bgfg_gmg.cpp 15.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        	License Agreement
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

/*
 * This class implements an algorithm described in "Visual Tracking of Human Visitors under
 * Variable-Lighting Conditions for a Responsive Audio Art Installation," A. Godbehere,
 * A. Matsukawa, K. Goldberg, American Control Conference, Montreal, June 2012.
 *
 * Prepared and integrated by Andrew B. Godbehere.
 */

#include "precomp.hpp"

using namespace std;

namespace cv
{

BackgroundSubtractorGMG::BackgroundSubtractorGMG()
{
    /*
     * Default Parameter Values. Override with algorithm "set" method.
     */
    maxFeatures = 64;
    learningRate = 0.025;
    numInitializationFrames = 120;
    quantizationLevels = 16;
    backgroundPrior = 0.8;
    decisionThreshold = 0.8;
    smoothingRadius = 7;
}
    
void BackgroundSubtractorGMG::initializeType(InputArray _image,flexitype min, flexitype max)
{
	minVal = min;
	maxVal = max;

	if (minVal == maxVal)
	{
		CV_Error_(CV_StsBadArg,("minVal and maxVal cannot be the same."));
	}

	/*
	 * Parameter validation
	 */
	if (maxFeatures <= 0)
	{
		CV_Error_(CV_StsBadArg,
				("maxFeatures parameter must be 1 or greater. Instead, it is %d.",maxFeatures));
	}
	if (learningRate < 0.0 || learningRate > 1.0)
	{
		CV_Error_(CV_StsBadArg,
				("learningRate parameter must be in the range [0.0,1.0]. Instead, it is %f.",
				learningRate));
	}
	if (numInitializationFrames < 1)
	{
		CV_Error_(CV_StsBadArg,
				("numInitializationFrames must be at least 1. Instead, it is %d.",
						numInitializationFrames));
	}
	if (quantizationLevels < 1)
	{
		CV_Error_(CV_StsBadArg,
				("quantizationLevels must be at least 1 (preferably more). Instead it is %d.",
						quantizationLevels));
	}
	if (backgroundPrior < 0.0 || backgroundPrior > 1.0)
	{
		CV_Error_(CV_StsBadArg,
				("backgroundPrior must be a probability, between 0.0 and 1.0. Instead it is %f.",
						backgroundPrior));
	}

	/*
	 * Detect and accommodate the image depth
	 */
	Mat image = _image.getMat();
	imageDepth = image.depth();  // 32f, 8u, etc.
	numChannels = image.channels();

	/*
	 * Color quantization [0 | | | | max] --> [0 | | max]
	 *  (0) Use double as intermediary to convert all types to int.
	 *  (i) Shift min to 0,
	 * 	(ii) max/(num intervals) = factor.  x/factor * factor = quantized result, after integer operation.
	 */

	/*
	 * Data Structure Initialization
	 */
	Size imsize = image.size();
	imWidth = imsize.width;
	imHeight = imsize.height;
	numPixels = imWidth*imHeight;
	pixels.resize(numPixels);
	frameNum = 0;

	// used to iterate through matrix of type unknown at compile time
	elemSize = image.elemSize();
	elemSize1 = image.elemSize1();

	vector<PixelModelGMG>::iterator pixel;
	vector<PixelModelGMG>::iterator pixel_end = pixels.end();
	for (pixel = pixels.begin(); pixel != pixel_end; ++pixel)
	{
		pixel->setMaxFeatures(maxFeatures);
	}

	fgMaskImage = Mat::zeros(imHeight,imWidth,CV_8UC1);  // 8-bit unsigned mask. 255 for FG, 0 for BG
	posteriorImage = Mat::zeros(imHeight,imWidth,CV_32FC1);  // float for storing probabilities. Can be viewed directly with imshow.
	isDataInitialized = true;
}

void BackgroundSubtractorGMG::operator()(InputArray _image, OutputArray _fgmask, double newLearningRate)
{
	if (!isDataInitialized)
	{
		CV_Error(CV_StsError,"BackgroundSubstractorGMG has not been initialized. Call initialize() first.\n");
	}

	/*
	 * Update learning rate parameter, if desired
	 */
	if (newLearningRate != -1.0)
	{
		if (newLearningRate < 0.0 || newLearningRate > 1.0)
		{
			CV_Error(CV_StsOutOfRange,"Learning rate for Operator () must be between 0.0 and 1.0.\n");
		}
		this->learningRate = newLearningRate;
	}

	Mat image = _image.getMat();

	_fgmask.create(Size(imHeight,imWidth),CV_8U);
	fgMaskImage = _fgmask.getMat();  // 8-bit unsigned mask. 255 for FG, 0 for BG

	/*
	 * Iterate over pixels in image
	 */
	// grab data at each pixel (1,2,3 channels, int, float, etc.)
	// grab data as an array of bytes. Then, send that array to a function that reads data into vector of appropriate types... and quantizing... before saving as a feature, which is a vector of flexitypes, so code can be portable.
	// multiple channels do have sequential storage, use mat::elemSize() and mat::elemSize1()
	vector<PixelModelGMG>::iterator pixel;
	vector<PixelModelGMG>::iterator pixel_end = pixels.end();
	size_t i;
//#pragma omp parallel
	for (i = 0, pixel=pixels.begin(); pixel != pixel_end; ++i,++pixel)
	{
		HistogramFeatureGMG newFeature;
		newFeature.color.clear();
		for (size_t c = 0; c < numChannels; ++c)
		{
			/*
			 * Perform quantization. in each channel. (color-min)*(levels)/(max-min).
			 * Shifts min to 0 and scales, finally casting to an int.
			 */
			size_t quantizedColor;
			// pixel at data+elemSize*i. Individual channel c at data+elemSize*i+elemSize1*c
			if (imageDepth == CV_8U)
			{
				uchar *color = (uchar*)(image.data+elemSize*i+elemSize1*c);
				quantizedColor = (size_t)((double)(*color-minVal.uc)*quantizationLevels/(maxVal.uc-minVal.uc));
			}
			else if (imageDepth == CV_8S)
			{
				char *color = (char*)(image.data+elemSize*i+elemSize1*c);
				quantizedColor = (size_t)((double)(*color-minVal.c)*quantizationLevels/(maxVal.c-minVal.c));
			}
			else if (imageDepth == CV_16U)
			{
				unsigned int *color = (unsigned int*)(image.data+elemSize*i+elemSize1*c);
				quantizedColor = (size_t)((double)(*color-minVal.ui)*quantizationLevels/(maxVal.ui-minVal.ui));
			}
			else if (imageDepth == CV_16S)
			{
				int *color = (int*)(image.data+elemSize*i+elemSize1*c);
				quantizedColor = (size_t)((double)(*color-minVal.i)*quantizationLevels/(maxVal.i-minVal.i));
			}
			else if (imageDepth == CV_32F)
			{
				float *color = (float*)image.data+elemSize*i+elemSize1*c;
				quantizedColor = (size_t)((double)(*color-minVal.ui)*quantizationLevels/(maxVal.ui-minVal.ui));
			}
			else if (imageDepth == CV_32S)
			{
				long int *color = (long int*)(image.data+elemSize*i+elemSize1*c);
				quantizedColor = (size_t)((double)(*color-minVal.li)*quantizationLevels/(maxVal.li-minVal.li));
			}
			else if (imageDepth == CV_64F)
			{
				double *color = (double*)image.data+elemSize*i+elemSize1*c;
				quantizedColor = (size_t)((double)(*color-minVal.d)*quantizationLevels/(maxVal.d-minVal.d));
			}
			newFeature.color.push_back(quantizedColor);
		}
		// now that the feature is ready for use, put it in the histogram

		if (frameNum > numInitializationFrames)  // typical operation
		{
			newFeature.likelihood = learningRate;
			/*
			 * (1) Query histogram to find posterior probability of feature under model.
			 */
			float likelihood = (float)pixel->getLikelihood(newFeature);

			// see Godbehere, Matsukawa, Goldberg (2012) for reasoning behind this implementation of Bayes rule
			float posterior = (likelihood*backgroundPrior)/(likelihood*backgroundPrior+(1-likelihood)*(1-backgroundPrior));

			/*
			 * (2) feed posterior probability into the posterior image
			 */
			int row,col;
			col = i%imWidth;
			row = (i-col)/imWidth;
			posteriorImage.at<float>(row,col) = (1.0-posterior);
		}
		pixel->setLastObservedFeature(newFeature);
	}
	/*
	 * (3) Perform filtering and threshold operations to yield final mask image.
	 *
	 * 2 options. First is morphological open/close as before. Second is "median filtering" which Jon Barron says is good to remove noise
	 */
	Mat thresholdedPosterior;
	threshold(posteriorImage,thresholdedPosterior,decisionThreshold,1.0,THRESH_BINARY);
	thresholdedPosterior.convertTo(fgMaskImage,CV_8U,255);  // convert image to integer space for further filtering and mask creation
	medianBlur(fgMaskImage,fgMaskImage,smoothingRadius);

	fgMaskImage.copyTo(_fgmask);

	++frameNum;  // keep track of how many frames we have processed
}

void BackgroundSubtractorGMG::getPosteriorImage(OutputArray _img)
{
	_img.create(Size(imWidth,imHeight),CV_32F);
	Mat img = _img.getMat();
	posteriorImage.copyTo(img);
}

void BackgroundSubtractorGMG::updateBackgroundModel(InputArray _mask)
{
	CV_Assert(_mask.size() == Size(imWidth,imHeight));  // mask should be same size as image

	Mat maskImg = _mask.getMat();
//#pragma omp parallel
	for (size_t i = 0; i < imHeight; ++i)
	{
//#pragma omp parallel
		for (size_t j = 0; j < imWidth; ++j)
		{
			if (frameNum <= numInitializationFrames + 1)
			{
				// insert previously observed feature into the histogram. -1.0 parameter indicates training.
				pixels[i*imWidth+j].insertFeature(-1.0);
				if (frameNum >= numInitializationFrames+1)  // training is done, normalize
				{
					pixels[i*imWidth+j].normalizeHistogram();
				}
			}
			// if mask is 0, pixel is identified as a background pixel, so update histogram.
			else if (maskImg.at<uchar>(i,j) == 0)
			{
				pixels[i*imWidth+j].insertFeature(learningRate); // updates the histogram for the next iteration.
			}
		}
	}
}

BackgroundSubtractorGMG::~BackgroundSubtractorGMG()
{

}

BackgroundSubtractorGMG::PixelModelGMG::PixelModelGMG()
{
	numFeatures = 0;
	maxFeatures = 0;
}

BackgroundSubtractorGMG::PixelModelGMG::~PixelModelGMG()
{

}

void BackgroundSubtractorGMG::PixelModelGMG::setLastObservedFeature(HistogramFeatureGMG f)
{
	this->lastObservedFeature = f;
}

double BackgroundSubtractorGMG::PixelModelGMG::getLikelihood(BackgroundSubtractorGMG::HistogramFeatureGMG f)
{
	std::list<HistogramFeatureGMG>::iterator feature = histogram.begin();
	std::list<HistogramFeatureGMG>::iterator feature_end = histogram.end();

	for (feature = histogram.begin(); feature != feature_end; ++feature)
	{
		// comparing only feature color, not likelihood. See equality operator for HistogramFeatureGMG
		if (f == *feature)
		{
			return feature->likelihood;
		}
	}

	return 0.0; // not in histogram, so return 0.
}

void BackgroundSubtractorGMG::PixelModelGMG::insertFeature(double learningRate)
{

	std::list<HistogramFeatureGMG>::iterator feature;
	std::list<HistogramFeatureGMG>::iterator swap_end;
	std::list<HistogramFeatureGMG>::iterator last_feature = histogram.end();
	/*
	 * If feature is in histogram already, add the weights, and move feature to front.
	 * If there are too many features, remove the end feature and push new feature to beginning
	 */
	if (learningRate == -1.0) // then, this is a training-mode update.
	{
		/*
		 * (1) Check if feature already represented in histogram
		 */
		lastObservedFeature.likelihood = 1.0;

		for (feature = histogram.begin(); feature != last_feature; ++feature)
		{
			if (lastObservedFeature == *feature)  // feature in histogram
			{
				feature->likelihood += lastObservedFeature.likelihood;
				// now, move feature to beginning of list and break the loop
				HistogramFeatureGMG tomove = *feature;
				histogram.erase(feature);
				histogram.push_front(tomove);
				return;
			}
		}
		if (numFeatures == maxFeatures)
		{
			histogram.pop_back(); // discard oldest feature
			histogram.push_front(lastObservedFeature);
		}
		else
		{
			histogram.push_front(lastObservedFeature);
			++numFeatures;
		}
	}
	else
	{
		/*
		 * (1) Scale entire histogram by scaling factor
		 * (2) Scale input feature.
		 * (3) Check if feature already represented. If so, simply add.
		 * (4) If feature is not represented, remove old feature, distribute weight evenly among existing features, add in new feature.
		 */
		*this *= (1.0-learningRate);
		lastObservedFeature.likelihood = learningRate;

		for (feature = histogram.begin(); feature != last_feature; ++feature)
		{
			if (lastObservedFeature == *feature)  // feature in histogram
			{
				lastObservedFeature.likelihood += feature->likelihood;
				histogram.erase(feature);
				histogram.push_front(lastObservedFeature);
				return;  // done with the update.
			}
		}
		if (numFeatures == maxFeatures)
		{
			histogram.pop_back(); // discard oldest feature
			histogram.push_front(lastObservedFeature);
			normalizeHistogram();
		}
		else
		{
			histogram.push_front(lastObservedFeature);
			++numFeatures;
		}
	}
}

BackgroundSubtractorGMG::PixelModelGMG& BackgroundSubtractorGMG::PixelModelGMG::operator *=(const float &rhs)
{
	/*
	 * Used to scale histogram by a constant factor
	 */
	list<HistogramFeatureGMG>::iterator feature;
	list<HistogramFeatureGMG>::iterator last_feature = histogram.end();
	for (feature = histogram.begin(); feature != last_feature; ++feature)
	{
		feature->likelihood *= rhs;
	}
	return *this;
}

void BackgroundSubtractorGMG::PixelModelGMG::normalizeHistogram()
{
	/*
	 * First, calculate the total weight in the histogram
	 */
	list<HistogramFeatureGMG>::iterator feature;
	list<HistogramFeatureGMG>::iterator last_feature = histogram.end();
	double total = 0.0;
	for (feature = histogram.begin(); feature != last_feature; ++feature)
	{
		total += feature->likelihood;
	}

	/*
	 * Then, if weight is not 0, divide every feature by the total likelihood to re-normalize.
	 */
	for (feature = histogram.begin(); feature != last_feature; ++feature)
	{
		if (total != 0.0)
			feature->likelihood /= total;
	}
}

bool BackgroundSubtractorGMG::HistogramFeatureGMG::operator ==(HistogramFeatureGMG &rhs)
{
	CV_Assert(color.size() == rhs.color.size());

	std::vector<size_t>::iterator color_a;
	std::vector<size_t>::iterator color_b;
	std::vector<size_t>::iterator color_a_end = this->color.end();
	std::vector<size_t>::iterator color_b_end = rhs.color.end();
	for (color_a = color.begin(),color_b =rhs.color.begin();color_a!=color_a_end;++color_a,++color_b)
	{
		if (*color_a != *color_b)
		{
			return false;
		}
	}
	return true;
}


}