844 845 846 847 848 849 850 851 852
}}}

void cv::gpu::columnSum(const GpuMat& src, GpuMat& dst)
{
    CV_Assert(src.type() == CV_32F);

    dst.create(src.size(), CV_32F);
    imgproc::columnSum_32F(src, dst);
}

853
void cv::gpu::rectStdDev(const GpuMat& src, const GpuMat& sqr, GpuMat& dst, const Rect& rect, Stream& s)
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
{
    CV_Assert(src.type() == CV_32SC1 && sqr.type() == CV_32FC1);

    dst.create(src.size(), CV_32FC1);

    NppiSize sz;
    sz.width = src.cols;
    sz.height = src.rows;

    NppiRect nppRect;
    nppRect.height = rect.height;
    nppRect.width = rect.width;
    nppRect.x = rect.x;
    nppRect.y = rect.y;

869 870 871 872
    cudaStream_t stream = StreamAccessor::getStream(s);

    NppStreamHandler h(stream);

873 874
    nppSafeCall( nppiRectStdDev_32s32f_C1R(src.ptr<Npp32s>(), static_cast<int>(src.step), sqr.ptr<Npp32f>(), static_cast<int>(sqr.step),
                dst.ptr<Npp32f>(), static_cast<int>(dst.step), sz, nppRect) );
875

876 877
    if (stream == 0)
        cudaSafeCall( cudaDeviceSynchronize() );
878 879
}

880

881 882 883 884 885 886 887 888 889
////////////////////////////////////////////////////////////////////////
// Histogram

namespace
{
    template<int n> struct NPPTypeTraits;
    template<> struct NPPTypeTraits<CV_8U>  { typedef Npp8u npp_type; };
    template<> struct NPPTypeTraits<CV_16U> { typedef Npp16u npp_type; };
    template<> struct NPPTypeTraits<CV_16S> { typedef Npp16s npp_type; };
890
    template<> struct NPPTypeTraits<CV_32F> { typedef Npp32f npp_type; };
891

892 893 894 895 896 897 898
    typedef NppStatus (*get_buf_size_c1_t)(NppiSize oSizeROI, int nLevels, int* hpBufferSize);
    typedef NppStatus (*get_buf_size_c4_t)(NppiSize oSizeROI, int nLevels[], int* hpBufferSize);

    template<int SDEPTH> struct NppHistogramEvenFuncC1
    {
        typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;

899
	typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s * pHist,
900 901 902 903 904 905
		    int nLevels, Npp32s nLowerLevel, Npp32s nUpperLevel, Npp8u * pBuffer);
    };
    template<int SDEPTH> struct NppHistogramEvenFuncC4
    {
        typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;

906
        typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI,
907 908
            Npp32s * pHist[4], int nLevels[4], Npp32s nLowerLevel[4], Npp32s nUpperLevel[4], Npp8u * pBuffer);
    };
909 910

    template<int SDEPTH, typename NppHistogramEvenFuncC1<SDEPTH>::func_ptr func, get_buf_size_c1_t get_buf_size>
911
    struct NppHistogramEvenC1
912
    {
913 914
        typedef typename NppHistogramEvenFuncC1<SDEPTH>::src_t src_t;

915
        static void hist(const GpuMat& src, GpuMat& hist, GpuMat& buffer, int histSize, int lowerLevel, int upperLevel, cudaStream_t stream)
916 917 918 919 920 921 922 923 924 925
        {
            int levels = histSize + 1;
            hist.create(1, histSize, CV_32S);

            NppiSize sz;
            sz.width = src.cols;
            sz.height = src.rows;

            int buf_size;
            get_buf_size(sz, levels, &buf_size);
926 927

            ensureSizeIsEnough(1, buf_size, CV_8U, buffer);
928 929 930

            NppStreamHandler h(stream);

931
            nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), sz, hist.ptr<Npp32s>(), levels,
932
                lowerLevel, upperLevel, buffer.ptr<Npp8u>()) );
933

934 935
            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
936
        }
937 938
    };
    template<int SDEPTH, typename NppHistogramEvenFuncC4<SDEPTH>::func_ptr func, get_buf_size_c4_t get_buf_size>
939
    struct NppHistogramEvenC4
940
    {
941 942
        typedef typename NppHistogramEvenFuncC4<SDEPTH>::src_t src_t;

943
        static void hist(const GpuMat& src, GpuMat hist[4], GpuMat& buffer, int histSize[4], int lowerLevel[4], int upperLevel[4], cudaStream_t stream)
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
        {
            int levels[] = {histSize[0] + 1, histSize[1] + 1, histSize[2] + 1, histSize[3] + 1};
            hist[0].create(1, histSize[0], CV_32S);
            hist[1].create(1, histSize[1], CV_32S);
            hist[2].create(1, histSize[2], CV_32S);
            hist[3].create(1, histSize[3], CV_32S);

            NppiSize sz;
            sz.width = src.cols;
            sz.height = src.rows;

            Npp32s* pHist[] = {hist[0].ptr<Npp32s>(), hist[1].ptr<Npp32s>(), hist[2].ptr<Npp32s>(), hist[3].ptr<Npp32s>()};

            int buf_size;
            get_buf_size(sz, levels, &buf_size);
959 960

            ensureSizeIsEnough(1, buf_size, CV_8U, buffer);
961 962 963

            NppStreamHandler h(stream);

964
            nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), sz, pHist, levels, lowerLevel, upperLevel, buffer.ptr<Npp8u>()) );
965

966 967
            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
968 969 970 971 972 973
        }
    };

    template<int SDEPTH> struct NppHistogramRangeFuncC1
    {
        typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
974 975
        typedef Npp32s level_t;
        enum {LEVEL_TYPE_CODE=CV_32SC1};
976

977
        typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist,
978 979
            const Npp32s* pLevels, int nLevels, Npp8u* pBuffer);
    };
980 981 982 983 984 985
    template<> struct NppHistogramRangeFuncC1<CV_32F>
    {
        typedef Npp32f src_t;
        typedef Npp32f level_t;
        enum {LEVEL_TYPE_CODE=CV_32FC1};

986
        typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist,
987 988
            const Npp32f* pLevels, int nLevels, Npp8u* pBuffer);
    };
989 990 991
    template<int SDEPTH> struct NppHistogramRangeFuncC4
    {
        typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
992 993
        typedef Npp32s level_t;
        enum {LEVEL_TYPE_CODE=CV_32SC1};
994

995
        typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist[4],
996 997
            const Npp32s* pLevels[4], int nLevels[4], Npp8u* pBuffer);
    };
998 999 1000 1001 1002 1003
    template<> struct NppHistogramRangeFuncC4<CV_32F>
    {
        typedef Npp32f src_t;
        typedef Npp32f level_t;
        enum {LEVEL_TYPE_CODE=CV_32FC1};

1004
        typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist[4],
1005 1006
            const Npp32f* pLevels[4], int nLevels[4], Npp8u* pBuffer);
    };
1007 1008

    template<int SDEPTH, typename NppHistogramRangeFuncC1<SDEPTH>::func_ptr func, get_buf_size_c1_t get_buf_size>
1009
    struct NppHistogramRangeC1
1010
    {
1011
        typedef typename NppHistogramRangeFuncC1<SDEPTH>::src_t src_t;
1012 1013
        typedef typename NppHistogramRangeFuncC1<SDEPTH>::level_t level_t;
        enum {LEVEL_TYPE_CODE=NppHistogramRangeFuncC1<SDEPTH>::LEVEL_TYPE_CODE};
1014

1015
        static void hist(const GpuMat& src, GpuMat& hist, const GpuMat& levels, GpuMat& buffer, cudaStream_t stream)
1016
        {
1017
            CV_Assert(levels.type() == LEVEL_TYPE_CODE && levels.rows == 1);
1018 1019 1020 1021 1022 1023 1024 1025 1026

            hist.create(1, levels.cols - 1, CV_32S);

            NppiSize sz;
            sz.width = src.cols;
            sz.height = src.rows;

            int buf_size;
            get_buf_size(sz, levels.cols, &buf_size);
1027 1028
            
            ensureSizeIsEnough(1, buf_size, CV_8U, buffer);
1029 1030 1031

            NppStreamHandler h(stream);

1032
            nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), sz, hist.ptr<Npp32s>(), levels.ptr<level_t>(), levels.cols, buffer.ptr<Npp8u>()) );
1033

1034 1035
            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
1036
        }
1037 1038
    };
    template<int SDEPTH, typename NppHistogramRangeFuncC4<SDEPTH>::func_ptr func, get_buf_size_c4_t get_buf_size>
1039
    struct NppHistogramRangeC4
1040
    {
1041
        typedef typename NppHistogramRangeFuncC4<SDEPTH>::src_t src_t;
1042 1043
        typedef typename NppHistogramRangeFuncC1<SDEPTH>::level_t level_t;
        enum {LEVEL_TYPE_CODE=NppHistogramRangeFuncC1<SDEPTH>::LEVEL_TYPE_CODE};
1044

1045
        static void hist(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], GpuMat& buffer, cudaStream_t stream)
1046
        {
1047 1048 1049 1050
            CV_Assert(levels[0].type() == LEVEL_TYPE_CODE && levels[0].rows == 1);
            CV_Assert(levels[1].type() == LEVEL_TYPE_CODE && levels[1].rows == 1);
            CV_Assert(levels[2].type() == LEVEL_TYPE_CODE && levels[2].rows == 1);
            CV_Assert(levels[3].type() == LEVEL_TYPE_CODE && levels[3].rows == 1);
1051 1052 1053 1054 1055 1056 1057 1058

            hist[0].create(1, levels[0].cols - 1, CV_32S);
            hist[1].create(1, levels[1].cols - 1, CV_32S);
            hist[2].create(1, levels[2].cols - 1, CV_32S);
            hist[3].create(1, levels[3].cols - 1, CV_32S);

            Npp32s* pHist[] = {hist[0].ptr<Npp32s>(), hist[1].ptr<Npp32s>(), hist[2].ptr<Npp32s>(), hist[3].ptr<Npp32s>()};
            int nLevels[] = {levels[0].cols, levels[1].cols, levels[2].cols, levels[3].cols};
1059
            const level_t* pLevels[] = {levels[0].ptr<level_t>(), levels[1].ptr<level_t>(), levels[2].ptr<level_t>(), levels[3].ptr<level_t>()};
1060 1061 1062 1063 1064 1065 1066

            NppiSize sz;
            sz.width = src.cols;
            sz.height = src.rows;

            int buf_size;
            get_buf_size(sz, nLevels, &buf_size);
1067 1068

            ensureSizeIsEnough(1, buf_size, CV_8U, buffer);
1069 1070 1071

            NppStreamHandler h(stream);

1072
            nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), sz, pHist, pLevels, nLevels, buffer.ptr<Npp8u>()) );
1073

1074 1075
            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
1076
        }
1077
    };
1078 1079 1080 1081 1082 1083 1084 1085 1086
}

void cv::gpu::evenLevels(GpuMat& levels, int nLevels, int lowerLevel, int upperLevel)
{
    Mat host_levels(1, nLevels, CV_32SC1);
    nppSafeCall( nppiEvenLevelsHost_32s(host_levels.ptr<Npp32s>(), nLevels, lowerLevel, upperLevel) );
    levels.upload(host_levels);
}

1087
void cv::gpu::histEven(const GpuMat& src, GpuMat& hist, int histSize, int lowerLevel, int upperLevel, Stream& stream)
1088 1089 1090 1091 1092 1093
{
    GpuMat buf;
    histEven(src, hist, buf, histSize, lowerLevel, upperLevel, stream);
}

void cv::gpu::histEven(const GpuMat& src, GpuMat& hist, GpuMat& buf, int histSize, int lowerLevel, int upperLevel, Stream& stream)
1094 1095 1096
{
    CV_Assert(src.type() == CV_8UC1 || src.type() == CV_16UC1 || src.type() == CV_16SC1 );

1097
    typedef void (*hist_t)(const GpuMat& src, GpuMat& hist, GpuMat& buf, int levels, int lowerLevel, int upperLevel, cudaStream_t stream);
1098
    static const hist_t hist_callers[] =
1099 1100 1101 1102 1103 1104 1105
    {
        NppHistogramEvenC1<CV_8U , nppiHistogramEven_8u_C1R , nppiHistogramEvenGetBufferSize_8u_C1R >::hist,
        0,
        NppHistogramEvenC1<CV_16U, nppiHistogramEven_16u_C1R, nppiHistogramEvenGetBufferSize_16u_C1R>::hist,
        NppHistogramEvenC1<CV_16S, nppiHistogramEven_16s_C1R, nppiHistogramEvenGetBufferSize_16s_C1R>::hist
    };

1106
    hist_callers[src.depth()](src, hist, buf, histSize, lowerLevel, upperLevel, StreamAccessor::getStream(stream));
1107 1108
}

1109
void cv::gpu::histEven(const GpuMat& src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream)
1110 1111 1112 1113 1114 1115
{
    GpuMat buf;
    histEven(src, hist, buf, histSize, lowerLevel, upperLevel, stream);
}

void cv::gpu::histEven(const GpuMat& src, GpuMat hist[4], GpuMat& buf, int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream)
1116 1117
{
    CV_Assert(src.type() == CV_8UC4 || src.type() == CV_16UC4 || src.type() == CV_16SC4 );
1118

1119
    typedef void (*hist_t)(const GpuMat& src, GpuMat hist[4], GpuMat& buf, int levels[4], int lowerLevel[4], int upperLevel[4], cudaStream_t stream);
1120
    static const hist_t hist_callers[] =
1121 1122 1123 1124 1125 1126 1127
    {
        NppHistogramEvenC4<CV_8U , nppiHistogramEven_8u_C4R , nppiHistogramEvenGetBufferSize_8u_C4R >::hist,
        0,
        NppHistogramEvenC4<CV_16U, nppiHistogramEven_16u_C4R, nppiHistogramEvenGetBufferSize_16u_C4R>::hist,
        NppHistogramEvenC4<CV_16S, nppiHistogramEven_16s_C4R, nppiHistogramEvenGetBufferSize_16s_C4R>::hist
    };

1128
    hist_callers[src.depth()](src, hist, buf, histSize, lowerLevel, upperLevel, StreamAccessor::getStream(stream));
1129 1130
}

1131
void cv::gpu::histRange(const GpuMat& src, GpuMat& hist, const GpuMat& levels, Stream& stream)
1132 1133 1134 1135 1136 1137 1138
{
    GpuMat buf;
    histRange(src, hist, levels, buf, stream);
}


void cv::gpu::histRange(const GpuMat& src, GpuMat& hist, const GpuMat& levels, GpuMat& buf, Stream& stream)
1139
{
1140
    CV_Assert(src.type() == CV_8UC1 || src.type() == CV_16UC1 || src.type() == CV_16SC1 || src.type() == CV_32FC1);
1141

1142
    typedef void (*hist_t)(const GpuMat& src, GpuMat& hist, const GpuMat& levels, GpuMat& buf, cudaStream_t stream);
1143
    static const hist_t hist_callers[] =
1144 1145 1146 1147
    {
        NppHistogramRangeC1<CV_8U , nppiHistogramRange_8u_C1R , nppiHistogramRangeGetBufferSize_8u_C1R >::hist,
        0,
        NppHistogramRangeC1<CV_16U, nppiHistogramRange_16u_C1R, nppiHistogramRangeGetBufferSize_16u_C1R>::hist,
1148 1149 1150
        NppHistogramRangeC1<CV_16S, nppiHistogramRange_16s_C1R, nppiHistogramRangeGetBufferSize_16s_C1R>::hist,
        0,
        NppHistogramRangeC1<CV_32F, nppiHistogramRange_32f_C1R, nppiHistogramRangeGetBufferSize_32f_C1R>::hist
1151 1152
    };

1153
    hist_callers[src.depth()](src, hist, levels, buf, StreamAccessor::getStream(stream));
1154 1155
}

1156
void cv::gpu::histRange(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], Stream& stream)
1157 1158 1159 1160 1161 1162
{
    GpuMat buf;
    histRange(src, hist, levels, buf, stream);
}

void cv::gpu::histRange(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], GpuMat& buf, Stream& stream)
1163
{
1164
    CV_Assert(src.type() == CV_8UC4 || src.type() == CV_16UC4 || src.type() == CV_16SC4 || src.type() == CV_32FC4);
1165

1166
    typedef void (*hist_t)(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], GpuMat& buf, cudaStream_t stream);
1167
    static const hist_t hist_callers[] =
1168 1169 1170 1171
    {
        NppHistogramRangeC4<CV_8U , nppiHistogramRange_8u_C4R , nppiHistogramRangeGetBufferSize_8u_C4R >::hist,
        0,
        NppHistogramRangeC4<CV_16U, nppiHistogramRange_16u_C4R, nppiHistogramRangeGetBufferSize_16u_C4R>::hist,
1172 1173 1174
        NppHistogramRangeC4<CV_16S, nppiHistogramRange_16s_C4R, nppiHistogramRangeGetBufferSize_16s_C4R>::hist,
        0,
        NppHistogramRangeC4<CV_32F, nppiHistogramRange_32f_C4R, nppiHistogramRangeGetBufferSize_32f_C4R>::hist
1175 1176
    };

1177
    hist_callers[src.depth()](src, hist, levels, buf, StreamAccessor::getStream(stream));
1178 1179
}

1180 1181
namespace cv { namespace gpu { namespace histograms
{
1182
    void histogram256_gpu(DevMem2Db src, int* hist, unsigned int* buf, cudaStream_t stream);
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206

    const int PARTIAL_HISTOGRAM256_COUNT = 240;
    const int HISTOGRAM256_BIN_COUNT     = 256;
}}}

void cv::gpu::calcHist(const GpuMat& src, GpuMat& hist, Stream& stream)
{
    GpuMat buf;
    calcHist(src, hist, buf, stream);
}

void cv::gpu::calcHist(const GpuMat& src, GpuMat& hist, GpuMat& buf, Stream& stream)
{
    using namespace cv::gpu::histograms;

    CV_Assert(src.type() == CV_8UC1);

    hist.create(1, 256, CV_32SC1);

    ensureSizeIsEnough(1, PARTIAL_HISTOGRAM256_COUNT * HISTOGRAM256_BIN_COUNT, CV_32SC1, buf);

    histogram256_gpu(src, hist.ptr<int>(), buf.ptr<unsigned int>(), StreamAccessor::getStream(stream));
}

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
void cv::gpu::equalizeHist(const GpuMat& src, GpuMat& dst, Stream& stream)
{
    GpuMat hist;
    GpuMat buf;
    equalizeHist(src, dst, hist, buf, stream);
}

void cv::gpu::equalizeHist(const GpuMat& src, GpuMat& dst, GpuMat& hist, Stream& stream)
{
    GpuMat buf;
    equalizeHist(src, dst, hist, buf, stream);
}

namespace cv { namespace gpu { namespace histograms
{
1222
    void equalizeHist_gpu(DevMem2Db src, DevMem2Db dst, const int* lut, cudaStream_t stream);
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
}}}

void cv::gpu::equalizeHist(const GpuMat& src, GpuMat& dst, GpuMat& hist, GpuMat& buf, Stream& s)
{
    using namespace cv::gpu::histograms;

    CV_Assert(src.type() == CV_8UC1);

    dst.create(src.size(), src.type());

    int intBufSize;
    nppSafeCall( nppsIntegralGetBufferSize_32s(256, &intBufSize) );

1236
    int bufSize = static_cast<int>(std::max(256 * 240 * sizeof(int), intBufSize + 256 * sizeof(int)));
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257

    ensureSizeIsEnough(1, bufSize, CV_8UC1, buf);

    GpuMat histBuf(1, 256 * 240, CV_32SC1, buf.ptr());
    GpuMat intBuf(1, intBufSize, CV_8UC1, buf.ptr());
    GpuMat lut(1, 256, CV_32S, buf.ptr() + intBufSize);

    calcHist(src, hist, histBuf, s);

    cudaStream_t stream = StreamAccessor::getStream(s);

    NppStreamHandler h(stream);

    nppSafeCall( nppsIntegral_32s(hist.ptr<Npp32s>(), lut.ptr<Npp32s>(), 256, intBuf.ptr<Npp8u>()) );
    
    if (stream == 0)
        cudaSafeCall( cudaDeviceSynchronize() );

    equalizeHist_gpu(src, dst, lut.ptr<int>(), stream);
}

1258 1259 1260
////////////////////////////////////////////////////////////////////////
// cornerHarris & minEgenVal

1261 1262
namespace cv { namespace gpu { namespace imgproc {

1263
    void extractCovData_caller(const DevMem2Df Dx, const DevMem2Df Dy, PtrStepf dst);
1264 1265
    void cornerHarris_caller(const int block_size, const float k, const DevMem2Db Dx, const DevMem2Db Dy, DevMem2Db dst, int border_type);
    void cornerMinEigenVal_caller(const int block_size, const DevMem2Db Dx, const DevMem2Db Dy, DevMem2Db dst, int border_type);
1266 1267 1268

}}}

1269
namespace 
1270
{
1271
    template <typename T>
1272
    void extractCovData(const GpuMat& src, GpuMat& Dx, GpuMat& Dy, int blockSize, int ksize, int borderType)
1273
    {   
1274
        double scale = (double)(1 << ((ksize > 0 ? ksize : 3) - 1)) * blockSize;
1275 1276 1277 1278
        if (ksize < 0) 
            scale *= 2.;
        if (src.depth() == CV_8U)
            scale *= 255.;
1279
        scale = 1./scale;
1280

1281 1282 1283
        Dx.create(src.size(), CV_32F);
        Dy.create(src.size(), CV_32F);

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
        if (ksize > 0)
        {
            Sobel(src, Dx, CV_32F, 1, 0, ksize, scale, borderType);
            Sobel(src, Dy, CV_32F, 0, 1, ksize, scale, borderType);
        }
        else
        {
            Scharr(src, Dx, CV_32F, 1, 0, scale, borderType);
            Scharr(src, Dy, CV_32F, 0, 1, scale, borderType);
        }
1294 1295
    }

1296
    void extractCovData(const GpuMat& src, GpuMat& Dx, GpuMat& Dy, int blockSize, int ksize, int borderType)
1297 1298
    {
        switch (src.type())
1299
        {
1300
        case CV_8U:
1301
            extractCovData<unsigned char>(src, Dx, Dy, blockSize, ksize, borderType);
1302 1303
            break;
        case CV_32F:
1304
            extractCovData<float>(src, Dx, Dy, blockSize, ksize, borderType);
1305 1306 1307
            break;
        default:
            CV_Error(CV_StsBadArg, "extractCovData: unsupported type of the source matrix");
1308
        }
1309 1310
    }

1311 1312
} // Anonymous namespace

1313 1314 1315

bool cv::gpu::tryConvertToGpuBorderType(int cpuBorderType, int& gpuBorderType)
{
1316
    switch (cpuBorderType)
1317
    {
1318
    case cv::BORDER_REFLECT101:
1319 1320
        gpuBorderType = cv::gpu::BORDER_REFLECT101_GPU;
        return true;
1321
    case cv::BORDER_REPLICATE:
1322 1323
        gpuBorderType = cv::gpu::BORDER_REPLICATE_GPU;
        return true;
1324
    case cv::BORDER_CONSTANT:
1325 1326
        gpuBorderType = cv::gpu::BORDER_CONSTANT_GPU;
        return true;
1327 1328 1329 1330 1331 1332 1333 1334 1335
    case cv::BORDER_REFLECT:
        gpuBorderType = cv::gpu::BORDER_REFLECT_GPU;
        return true;
    case cv::BORDER_WRAP:
        gpuBorderType = cv::gpu::BORDER_WRAP_GPU;
        return true;
    default:
        return false;
    };
1336 1337 1338
    return false;
}

1339
void cv::gpu::cornerHarris(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, double k, int borderType)
1340 1341 1342 1343 1344 1345
{
    GpuMat Dx, Dy;
    cornerHarris(src, dst, Dx, Dy, blockSize, ksize, k, borderType);
}

void cv::gpu::cornerHarris(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, int blockSize, int ksize, double k, int borderType)
1346
{
1347 1348 1349
    CV_Assert(borderType == cv::BORDER_REFLECT101 ||
              borderType == cv::BORDER_REPLICATE);

1350
    int gpuBorderType;
1351
    CV_Assert(tryConvertToGpuBorderType(borderType, gpuBorderType));
1352

1353
    extractCovData(src, Dx, Dy, blockSize, ksize, borderType);
1354
    dst.create(src.size(), CV_32F);
1355
    imgproc::cornerHarris_caller(blockSize, (float)k, Dx, Dy, dst, gpuBorderType);
1356 1357
}

1358
void cv::gpu::cornerMinEigenVal(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, int borderType)
1359 1360 1361 1362 1363 1364
{  
    GpuMat Dx, Dy;
    cornerMinEigenVal(src, dst, Dx, Dy, blockSize, ksize, borderType);
}

void cv::gpu::cornerMinEigenVal(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, int blockSize, int ksize, int borderType)
1365
{  
1366 1367 1368
    CV_Assert(borderType == cv::BORDER_REFLECT101 ||
              borderType == cv::BORDER_REPLICATE);

1369
    int gpuBorderType;
1370
    CV_Assert(tryConvertToGpuBorderType(borderType, gpuBorderType));
1371

1372
    extractCovData(src, Dx, Dy, blockSize, ksize, borderType);    
1373
    dst.create(src.size(), CV_32F);
1374
    imgproc::cornerMinEigenVal_caller(blockSize, Dx, Dy, dst, gpuBorderType);
1375 1376
}

1377 1378 1379 1380 1381
//////////////////////////////////////////////////////////////////////////////
// mulSpectrums

namespace cv { namespace gpu { namespace imgproc 
{
1382
    void mulSpectrums(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b, 
1383 1384
                      DevMem2D_<cufftComplex> c);

1385
    void mulSpectrums_CONJ(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b, 
1386 1387 1388 1389 1390 1391 1392
                           DevMem2D_<cufftComplex> c);
}}}


void cv::gpu::mulSpectrums(const GpuMat& a, const GpuMat& b, GpuMat& c, 
                           int flags, bool conjB) 
{
1393
    typedef void (*Caller)(const PtrStep<cufftComplex>, const PtrStep<cufftComplex>, 
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
                           DevMem2D_<cufftComplex>);
    static Caller callers[] = { imgproc::mulSpectrums, 
                                imgproc::mulSpectrums_CONJ };

    CV_Assert(a.type() == b.type() && a.type() == CV_32FC2);
    CV_Assert(a.size() == b.size());

    c.create(a.size(), CV_32FC2);

    Caller caller = callers[(int)conjB];
    caller(a, b, c);
}

//////////////////////////////////////////////////////////////////////////////
// mulAndScaleSpectrums

namespace cv { namespace gpu { namespace imgproc 
{
1412
    void mulAndScaleSpectrums(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b,
1413 1414
                             float scale, DevMem2D_<cufftComplex> c);

1415
    void mulAndScaleSpectrums_CONJ(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b,
1416 1417 1418 1419 1420 1421 1422
                                  float scale, DevMem2D_<cufftComplex> c);
}}}


void cv::gpu::mulAndScaleSpectrums(const GpuMat& a, const GpuMat& b, GpuMat& c,
                                  int flags, float scale, bool conjB) 
{
1423
    typedef void (*Caller)(const PtrStep<cufftComplex>, const PtrStep<cufftComplex>,
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
                           float scale, DevMem2D_<cufftComplex>);
    static Caller callers[] = { imgproc::mulAndScaleSpectrums, 
                                imgproc::mulAndScaleSpectrums_CONJ };

    CV_Assert(a.type() == b.type() && a.type() == CV_32FC2);
    CV_Assert(a.size() == b.size());

    c.create(a.size(), CV_32FC2);

    Caller caller = callers[(int)conjB];
    caller(a, b, scale, c);
}

1437 1438 1439
//////////////////////////////////////////////////////////////////////////////
// dft

A
Alexey Spizhevoy 已提交
1440
void cv::gpu::dft(const GpuMat& src, GpuMat& dst, Size dft_size, int flags)
1441 1442 1443 1444 1445 1446
{
    CV_Assert(src.type() == CV_32F || src.type() == CV_32FC2);

    // We don't support unpacked output (in the case of real input)
    CV_Assert(!(flags & DFT_COMPLEX_OUTPUT));

A
Alexey Spizhevoy 已提交
1447
    bool is_1d_input = (dft_size.height == 1) || (dft_size.width == 1);
1448 1449 1450 1451 1452 1453 1454 1455 1456
    int is_row_dft = flags & DFT_ROWS;
    int is_scaled_dft = flags & DFT_SCALE;
    int is_inverse = flags & DFT_INVERSE;
    bool is_complex_input = src.channels() == 2;
    bool is_complex_output = !(flags & DFT_REAL_OUTPUT);

    // We don't support real-to-real transform
    CV_Assert(is_complex_input || is_complex_output);

1457
    GpuMat src_data;
1458 1459 1460

    // Make sure here we work with the continuous input, 
    // as CUFFT can't handle gaps
1461 1462 1463 1464
    src_data = src;
    createContinuous(src.rows, src.cols, src.type(), src_data);
    if (src_data.data != src.data)
        src.copyTo(src_data);
1465

1466
    Size dft_size_opt = dft_size;
1467
    if (is_1d_input && !is_row_dft)
A
Alexey Spizhevoy 已提交
1468 1469
    {
        // If the source matrix is single column handle it as single row
1470 1471
        dft_size_opt.width = std::max(dft_size.width, dft_size.height);
        dft_size_opt.height = std::min(dft_size.width, dft_size.height);
A
Alexey Spizhevoy 已提交
1472
    }
1473 1474 1475 1476 1477

    cufftType dft_type = CUFFT_R2C;
    if (is_complex_input) 
        dft_type = is_complex_output ? CUFFT_C2C : CUFFT_C2R;

1478
    CV_Assert(dft_size_opt.width > 1);
1479 1480 1481

    cufftHandle plan;
    if (is_1d_input || is_row_dft)
1482
        cufftPlan1d(&plan, dft_size_opt.width, dft_type, dft_size_opt.height);
1483
    else
1484
        cufftPlan2d(&plan, dft_size_opt.height, dft_size_opt.width, dft_type);
1485 1486 1487 1488 1489

    if (is_complex_input)
    {
        if (is_complex_output)
        {
A
Alexey Spizhevoy 已提交
1490
            createContinuous(dft_size, CV_32FC2, dst);
1491
            cufftSafeCall(cufftExecC2C(
1492
                    plan, src_data.ptr<cufftComplex>(), dst.ptr<cufftComplex>(),
1493 1494 1495 1496
                    is_inverse ? CUFFT_INVERSE : CUFFT_FORWARD));
        }
        else
        {
A
Alexey Spizhevoy 已提交
1497
            createContinuous(dft_size, CV_32F, dst);
1498
            cufftSafeCall(cufftExecC2R(
1499
                    plan, src_data.ptr<cufftComplex>(), dst.ptr<cufftReal>()));
1500 1501 1502 1503
        }
    }
    else
    {
1504 1505
        // We could swap dft_size for efficiency. Here we must reflect it
        if (dft_size == dft_size_opt)
A
Alexey Spizhevoy 已提交
1506 1507 1508
            createContinuous(Size(dft_size.width / 2 + 1, dft_size.height), CV_32FC2, dst);
        else
            createContinuous(Size(dft_size.width, dft_size.height / 2 + 1), CV_32FC2, dst);
1509 1510

        cufftSafeCall(cufftExecR2C(
1511
                plan, src_data.ptr<cufftReal>(), dst.ptr<cufftComplex>()));
1512 1513 1514
    }

    cufftSafeCall(cufftDestroy(plan));
1515 1516

    if (is_scaled_dft)
1517
        multiply(dst, Scalar::all(1. / dft_size.area()), dst);
1518 1519
}

1520
//////////////////////////////////////////////////////////////////////////////
1521
// convolve
1522

1523
void cv::gpu::ConvolveBuf::create(Size image_size, Size templ_size)
1524
{
1525 1526
    result_size = Size(image_size.width - templ_size.width + 1,
                       image_size.height - templ_size.height + 1);
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
    create(image_size, templ_size, estimateBlockSize(result_size, templ_size));
}


void cv::gpu::ConvolveBuf::create(Size image_size, Size templ_size, Size block_size)
{
    result_size = Size(image_size.width - templ_size.width + 1,
                       image_size.height - templ_size.height + 1);   

    this->block_size = block_size;
1537

1538 1539
    dft_size.width = 1 << int(ceil(std::log(block_size.width + templ_size.width - 1.) / std::log(2.)));
    dft_size.height = 1 << int(ceil(std::log(block_size.height + templ_size.height - 1.) / std::log(2.)));
1540 1541
    if (dft_size.width < 512) dft_size.width = 512;
    if (dft_size.height < 512) dft_size.height = 512;
1542 1543 1544 1545 1546 1547 1548 1549 1550
    createContinuous(dft_size, CV_32F, image_block);
    createContinuous(dft_size, CV_32F, templ_block);
    createContinuous(dft_size, CV_32F, result_data);

    spect_len = dft_size.height * (dft_size.width / 2 + 1);
    createContinuous(1, spect_len, CV_32FC2, image_spect);
    createContinuous(1, spect_len, CV_32FC2, templ_spect);
    createContinuous(1, spect_len, CV_32FC2, result_spect);

1551 1552
    this->block_size.width = std::min(dft_size.width - templ_size.width + 1, result_size.width);
    this->block_size.height = std::min(dft_size.height - templ_size.height + 1, result_size.height);
1553
}
1554 1555


1556 1557
Size cv::gpu::ConvolveBuf::estimateBlockSize(Size result_size, Size templ_size)
{
1558 1559 1560 1561 1562
    int width = (result_size.width + 2) / 3;
    int height = (result_size.height + 2) / 3;
    width = std::min(width, result_size.width);
    height = std::min(height, result_size.height);
    return Size(width, height);
1563 1564 1565 1566 1567 1568 1569 1570
}


void cv::gpu::convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result, 
                       bool ccorr)
{
    ConvolveBuf buf;
    convolve(image, templ, result, ccorr, buf);
1571 1572
}

1573 1574 1575 1576
namespace cv { namespace gpu { namespace imgproc
{
    void convolve_gpu(const DevMem2Df& src, const PtrStepf& dst, int kWidth, int kHeight, float* kernel);
}}}
1577

1578 1579
void cv::gpu::convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result, 
                       bool ccorr, ConvolveBuf& buf)
1580
{
1581 1582
    StaticAssert<sizeof(float) == sizeof(cufftReal)>::check();
    StaticAssert<sizeof(float) * 2 == sizeof(cufftComplex)>::check();
1583 1584 1585 1586

    CV_Assert(image.type() == CV_32F);
    CV_Assert(templ.type() == CV_32F);

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
    if (templ.cols < 13 && templ.rows < 13)
    {
        result.create(image.size(), CV_32F);
        GpuMat contKernel;

        if (templ.isContinuous())
            contKernel = templ;
        else
        {
            contKernel = createContinuous(templ.size(), templ.type());
            templ.copyTo(contKernel);
        }

        imgproc::convolve_gpu(image, result, templ.cols, templ.rows, contKernel.ptr<float>());

        return;
    }

1605 1606
    buf.create(image.size(), templ.size());
    result.create(buf.result_size, CV_32F);
1607

1608 1609
    Size& block_size = buf.block_size;
    Size& dft_size = buf.dft_size;
1610

1611 1612 1613
    GpuMat& image_block = buf.image_block;
    GpuMat& templ_block = buf.templ_block;
    GpuMat& result_data = buf.result_data;
1614

1615 1616 1617
    GpuMat& image_spect = buf.image_spect;
    GpuMat& templ_spect = buf.templ_spect;
    GpuMat& result_spect = buf.result_spect;
1618 1619 1620 1621 1622

    cufftHandle planR2C, planC2R;
    cufftSafeCall(cufftPlan2d(&planC2R, dft_size.height, dft_size.width, CUFFT_C2R));
    cufftSafeCall(cufftPlan2d(&planR2C, dft_size.height, dft_size.width, CUFFT_R2C));

1623
    GpuMat templ_roi(templ.size(), CV_32F, templ.data, templ.step);
1624 1625 1626
    copyMakeBorder(templ_roi, templ_block, 0, templ_block.rows - templ_roi.rows, 0, 
                   templ_block.cols - templ_roi.cols, 0);

1627
    cufftSafeCall(cufftExecR2C(planR2C, templ_block.ptr<cufftReal>(), 
1628
                               templ_spect.ptr<cufftComplex>()));
1629 1630 1631 1632 1633

    // Process all blocks of the result matrix
    for (int y = 0; y < result.rows; y += block_size.height)
    {
        for (int x = 0; x < result.cols; x += block_size.width)
A
Alexey Spizhevoy 已提交
1634 1635 1636
        {
            Size image_roi_size(std::min(x + dft_size.width, image.cols) - x,
                                std::min(y + dft_size.height, image.rows) - y);
1637 1638 1639 1640
            GpuMat image_roi(image_roi_size, CV_32F, (void*)(image.ptr<float>(y) + x), 
                             image.step);
            copyMakeBorder(image_roi, image_block, 0, image_block.rows - image_roi.rows,
                           0, image_block.cols - image_roi.cols, 0);
1641

1642
            cufftSafeCall(cufftExecR2C(planR2C, image_block.ptr<cufftReal>(), 
1643 1644
                                       image_spect.ptr<cufftComplex>()));
            mulAndScaleSpectrums(image_spect, templ_spect, result_spect, 0,
1645
                                 1.f / dft_size.area(), ccorr);
1646 1647
            cufftSafeCall(cufftExecC2R(planC2R, result_spect.ptr<cufftComplex>(), 
                                       result_data.ptr<cufftReal>()));
1648

A
Alexey Spizhevoy 已提交
1649 1650
            Size result_roi_size(std::min(x + block_size.width, result.cols) - x,
                                 std::min(y + block_size.height, result.rows) - y);
1651 1652 1653 1654
            GpuMat result_roi(result_roi_size, result.type(), 
                              (void*)(result.ptr<float>(y) + x), result.step);
            GpuMat result_block(result_roi_size, result_data.type(), 
                                result_data.ptr(), result_data.step);
1655 1656 1657 1658 1659 1660 1661 1662
            result_block.copyTo(result_roi);
        }
    }

    cufftSafeCall(cufftDestroy(planR2C));
    cufftSafeCall(cufftDestroy(planC2R));
}

1663 1664 1665
//////////////////////////////////////////////////////////////////////////////
// pyrDown

1666
namespace cv { namespace gpu { namespace imgproc
1667
{
1668
    template <typename T, int cn> void pyrDown_gpu(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
1669
}}}
1670

1671
void cv::gpu::pyrDown(const GpuMat& src, GpuMat& dst, int borderType, Stream& stream)
1672
{
1673
    using namespace cv::gpu::imgproc;
1674

1675
    typedef void (*func_t)(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
1676

1677
    static const func_t funcs[6][4] = 
1678
    {
1679 1680 1681 1682 1683 1684 1685
        {pyrDown_gpu<uchar, 1>, pyrDown_gpu<uchar, 2>, pyrDown_gpu<uchar, 3>, pyrDown_gpu<uchar, 4>},
        {pyrDown_gpu<schar, 1>, pyrDown_gpu<schar, 2>, pyrDown_gpu<schar, 3>, pyrDown_gpu<schar, 4>},
        {pyrDown_gpu<ushort, 1>, pyrDown_gpu<ushort, 2>, pyrDown_gpu<ushort, 3>, pyrDown_gpu<ushort, 4>},
        {pyrDown_gpu<short, 1>, pyrDown_gpu<short, 2>, pyrDown_gpu<short, 3>, pyrDown_gpu<short, 4>},
        {pyrDown_gpu<int, 1>, pyrDown_gpu<int, 2>, pyrDown_gpu<int, 3>, pyrDown_gpu<int, 4>},
        {pyrDown_gpu<float, 1>, pyrDown_gpu<float, 2>, pyrDown_gpu<float, 3>, pyrDown_gpu<float, 4>},
    };
1686

1687 1688
    CV_Assert(src.depth() <= CV_32F && src.channels() <= 4);

1689
    CV_Assert(borderType == BORDER_REFLECT101 || borderType == BORDER_REPLICATE || borderType == BORDER_CONSTANT || borderType == BORDER_REFLECT || borderType == BORDER_WRAP);
1690 1691 1692
    int gpuBorderType;
    CV_Assert(tryConvertToGpuBorderType(borderType, gpuBorderType));

1693 1694
    dst.create((src.rows + 1) / 2, (src.cols + 1) / 2, src.type());

1695
    funcs[src.depth()][src.channels() - 1](src, dst, gpuBorderType, StreamAccessor::getStream(stream));
1696 1697 1698 1699 1700 1701
}


//////////////////////////////////////////////////////////////////////////////
// pyrUp

1702
namespace cv { namespace gpu { namespace imgproc
1703
{
1704
    template <typename T, int cn> void pyrUp_gpu(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
1705
}}}
1706

1707
void cv::gpu::pyrUp(const GpuMat& src, GpuMat& dst, int borderType, Stream& stream)
1708
{
1709
    using namespace cv::gpu::imgproc;
1710

1711
    typedef void (*func_t)(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
1712

1713
    static const func_t funcs[6][4] = 
1714
    {
1715 1716 1717 1718 1719 1720 1721
        {pyrUp_gpu<uchar, 1>, pyrUp_gpu<uchar, 2>, pyrUp_gpu<uchar, 3>, pyrUp_gpu<uchar, 4>},
        {pyrUp_gpu<schar, 1>, pyrUp_gpu<schar, 2>, pyrUp_gpu<schar, 3>, pyrUp_gpu<schar, 4>},
        {pyrUp_gpu<ushort, 1>, pyrUp_gpu<ushort, 2>, pyrUp_gpu<ushort, 3>, pyrUp_gpu<ushort, 4>},
        {pyrUp_gpu<short, 1>, pyrUp_gpu<short, 2>, pyrUp_gpu<short, 3>, pyrUp_gpu<short, 4>},
        {pyrUp_gpu<int, 1>, pyrUp_gpu<int, 2>, pyrUp_gpu<int, 3>, pyrUp_gpu<int, 4>},
        {pyrUp_gpu<float, 1>, pyrUp_gpu<float, 2>, pyrUp_gpu<float, 3>, pyrUp_gpu<float, 4>},
    };
1722

1723 1724
    CV_Assert(src.depth() <= CV_32F && src.channels() <= 4);

1725
    CV_Assert(borderType == BORDER_REFLECT101 || borderType == BORDER_REPLICATE || borderType == BORDER_CONSTANT || borderType == BORDER_REFLECT || borderType == BORDER_WRAP);
1726 1727 1728
    int gpuBorderType;
    CV_Assert(tryConvertToGpuBorderType(borderType, gpuBorderType));

1729 1730
    dst.create(src.rows*2, src.cols*2, src.type());

1731
    funcs[src.depth()][src.channels() - 1](src, dst, gpuBorderType, StreamAccessor::getStream(stream));
1732
}
1733

V
Vladislav Vinogradov 已提交
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781

//////////////////////////////////////////////////////////////////////////////
// Canny

cv::gpu::CannyBuf::CannyBuf(const GpuMat& dx_, const GpuMat& dy_) : dx(dx_), dy(dy_)
{
    CV_Assert(dx_.type() == CV_32SC1 && dy_.type() == CV_32SC1 && dx_.size() == dy_.size());

    create(dx_.size(), -1);
}

void cv::gpu::CannyBuf::create(const Size& image_size, int apperture_size)
{
    ensureSizeIsEnough(image_size, CV_32SC1, dx);
    ensureSizeIsEnough(image_size, CV_32SC1, dy);

    if (apperture_size == 3)
    {
        ensureSizeIsEnough(image_size, CV_32SC1, dx_buf);
        ensureSizeIsEnough(image_size, CV_32SC1, dy_buf);
    }
    else if(apperture_size > 0)
    {
        if (!filterDX)
            filterDX = createDerivFilter_GPU(CV_8UC1, CV_32S, 1, 0, apperture_size, BORDER_REPLICATE);
        if (!filterDY)
            filterDY = createDerivFilter_GPU(CV_8UC1, CV_32S, 0, 1, apperture_size, BORDER_REPLICATE);
    }

    ensureSizeIsEnough(image_size.height + 2, image_size.width + 2, CV_32FC1, edgeBuf);

    ensureSizeIsEnough(1, image_size.width * image_size.height, CV_16UC2, trackBuf1);
    ensureSizeIsEnough(1, image_size.width * image_size.height, CV_16UC2, trackBuf2);
}

void cv::gpu::CannyBuf::release()
{
    dx.release();
    dy.release();
    dx_buf.release();
    dy_buf.release();
    edgeBuf.release();
    trackBuf1.release();
    trackBuf2.release();
}

namespace cv { namespace gpu { namespace canny
{    
1782
    void calcSobelRowPass_gpu(PtrStepb src, PtrStepi dx_buf, PtrStepi dy_buf, int rows, int cols);
V
Vladislav Vinogradov 已提交
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792

    void calcMagnitude_gpu(PtrStepi dx_buf, PtrStepi dy_buf, PtrStepi dx, PtrStepi dy, PtrStepf mag, int rows, int cols, bool L2Grad);
    void calcMagnitude_gpu(PtrStepi dx, PtrStepi dy, PtrStepf mag, int rows, int cols, bool L2Grad);

    void calcMap_gpu(PtrStepi dx, PtrStepi dy, PtrStepf mag, PtrStepi map, int rows, int cols, float low_thresh, float high_thresh);
    
    void edgesHysteresisLocal_gpu(PtrStepi map, ushort2* st1, int rows, int cols);

    void edgesHysteresisGlobal_gpu(PtrStepi map, ushort2* st1, ushort2* st2, int rows, int cols);

1793
    void getEdges_gpu(PtrStepi map, PtrStepb dst, int rows, int cols);
V
Vladislav Vinogradov 已提交
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
}}}

namespace
{
    void CannyCaller(CannyBuf& buf, GpuMat& dst, float low_thresh, float high_thresh)
    {
        using namespace cv::gpu::canny;

        calcMap_gpu(buf.dx, buf.dy, buf.edgeBuf, buf.edgeBuf, dst.rows, dst.cols, low_thresh, high_thresh);
        
        edgesHysteresisLocal_gpu(buf.edgeBuf, buf.trackBuf1.ptr<ushort2>(), dst.rows, dst.cols);
        
        edgesHysteresisGlobal_gpu(buf.edgeBuf, buf.trackBuf1.ptr<ushort2>(), buf.trackBuf2.ptr<ushort2>(), dst.rows, dst.cols);
        
        getEdges_gpu(buf.edgeBuf, dst, dst.rows, dst.cols);
    }
}

void cv::gpu::Canny(const GpuMat& src, GpuMat& dst, double low_thresh, double high_thresh, int apperture_size, bool L2gradient)
{
    CannyBuf buf(src.size(), apperture_size);
    Canny(src, buf, dst, low_thresh, high_thresh, apperture_size, L2gradient);
}

void cv::gpu::Canny(const GpuMat& src, CannyBuf& buf, GpuMat& dst, double low_thresh, double high_thresh, int apperture_size, bool L2gradient)
{
    using namespace cv::gpu::canny;

1822
    CV_Assert(TargetArchs::builtWith(SHARED_ATOMICS) && DeviceInfo().supports(SHARED_ATOMICS));
V
Vladislav Vinogradov 已提交
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
    CV_Assert(src.type() == CV_8UC1);

    if( low_thresh > high_thresh )
        std::swap( low_thresh, high_thresh);

    dst.create(src.size(), CV_8U);
    dst.setTo(Scalar::all(0));
    
    buf.create(src.size(), apperture_size);
    buf.edgeBuf.setTo(Scalar::all(0));

    if (apperture_size == 3)
    {
        calcSobelRowPass_gpu(src, buf.dx_buf, buf.dy_buf, src.rows, src.cols);

        calcMagnitude_gpu(buf.dx_buf, buf.dy_buf, buf.dx, buf.dy, buf.edgeBuf, src.rows, src.cols, L2gradient);
    }
    else
    {
        buf.filterDX->apply(src, buf.dx, Rect(0, 0, src.cols, src.rows));
        buf.filterDY->apply(src, buf.dy, Rect(0, 0, src.cols, src.rows));

        calcMagnitude_gpu(buf.dx, buf.dy, buf.edgeBuf, src.rows, src.cols, L2gradient);
    }

    CannyCaller(buf, dst, static_cast<float>(low_thresh), static_cast<float>(high_thresh));
}

void cv::gpu::Canny(const GpuMat& dx, const GpuMat& dy, GpuMat& dst, double low_thresh, double high_thresh, bool L2gradient)
{
    CannyBuf buf(dx, dy);
    Canny(dx, dy, buf, dst, low_thresh, high_thresh, L2gradient);
}

void cv::gpu::Canny(const GpuMat& dx, const GpuMat& dy, CannyBuf& buf, GpuMat& dst, double low_thresh, double high_thresh, bool L2gradient)
{
    using namespace cv::gpu::canny;

1861
    CV_Assert(TargetArchs::builtWith(SHARED_ATOMICS) && DeviceInfo().supports(SHARED_ATOMICS));
V
Vladislav Vinogradov 已提交
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
    CV_Assert(dx.type() == CV_32SC1 && dy.type() == CV_32SC1 && dx.size() == dy.size());

    if( low_thresh > high_thresh )
        std::swap( low_thresh, high_thresh);

    dst.create(dx.size(), CV_8U);
    dst.setTo(Scalar::all(0));
    
    buf.dx = dx; buf.dy = dy;
    buf.create(dx.size(), -1);
    buf.edgeBuf.setTo(Scalar::all(0));

    calcMagnitude_gpu(dx, dy, buf.edgeBuf, dx.rows, dx.cols, L2gradient);

    CannyCaller(buf, dst, static_cast<float>(low_thresh), static_cast<float>(high_thresh));
}

1879
#endif /* !defined (HAVE_CUDA) */
1880

1881