test_layers.cpp 11.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "test_precomp.hpp"
#include <opencv2/core/ocl.hpp>
#include <iostream>
#include "npy_blob.hpp"
#include <opencv2/dnn/shape_utils.hpp>
#include <opencv2/dnn/all_layers.hpp>
#include <opencv2/ts/ocl_test.hpp>

namespace cvtest
{

using namespace cv;
using namespace cv::dnn;

template<typename TString>
static String _tf(TString filename)
{
    String basetestdir = getOpenCVExtraDir();
    size_t len = basetestdir.size();
    if(len > 0 && basetestdir[len-1] != '/' && basetestdir[len-1] != '\\')
        return (basetestdir + "/dnn/layers") + filename;
    return (basetestdir + "dnn/layers/") + filename;
}

void runLayer(Ptr<Layer> layer, std::vector<Mat> &inpBlobs, std::vector<Mat> &outBlobs)
{
    size_t i, ninputs = inpBlobs.size();
    std::vector<Mat> inp_(ninputs);
    std::vector<Mat*> inp(ninputs);
    std::vector<Mat> outp, intp;
    std::vector<MatShape> inputs, outputs, internals;

    for( i = 0; i < ninputs; i++ )
    {
        inp_[i] = inpBlobs[i].clone();
        inp[i] = &inp_[i];
        inputs.push_back(shape(inp_[i]));
    }

    layer->getMemoryShapes(inputs, 0, outputs, internals);
    for(int i = 0; i < outputs.size(); i++)
    {
        outp.push_back(Mat(outputs[i], CV_32F));
    }
    for(int i = 0; i < internals.size(); i++)
    {
        intp.push_back(Mat(internals[i], CV_32F));
    }

    layer->finalize(inp, outp);
    layer->forward(inp, outp, intp);

    size_t noutputs = outp.size();
    outBlobs.resize(noutputs);
    for( i = 0; i < noutputs; i++ )
        outBlobs[i] = outp[i];
}


void testLayerUsingCaffeModels(String basename, bool useCaffeModel = false, bool useCommonInputBlob = true)
{
    String prototxt = _tf(basename + ".prototxt");
    String caffemodel = _tf(basename + ".caffemodel");

    String inpfile = (useCommonInputBlob) ? _tf("blob.npy") : _tf(basename + ".input.npy");
    String outfile = _tf(basename + ".npy");

    cv::setNumThreads(cv::getNumberOfCPUs());

111 112
    Net net = readNetFromCaffe(prototxt, (useCaffeModel) ? caffemodel : String());
    ASSERT_FALSE(net.empty());
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168

    Mat inp = blobFromNPY(inpfile);
    Mat ref = blobFromNPY(outfile);

    net.setInput(inp, "input");
    Mat out = net.forward("output");

    normAssert(ref, out);
}

TEST(Layer_Test_Softmax, Accuracy)
{
     testLayerUsingCaffeModels("layer_softmax");
}

TEST(Layer_Test_LRN_spatial, Accuracy)
{
     testLayerUsingCaffeModels("layer_lrn_spatial");
}

TEST(Layer_Test_LRN_channels, Accuracy)
{
     testLayerUsingCaffeModels("layer_lrn_channels");
}

TEST(Layer_Test_Convolution, Accuracy)
{
     testLayerUsingCaffeModels("layer_convolution", true);
}

TEST(Layer_Test_DeConvolution, Accuracy)
{
     testLayerUsingCaffeModels("layer_deconvolution", true, false);
}

TEST(Layer_Test_InnerProduct, Accuracy)
{
     testLayerUsingCaffeModels("layer_inner_product", true);
}

TEST(Layer_Test_Pooling_max, Accuracy)
{
     testLayerUsingCaffeModels("layer_pooling_max");
}

TEST(Layer_Test_Pooling_ave, Accuracy)
{
     testLayerUsingCaffeModels("layer_pooling_ave");
}

TEST(Layer_Test_MVN, Accuracy)
{
     testLayerUsingCaffeModels("layer_mvn");
}

void testReshape(const MatShape& inputShape, const MatShape& targetShape,
169
                 int axis = 0, int num_axes = -1,
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
                 MatShape mask = MatShape())
{
    LayerParams params;
    params.set("axis", axis);
    params.set("num_axes", num_axes);
    if (!mask.empty())
    {
        params.set("dim", DictValue::arrayInt<int*>(&mask[0], mask.size()));
    }

    Mat inp(inputShape.size(), &inputShape[0], CV_32F);
    std::vector<Mat> inpVec(1, inp);
    std::vector<Mat> outVec, intVec;

    Ptr<Layer> rl = LayerFactory::createLayerInstance("Reshape", params);
    runLayer(rl, inpVec, outVec);

    Mat& out = outVec[0];
    MatShape shape(out.size.p, out.size.p + out.dims);
    EXPECT_EQ(shape, targetShape);
}

TEST(Layer_Test_Reshape, Accuracy)
{
    {
        int inp[] = {4, 3, 1, 2};
        int out[] = {4, 3, 2};
        testReshape(MatShape(inp, inp + 4), MatShape(out, out + 3), 2, 1);
    }
    {
        int inp[] = {1, 128, 4, 4};
        int out[] = {1, 2048};
        int mask[] = {-1, 2048};
203
        testReshape(MatShape(inp, inp + 4), MatShape(out, out + 2), 0, -1,
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
                    MatShape(mask, mask + 2));
    }
}

TEST(Layer_Test_BatchNorm, Accuracy)
{
     testLayerUsingCaffeModels("layer_batch_norm", true);
}

TEST(Layer_Test_ReLU, Accuracy)
{
     testLayerUsingCaffeModels("layer_relu");
}

TEST(Layer_Test_Dropout, Accuracy)
{
     testLayerUsingCaffeModels("layer_dropout");
}

TEST(Layer_Test_Concat, Accuracy)
{
     testLayerUsingCaffeModels("layer_concat");
}

//template<typename XMat>
//static void test_Layer_Concat()
//{
//    Matx21f a(1.f, 1.f), b(2.f, 2.f), c(3.f, 3.f);
//    std::vector<Blob> res(1), src = { Blob(XMat(a)), Blob(XMat(b)), Blob(XMat(c)) };
//    Blob ref(XMat(Matx23f(1.f, 2.f, 3.f, 1.f, 2.f, 3.f)));
//
//    runLayer(ConcatLayer::create(1), src, res);
//    normAssert(ref, res[0]);
//}
//TEST(Layer_Concat, Accuracy)
//{
//    test_Layer_Concat<Mat>());
//}
//OCL_TEST(Layer_Concat, Accuracy)
//{
//    OCL_ON(test_Layer_Concat<Mat>());
//    );
//}

static void test_Reshape_Split_Slice_layers()
{
250 251
    Net net = readNetFromCaffe(_tf("reshape_and_slice_routines.prototxt"));
    ASSERT_FALSE(net.empty());
252 253 254 255 256 257 258 259 260 261

    Mat input(6, 12, CV_32F);
    RNG rng(0);
    rng.fill(input, RNG::UNIFORM, -1, 1);

    net.setInput(input, "input");
    Mat output = net.forward("output");

    normAssert(input, output);
}
A
Aleksandr Rybnikov 已提交
262

263 264 265 266 267
TEST(Layer_Test_Reshape_Split_Slice, Accuracy)
{
    test_Reshape_Split_Slice_layers();
}

A
Aleksandr Rybnikov 已提交
268 269
TEST(Layer_Conv_Elu, Accuracy)
{
270 271 272
    Net net = readNetFromTensorflow(_tf("layer_elu_model.pb"));
    ASSERT_FALSE(net.empty());

A
Aleksandr Rybnikov 已提交
273 274 275 276 277 278 279 280 281
    Mat inp = blobFromNPY(_tf("layer_elu_in.npy"));
    Mat ref = blobFromNPY(_tf("layer_elu_out.npy"));

    net.setInput(inp, "input");
    Mat out = net.forward();

    normAssert(ref, out);
}

282 283 284 285 286 287 288 289 290 291
class Layer_LSTM_Test : public ::testing::Test
{
public:
    int numInp, numOut;
    Mat Wh, Wx, b;
    Ptr<LSTMLayer> layer;
    std::vector<Mat> inputs, outputs;

    Layer_LSTM_Test() {}

292 293
    void init(const MatShape &inpShape_, const MatShape &outShape_,
              bool produceCellOutput, bool useTimestampDim)
294 295 296 297 298 299 300 301
    {
        numInp = total(inpShape_);
        numOut = total(outShape_);

        Wh = Mat::ones(4 * numOut, numOut, CV_32F);
        Wx = Mat::ones(4 * numOut, numInp, CV_32F);
        b  = Mat::ones(4 * numOut, 1, CV_32F);

302 303 304 305 306 307 308 309 310
        LayerParams lp;
        lp.blobs.resize(3);
        lp.blobs[0] = Wh;
        lp.blobs[1] = Wx;
        lp.blobs[2] = b;
        lp.set<bool>("produce_cell_output", produceCellOutput);
        lp.set<bool>("use_timestamp_dim", useTimestampDim);

        layer = LSTMLayer::create(lp);
311 312 313 314 315 316 317 318 319 320 321 322
        layer->setOutShape(outShape_);
    }
};

TEST_F(Layer_LSTM_Test, get_set_test)
{
    const int TN = 4;
    MatShape inpShape = shape(5, 3, 2);
    MatShape outShape = shape(3, 1, 2);
    MatShape inpResShape = concat(shape(TN), inpShape);
    MatShape outResShape = concat(shape(TN), outShape);

323
    init(inpShape, outShape, true, false);
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
    layer->setOutShape(outShape);

    Mat C((int)outResShape.size(), &outResShape[0], CV_32F);
    randu(C, -1., 1.);
    Mat H = C.clone();
    randu(H, -1., 1.);

    Mat inp((int)inpResShape.size(), &inpResShape[0], CV_32F);
    randu(inp, -1., 1.);

    inputs.push_back(inp);
    runLayer(layer, inputs, outputs);

    EXPECT_EQ(2u, outputs.size());

    print(outResShape, "outResShape");
    print(shape(outputs[0]), "out0");
    print(shape(outputs[0]), "out1");

    EXPECT_EQ(outResShape, shape(outputs[0]));
    EXPECT_EQ(outResShape, shape(outputs[1]));

    EXPECT_EQ(0, layer->inputNameToIndex("x"));
    EXPECT_EQ(0, layer->outputNameToIndex("h"));
    EXPECT_EQ(1, layer->outputNameToIndex("c"));
}

TEST(Layer_LSTM_Test_Accuracy_with_, CaffeRecurrent)
{
353 354 355 356 357 358
    LayerParams lp;
    lp.blobs.resize(3);
    lp.blobs[0] = blobFromNPY(_tf("lstm.prototxt.w_2.npy"));  // Wh
    lp.blobs[1] = blobFromNPY(_tf("lstm.prototxt.w_0.npy"));  // Wx
    lp.blobs[2] = blobFromNPY(_tf("lstm.prototxt.w_1.npy"));  // bias
    Ptr<LSTMLayer> layer = LSTMLayer::create(lp);
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429

    Mat inp = blobFromNPY(_tf("recurrent.input.npy"));
    std::vector<Mat> inputs(1, inp), outputs;
    runLayer(layer, inputs, outputs);

    Mat h_t_reference = blobFromNPY(_tf("lstm.prototxt.h_1.npy"));
    normAssert(h_t_reference, outputs[0]);
}

TEST(Layer_RNN_Test_Accuracy_with_, CaffeRecurrent)
{
    Ptr<RNNLayer> layer = RNNLayer::create(LayerParams());

    layer->setWeights(
                blobFromNPY(_tf("rnn.prototxt.w_0.npy")),
                blobFromNPY(_tf("rnn.prototxt.w_1.npy")),
                blobFromNPY(_tf("rnn.prototxt.w_2.npy")),
                blobFromNPY(_tf("rnn.prototxt.w_3.npy")),
                blobFromNPY(_tf("rnn.prototxt.w_4.npy")) );

    std::vector<Mat> output, input(1, blobFromNPY(_tf("recurrent.input.npy")));
    runLayer(layer, input, output);

    Mat h_ref = blobFromNPY(_tf("rnn.prototxt.h_1.npy"));
    normAssert(h_ref, output[0]);
}


class Layer_RNN_Test : public ::testing::Test
{
public:
    int nX, nH, nO, nT, nS;
    Mat Whh, Wxh, bh, Who, bo;
    Ptr<RNNLayer> layer;

    std::vector<Mat> inputs, outputs;

    Layer_RNN_Test()
    {
        nT = 3;
        nS = 5;
        nX = 31;
        nH = 64;
        nO = 100;

        Whh = Mat::ones(nH, nH, CV_32F);
        Wxh = Mat::ones(nH, nX, CV_32F);
        bh  = Mat::ones(nH, 1, CV_32F);
        Who = Mat::ones(nO, nH, CV_32F);
        bo  = Mat::ones(nO, 1, CV_32F);

        layer = RNNLayer::create(LayerParams());
        layer->setProduceHiddenOutput(true);
        layer->setWeights(Wxh, bh, Whh, Who, bo);
    }
};

TEST_F(Layer_RNN_Test, get_set_test)
{
    int sz[] = { nT, nS, 1, nX };
    Mat inp(4, sz, CV_32F);
    randu(inp, -1., 1.);
    inputs.push_back(inp);
    runLayer(layer, inputs, outputs);

    EXPECT_EQ(outputs.size(), 2u);
    EXPECT_EQ(shape(outputs[0]), shape(nT, nS, nO));
    EXPECT_EQ(shape(outputs[1]), shape(nT, nS, nH));
}

}