svgfig.py 148.1 KB
Newer Older
1
#!/usr/bin/env python
2

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
# svgfig.py copyright (C) 2008 Jim Pivarski <jpivarski@gmail.com>
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA
#
# Full licence is in the file COPYING and at http://www.gnu.org/copyleft/gpl.html

import re, codecs, os, platform, copy, itertools, math, cmath, random, sys, copy
_epsilon = 1e-5


if re.search("windows", platform.system(), re.I):
    try:
        import _winreg
        _default_directory = _winreg.QueryValueEx(_winreg.OpenKey(_winreg.HKEY_CURRENT_USER,
                             r"Software\Microsoft\Windows\Current Version\Explorer\Shell Folders"), "Desktop")[0]
#   tmpdir = _winreg.QueryValueEx(_winreg.OpenKey(_winreg.HKEY_CURRENT_USER, "Environment"), "TEMP")[0]
#   if tmpdir[0:13] != "%USERPROFILE%":
#     tmpdir = os.path.expanduser("~") + tmpdir[13:]
    except:
        _default_directory = os.path.expanduser("~") + os.sep + "Desktop"

_default_fileName = "tmp.svg"

_hacks = {}
_hacks["inkscape-text-vertical-shift"] = False


def rgb(r, g, b, maximum=1.):
    """Create an SVG color string "#xxyyzz" from r, g, and b.

    r,g,b = 0 is black and r,g,b = maximum is white.
    """
    return "#%02x%02x%02x" % (max(0, min(r*255./maximum, 255)),
                              max(0, min(g*255./maximum, 255)),
                              max(0, min(b*255./maximum, 255)))

def attr_preprocess(attr):
    for name in attr.keys():
        name_colon = re.sub("__", ":", name)
        if name_colon != name:
            attr[name_colon] = attr[name]
            del attr[name]
            name = name_colon

        name_dash = re.sub("_", "-", name)
        if name_dash != name:
            attr[name_dash] = attr[name]
            del attr[name]
            name = name_dash

    return attr


class SVG:
    """A tree representation of an SVG image or image fragment.

    SVG(t, sub, sub, sub..., attribute=value)

    t                       required             SVG type name
    sub                     optional list        nested SVG elements or text/Unicode
    attribute=value pairs   optional keywords    SVG attributes

    In attribute names, "__" becomes ":" and "_" becomes "-".

    SVG in XML

    <g id="mygroup" fill="blue">
        <rect x="1" y="1" width="2" height="2" />
        <rect x="3" y="3" width="2" height="2" />
    </g>

    SVG in Python

    >>> svg = SVG("g", SVG("rect", x=1, y=1, width=2, height=2), \
    ...                SVG("rect", x=3, y=3, width=2, height=2), \
    ...           id="mygroup", fill="blue")

    Sub-elements and attributes may be accessed through tree-indexing:

    >>> svg = SVG("text", SVG("tspan", "hello there"), stroke="none", fill="black")
    >>> svg[0]
    <tspan (1 sub) />
    >>> svg[0, 0]
    'hello there'
    >>> svg["fill"]
    'black'

    Iteration is depth-first:

    >>> svg = SVG("g", SVG("g", SVG("line", x1=0, y1=0, x2=1, y2=1)), \
    ...                SVG("text", SVG("tspan", "hello again")))
    ...
    >>> for ti, s in svg:
    ...     print ti, repr(s)
    ...
    (0,) <g (1 sub) />
    (0, 0) <line x2=1 y1=0 x1=0 y2=1 />
    (0, 0, 'x2') 1
    (0, 0, 'y1') 0
    (0, 0, 'x1') 0
    (0, 0, 'y2') 1
    (1,) <text (1 sub) />
    (1, 0) <tspan (1 sub) />
    (1, 0, 0) 'hello again'

    Use "print" to navigate:

    >>> print svg
    None                 <g (2 sub) />
    [0]                      <g (1 sub) />
    [0, 0]                       <line x2=1 y1=0 x1=0 y2=1 />
    [1]                      <text (1 sub) />
    [1, 0]                       <tspan (1 sub) />
    """
    def __init__(self, *t_sub, **attr):
        if len(t_sub) == 0:
            raise TypeError, "SVG element must have a t (SVG type)"

        # first argument is t (SVG type)
        self.t = t_sub[0]
        # the rest are sub-elements
        self.sub = list(t_sub[1:])

        # keyword arguments are attributes
        # need to preprocess to handle differences between SVG and Python syntax
        self.attr = attr_preprocess(attr)

    def __getitem__(self, ti):
        """Index is a list that descends tree, returning a sub-element if
        it ends with a number and an attribute if it ends with a string."""
        obj = self
        if isinstance(ti, (list, tuple)):
            for i in ti[:-1]:
                obj = obj[i]
            ti = ti[-1]

        if isinstance(ti, (int, long, slice)):
            return obj.sub[ti]
        else:
            return obj.attr[ti]

    def __setitem__(self, ti, value):
        """Index is a list that descends tree, returning a sub-element if
        it ends with a number and an attribute if it ends with a string."""
        obj = self
        if isinstance(ti, (list, tuple)):
            for i in ti[:-1]:
                obj = obj[i]
            ti = ti[-1]

        if isinstance(ti, (int, long, slice)):
            obj.sub[ti] = value
        else:
            obj.attr[ti] = value

    def __delitem__(self, ti):
        """Index is a list that descends tree, returning a sub-element if
        it ends with a number and an attribute if it ends with a string."""
        obj = self
        if isinstance(ti, (list, tuple)):
            for i in ti[:-1]:
                obj = obj[i]
            ti = ti[-1]

        if isinstance(ti, (int, long, slice)):
            del obj.sub[ti]
        else:
            del obj.attr[ti]

    def __contains__(self, value):
        """x in svg == True iff x is an attribute in svg."""
        return value in self.attr

    def __eq__(self, other):
        """x == y iff x represents the same SVG as y."""
        if id(self) == id(other):
            return True
        return (isinstance(other, SVG) and
                self.t == other.t and self.sub == other.sub and self.attr == other.attr)

    def __ne__(self, other):
        """x != y iff x does not represent the same SVG as y."""
        return not (self == other)

    def append(self, x):
        """Appends x to the list of sub-elements (drawn last, overlaps
        other primitives)."""
        self.sub.append(x)

    def prepend(self, x):
        """Prepends x to the list of sub-elements (drawn first may be
        overlapped by other primitives)."""
        self.sub[0:0] = [x]

    def extend(self, x):
        """Extends list of sub-elements by a list x."""
        self.sub.extend(x)

    def clone(self, shallow=False):
        """Deep copy of SVG tree.  Set shallow=True for a shallow copy."""
        if shallow:
            return copy.copy(self)
        else:
            return copy.deepcopy(self)

    ### nested class
    class SVGDepthIterator:
        """Manages SVG iteration."""

        def __init__(self, svg, ti, depth_limit):
            self.svg = svg
            self.ti = ti
            self.shown = False
            self.depth_limit = depth_limit

        def __iter__(self):
            return self

        def next(self):
            if not self.shown:
                self.shown = True
                if self.ti != ():
                    return self.ti, self.svg

            if not isinstance(self.svg, SVG):
                raise StopIteration
            if self.depth_limit is not None and len(self.ti) >= self.depth_limit:
                raise StopIteration

            if "iterators" not in self.__dict__:
                self.iterators = []
                for i, s in enumerate(self.svg.sub):
                    self.iterators.append(self.__class__(s, self.ti + (i,), self.depth_limit))
                for k, s in self.svg.attr.items():
                    self.iterators.append(self.__class__(s, self.ti + (k,), self.depth_limit))
                self.iterators = itertools.chain(*self.iterators)

            return self.iterators.next()
    ### end nested class

    def depth_first(self, depth_limit=None):
        """Returns a depth-first generator over the SVG.  If depth_limit
        is a number, stop recursion at that depth."""
        return self.SVGDepthIterator(self, (), depth_limit)

    def breadth_first(self, depth_limit=None):
        """Not implemented yet.  Any ideas on how to do it?

        Returns a breadth-first generator over the SVG.  If depth_limit
        is a number, stop recursion at that depth."""
        raise NotImplementedError, "Got an algorithm for breadth-first searching a tree without effectively copying the tree?"

    def __iter__(self):
        return self.depth_first()

    def items(self, sub=True, attr=True, text=True):
        """Get a recursively-generated list of tree-index, sub-element/attribute pairs.

        If sub == False, do not show sub-elements.
        If attr == False, do not show attributes.
        If text == False, do not show text/Unicode sub-elements.
        """
        output = []
        for ti, s in self:
            show = False
            if isinstance(ti[-1], (int, long)):
                if isinstance(s, basestring):
                    show = text
                else:
                    show = sub
            else:
                show = attr

            if show:
                output.append((ti, s))
        return output

    def keys(self, sub=True, attr=True, text=True):
        """Get a recursively-generated list of tree-indexes.

        If sub == False, do not show sub-elements.
        If attr == False, do not show attributes.
        If text == False, do not show text/Unicode sub-elements.
        """
        return [ti for ti, s in self.items(sub, attr, text)]

    def values(self, sub=True, attr=True, text=True):
        """Get a recursively-generated list of sub-elements and attributes.

        If sub == False, do not show sub-elements.
        If attr == False, do not show attributes.
        If text == False, do not show text/Unicode sub-elements.
        """
        return [s for ti, s in self.items(sub, attr, text)]

    def __repr__(self):
        return self.xml(depth_limit=0)

    def __str__(self):
        """Print (actually, return a string of) the tree in a form useful for browsing."""
        return self.tree(sub=True, attr=False, text=False)

    def tree(self, depth_limit=None, sub=True, attr=True, text=True, tree_width=20, obj_width=80):
        """Print (actually, return a string of) the tree in a form useful for browsing.

        If depth_limit == a number, stop recursion at that depth.
        If sub == False, do not show sub-elements.
        If attr == False, do not show attributes.
        If text == False, do not show text/Unicode sub-elements.
        tree_width is the number of characters reserved for printing tree indexes.
        obj_width is the number of characters reserved for printing sub-elements/attributes.
        """
        output = []

        line = "%s %s" % (("%%-%ds" % tree_width) % repr(None),
                          ("%%-%ds" % obj_width) % (repr(self))[0:obj_width])
        output.append(line)

        for ti, s in self.depth_first(depth_limit):
            show = False
            if isinstance(ti[-1], (int, long)):
                if isinstance(s, basestring):
                    show = text
                else:
                    show = sub
            else:
                show = attr

            if show:
                line = "%s %s" % (("%%-%ds" % tree_width) % repr(list(ti)),
                                  ("%%-%ds" % obj_width) % ("    "*len(ti) + repr(s))[0:obj_width])
                output.append(line)

        return "\n".join(output)

    def xml(self, indent=u"    ", newl=u"\n", depth_limit=None, depth=0):
        """Get an XML representation of the SVG.

        indent      string used for indenting
        newl        string used for newlines
        If depth_limit == a number, stop recursion at that depth.
        depth       starting depth (not useful for users)

        print svg.xml()
        """
        attrstr = []
        for n, v in self.attr.items():
            if isinstance(v, dict):
                v = u"; ".join([u"%s:%s" % (ni, vi) for ni, vi in v.items()])
            elif isinstance(v, (list, tuple)):
                v = u", ".join(v)
            attrstr.append(u" %s=%s" % (n, repr(v)))
        attrstr = u"".join(attrstr)

        if len(self.sub) == 0:
            return u"%s<%s%s />" % (indent * depth, self.t, attrstr)

        if depth_limit is None or depth_limit > depth:
            substr = []
            for s in self.sub:
                if isinstance(s, SVG):
                    substr.append(s.xml(indent, newl, depth_limit, depth + 1) + newl)
                elif isinstance(s, basestring):
                    substr.append(u"%s%s%s" % (indent * (depth + 1), s, newl))
                else:
                    substr.append("%s%s%s" % (indent * (depth + 1), repr(s), newl))
            substr = u"".join(substr)

            return u"%s<%s%s>%s%s%s</%s>" % (indent * depth, self.t, attrstr, newl, substr, indent * depth, self.t)

        else:
            return u"%s<%s (%d sub)%s />" % (indent * depth, self.t, len(self.sub), attrstr)

    def standalone_xml(self, indent=u"    ", newl=u"\n", encoding=u"utf-8"):
        """Get an XML representation of the SVG that can be saved/rendered.

        indent      string used for indenting
        newl        string used for newlines
        """

        if self.t == "svg":
            top = self
        else:
            top = canvas(self)
        return u"""\
<?xml version="1.0" encoding="%s" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

""" % encoding + (u"".join(top.__standalone_xml(indent, newl)))  # end of return statement

    def __standalone_xml(self, indent, newl):
        output = [u"<%s" % self.t]

        for n, v in self.attr.items():
            if isinstance(v, dict):
                v = u"; ".join([u"%s:%s" % (ni, vi) for ni, vi in v.items()])
            elif isinstance(v, (list, tuple)):
                v = u", ".join(v)
            output.append(u' %s="%s"' % (n, v))

        if len(self.sub) == 0:
            output.append(u" />%s%s" % (newl, newl))
            return output

        elif self.t == "text" or self.t == "tspan" or self.t == "style":
            output.append(u">")

        else:
            output.append(u">%s%s" % (newl, newl))

        for s in self.sub:
            if isinstance(s, SVG):
                output.extend(s.__standalone_xml(indent, newl))
            else:
                output.append(unicode(s))

        if self.t == "tspan":
            output.append(u"</%s>" % self.t)
        else:
            output.append(u"</%s>%s%s" % (self.t, newl, newl))

        return output

    def interpret_fileName(self, fileName=None):
        if fileName is None:
            fileName = _default_fileName
        if re.search("windows", platform.system(), re.I) and not os.path.isabs(fileName):
            fileName = _default_directory + os.sep + fileName
        return fileName

    def save(self, fileName=None, encoding="utf-8", compresslevel=None):
        """Save to a file for viewing.  Note that svg.save() overwrites the file named _default_fileName.

        fileName        default=None            note that _default_fileName will be overwritten if
                                                no fileName is specified. If the extension
                                                is ".svgz" or ".gz", the output will be gzipped
        encoding        default="utf-8"         file encoding
        compresslevel   default=None            if a number, the output will be gzipped with that
                                                compression level (1-9, 1 being fastest and 9 most
                                                thorough)
        """
        fileName = self.interpret_fileName(fileName)

        if compresslevel is not None or re.search(r"\.svgz$", fileName, re.I) or re.search(r"\.gz$", fileName, re.I):
            import gzip
            if compresslevel is None:
                f = gzip.GzipFile(fileName, "w")
            else:
                f = gzip.GzipFile(fileName, "w", compresslevel)

            f = codecs.EncodedFile(f, "utf-8", encoding)
            f.write(self.standalone_xml(encoding=encoding))
            f.close()

        else:
            f = codecs.open(fileName, "w", encoding=encoding)
            f.write(self.standalone_xml(encoding=encoding))
            f.close()

    def inkview(self, fileName=None, encoding="utf-8"):
        """View in "inkview", assuming that program is available on your system.

        fileName        default=None            note that any file named _default_fileName will be
                                                overwritten if no fileName is specified. If the extension
                                                is ".svgz" or ".gz", the output will be gzipped
        encoding        default="utf-8"         file encoding
        """
        fileName = self.interpret_fileName(fileName)
        self.save(fileName, encoding)
        os.spawnvp(os.P_NOWAIT, "inkview", ("inkview", fileName))

    def inkscape(self, fileName=None, encoding="utf-8"):
        """View in "inkscape", assuming that program is available on your system.

        fileName        default=None            note that any file named _default_fileName will be
                                                overwritten if no fileName is specified. If the extension
                                                is ".svgz" or ".gz", the output will be gzipped
        encoding        default="utf-8"         file encoding
        """
        fileName = self.interpret_fileName(fileName)
        self.save(fileName, encoding)
        os.spawnvp(os.P_NOWAIT, "inkscape", ("inkscape", fileName))

    def firefox(self, fileName=None, encoding="utf-8"):
        """View in "firefox", assuming that program is available on your system.

        fileName        default=None            note that any file named _default_fileName will be
                                                overwritten if no fileName is specified. If the extension
                                                is ".svgz" or ".gz", the output will be gzipped
        encoding        default="utf-8"         file encoding
        """
        fileName = self.interpret_fileName(fileName)
        self.save(fileName, encoding)
        os.spawnvp(os.P_NOWAIT, "firefox", ("firefox", fileName))

######################################################################

_canvas_defaults = {"width": "400px",
                    "height": "400px",
                    "viewBox": "0 0 100 100",
                    "xmlns": "http://www.w3.org/2000/svg",
                    "xmlns:xlink": "http://www.w3.org/1999/xlink",
                    "version": "1.1",
                    "style": {"stroke": "black",
                              "fill": "none",
                              "stroke-width": "0.5pt",
                              "stroke-linejoin": "round",
                              "text-anchor": "middle",
                             },
                    "font-family": ["Helvetica", "Arial", "FreeSans", "Sans", "sans", "sans-serif"],
                   }

def canvas(*sub, **attr):
    """Creates a top-level SVG object, allowing the user to control the
    image size and aspect ratio.

    canvas(sub, sub, sub..., attribute=value)

    sub                     optional list       nested SVG elements or text/Unicode
    attribute=value pairs   optional keywords   SVG attributes

    Default attribute values:

    width           "400px"
    height          "400px"
    viewBox         "0 0 100 100"
    xmlns           "http://www.w3.org/2000/svg"
    xmlns:xlink     "http://www.w3.org/1999/xlink"
    version         "1.1"
    style           "stroke:black; fill:none; stroke-width:0.5pt; stroke-linejoin:round; text-anchor:middle"
    font-family     "Helvetica,Arial,FreeSans?,Sans,sans,sans-serif"
    """
    attributes = dict(_canvas_defaults)
    attributes.update(attr)

    if sub is None or sub == ():
        return SVG("svg", **attributes)
    else:
        return SVG("svg", *sub, **attributes)

def canvas_outline(*sub, **attr):
    """Same as canvas(), but draws an outline around the drawable area,
    so that you know how close your image is to the edges."""
    svg = canvas(*sub, **attr)
    match = re.match(r"[, \t]*([0-9e.+\-]+)[, \t]+([0-9e.+\-]+)[, \t]+([0-9e.+\-]+)[, \t]+([0-9e.+\-]+)[, \t]*", svg["viewBox"])
    if match is None:
        raise ValueError, "canvas viewBox is incorrectly formatted"
    x, y, width, height = [float(x) for x in match.groups()]
    svg.prepend(SVG("rect", x=x, y=y, width=width, height=height, stroke="none", fill="cornsilk"))
    svg.append(SVG("rect", x=x, y=y, width=width, height=height, stroke="black", fill="none"))
    return svg

def template(fileName, svg, replaceme="REPLACEME"):
    """Loads an SVG image from a file, replacing instances of
    <REPLACEME /> with a given svg object.

    fileName         required                name of the template SVG
    svg              required                SVG object for replacement
    replaceme        default="REPLACEME"     fake SVG element to be replaced by the given object

    >>> print load("template.svg")
    None                 <svg (2 sub) style=u'stroke:black; fill:none; stroke-width:0.5pt; stroke-linejoi
    [0]                      <rect height=u'100' width=u'100' stroke=u'none' y=u'0' x=u'0' fill=u'yellow'
    [1]                      <REPLACEME />
    >>>
    >>> print template("template.svg", SVG("circle", cx=50, cy=50, r=30))
    None                 <svg (2 sub) style=u'stroke:black; fill:none; stroke-width:0.5pt; stroke-linejoi
    [0]                      <rect height=u'100' width=u'100' stroke=u'none' y=u'0' x=u'0' fill=u'yellow'
    [1]                      <circle cy=50 cx=50 r=30 />
    """
    output = load(fileName)
    for ti, s in output:
        if isinstance(s, SVG) and s.t == replaceme:
            output[ti] = svg
    return output

######################################################################

def load(fileName):
    """Loads an SVG image from a file."""
    return load_stream(file(fileName))

def load_stream(stream):
    """Loads an SVG image from a stream (can be a string or a file object)."""

    from xml.sax import handler, make_parser
    from xml.sax.handler import feature_namespaces, feature_external_ges, feature_external_pes

    class ContentHandler(handler.ContentHandler):
        def __init__(self):
            self.stack = []
            self.output = None
            self.all_whitespace = re.compile(r"^\s*$")

        def startElement(self, name, attr):
            s = SVG(name)
            s.attr = dict(attr.items())
            if len(self.stack) > 0:
                last = self.stack[-1]
                last.sub.append(s)
            self.stack.append(s)

        def characters(self, ch):
            if not isinstance(ch, basestring) or self.all_whitespace.match(ch) is None:
                if len(self.stack) > 0:
                    last = self.stack[-1]
                    if len(last.sub) > 0 and isinstance(last.sub[-1], basestring):
                        last.sub[-1] = last.sub[-1] + "\n" + ch
                    else:
                        last.sub.append(ch)

        def endElement(self, name):
            if len(self.stack) > 0:
                last = self.stack[-1]
                if (isinstance(last, SVG) and last.t == "style" and
                    "type" in last.attr and last.attr["type"] == "text/css" and
                    len(last.sub) == 1 and isinstance(last.sub[0], basestring)):
                    last.sub[0] = "<![CDATA[\n" + last.sub[0] + "]]>"

            self.output = self.stack.pop()

    ch = ContentHandler()
    parser = make_parser()
    parser.setContentHandler(ch)
    parser.setFeature(feature_namespaces, 0)
    parser.setFeature(feature_external_ges, 0)
    parser.parse(stream)
    return ch.output

######################################################################
def set_func_name(f, name):
    """try to patch the function name string into a function object"""
    try:
        f.func_name = name
    except TypeError:
        # py 2.3 raises: TypeError: readonly attribute
        pass

def totrans(expr, vars=("x", "y"), globals=None, locals=None):
    """Converts to a coordinate transformation (a function that accepts
    two arguments and returns two values).

    expr       required                  a string expression or a function
                                         of two real or one complex value
    vars       default=("x", "y")        independent variable names; a singleton
                                         ("z",) is interpreted as complex
    globals    default=None              dict of global variables
    locals     default=None              dict of local variables
    """
    if locals is None:
        locals = {}  # python 2.3's eval() won't accept None

    if callable(expr):
        if expr.func_code.co_argcount == 2:
            return expr

        elif expr.func_code.co_argcount == 1:
            split = lambda z: (z.real, z.imag)
            output = lambda x, y: split(expr(x + y*1j))
            set_func_name(output, expr.func_name)
            return output

        else:
            raise TypeError, "must be a function of 2 or 1 variables"

    if len(vars) == 2:
        g = math.__dict__
        if globals is not None:
            g.update(globals)
        output = eval("lambda %s, %s: (%s)" % (vars[0], vars[1], expr), g, locals)
        set_func_name(output, "%s,%s -> %s" % (vars[0], vars[1], expr))
        return output

    elif len(vars) == 1:
        g = cmath.__dict__
        if globals is not None:
            g.update(globals)
        output = eval("lambda %s: (%s)" % (vars[0], expr), g, locals)
        split = lambda z: (z.real, z.imag)
        output2 = lambda x, y: split(output(x + y*1j))
        set_func_name(output2, "%s -> %s" % (vars[0], expr))
        return output2

    else:
        raise TypeError, "vars must have 2 or 1 elements"


def window(xmin, xmax, ymin, ymax, x=0, y=0, width=100, height=100,
           xlogbase=None, ylogbase=None, minusInfinity=-1000, flipx=False, flipy=True):
    """Creates and returns a coordinate transformation (a function that
    accepts two arguments and returns two values) that transforms from
        (xmin, ymin), (xmax, ymax)
    to
        (x, y), (x + width, y + height).

    xlogbase, ylogbase    default=None, None     if a number, transform
                                                 logarithmically with given base
    minusInfinity         default=-1000          what to return if
                                                 log(0 or negative) is attempted
    flipx                 default=False          if true, reverse the direction of x
    flipy                 default=True           if true, reverse the direction of y

    (When composing windows, be sure to set flipy=False.)
    """

    if flipx:
        ox1 = x + width
        ox2 = x
    else:
        ox1 = x
        ox2 = x + width
    if flipy:
        oy1 = y + height
        oy2 = y
    else:
        oy1 = y
        oy2 = y + height
    ix1 = xmin
    iy1 = ymin
    ix2 = xmax
    iy2 = ymax

    if xlogbase is not None and (ix1 <= 0. or ix2 <= 0.):
        raise ValueError, "x range incompatible with log scaling: (%g, %g)" % (ix1, ix2)

    if ylogbase is not None and (iy1 <= 0. or iy2 <= 0.):
        raise ValueError, "y range incompatible with log scaling: (%g, %g)" % (iy1, iy2)

    def maybelog(t, it1, it2, ot1, ot2, logbase):
        if t <= 0.:
            return minusInfinity
        else:
            return ot1 + 1.*(math.log(t, logbase) - math.log(it1, logbase))/(math.log(it2, logbase) - math.log(it1, logbase)) * (ot2 - ot1)

    xlogstr, ylogstr = "", ""

    if xlogbase is None:
        xfunc = lambda x: ox1 + 1.*(x - ix1)/(ix2 - ix1) * (ox2 - ox1)
    else:
        xfunc = lambda x: maybelog(x, ix1, ix2, ox1, ox2, xlogbase)
        xlogstr = " xlog=%g" % xlogbase

    if ylogbase is None:
        yfunc = lambda y: oy1 + 1.*(y - iy1)/(iy2 - iy1) * (oy2 - oy1)
    else:
        yfunc = lambda y: maybelog(y, iy1, iy2, oy1, oy2, ylogbase)
        ylogstr = " ylog=%g" % ylogbase

    output = lambda x, y: (xfunc(x), yfunc(y))

    set_func_name(output, "(%g, %g), (%g, %g) -> (%g, %g), (%g, %g)%s%s" % (
                          ix1, ix2, iy1, iy2, ox1, ox2, oy1, oy2, xlogstr, ylogstr))
    return output


def rotate(angle, cx=0, cy=0):
    """Creates and returns a coordinate transformation which rotates
    around (cx,cy) by "angle" degrees."""
    angle *= math.pi/180.
    return lambda x, y: (cx + math.cos(angle)*(x - cx) - math.sin(angle)*(y - cy), cy + math.sin(angle)*(x - cx) + math.cos(angle)*(y - cy))


class Fig:
    """Stores graphics primitive objects and applies a single coordinate
    transformation to them. To compose coordinate systems, nest Fig
    objects.

    Fig(obj, obj, obj..., trans=function)

    obj     optional list    a list of drawing primitives
    trans   default=None     a coordinate transformation function

    >>> fig = Fig(Line(0,0,1,1), Rect(0.2,0.2,0.8,0.8), trans="2*x, 2*y")
    >>> print fig.SVG().xml()
    <g>
        <path d='M0 0L2 2' />
        <path d='M0.4 0.4L1.6 0.4ZL1.6 1.6ZL0.4 1.6ZL0.4 0.4ZZ' />
    </g>
    >>> print Fig(fig, trans="x/2., y/2.").SVG().xml()
    <g>
        <path d='M0 0L1 1' />
        <path d='M0.2 0.2L0.8 0.2ZL0.8 0.8ZL0.2 0.8ZL0.2 0.2ZZ' />
    </g>
    """

    def __repr__(self):
        if self.trans is None:
            return "<Fig (%d items)>" % len(self.d)
        elif isinstance(self.trans, basestring):
            return "<Fig (%d items) x,y -> %s>" % (len(self.d), self.trans)
        else:
            return "<Fig (%d items) %s>" % (len(self.d), self.trans.func_name)

    def __init__(self, *d, **kwds):
        self.d = list(d)
        defaults = {"trans": None, }
        defaults.update(kwds)
        kwds = defaults

        self.trans = kwds["trans"]; del kwds["trans"]
        if len(kwds) != 0:
            raise TypeError, "Fig() got unexpected keyword arguments %s" % kwds.keys()

    def SVG(self, trans=None):
        """Apply the transformation "trans" and return an SVG object.

        Coordinate transformations in nested Figs will be composed.
        """

        if trans is None:
            trans = self.trans
        if isinstance(trans, basestring):
            trans = totrans(trans)

        output = SVG("g")
        for s in self.d:
            if isinstance(s, SVG):
                output.append(s)

            elif isinstance(s, Fig):
                strans = s.trans
                if isinstance(strans, basestring):
                    strans = totrans(strans)

                if trans is None:
                    subtrans = strans
                elif strans is None:
                    subtrans = trans
                else:
                    subtrans = lambda x, y: trans(*strans(x, y))

                output.sub += s.SVG(subtrans).sub

            elif s is None:
                pass

            else:
                output.append(s.SVG(trans))

        return output


class Plot:
    """Acts like Fig, but draws a coordinate axis. You also need to supply plot ranges.

    Plot(xmin, xmax, ymin, ymax, obj, obj, obj..., keyword options...)

    xmin, xmax      required        minimum and maximum x values (in the objs' coordinates)
    ymin, ymax      required        minimum and maximum y values (in the objs' coordinates)
    obj             optional list   drawing primitives
    keyword options keyword list    options defined below

    The following are keyword options, with their default values:

    trans           None          transformation function
    x, y            5, 5          upper-left corner of the Plot in SVG coordinates
    width, height   90, 90        width and height of the Plot in SVG coordinates
    flipx, flipy    False, True   flip the sign of the coordinate axis
    minusInfinity   -1000         if an axis is logarithmic and an object is plotted at 0 or
                                  a negative value, -1000 will be used as a stand-in for NaN
    atx, aty        0, 0          the place where the coordinate axes cross
    xticks          -10           request ticks according to the standard tick specification
                                  (see help(Ticks))
    xminiticks      True          request miniticks according to the standard minitick
                                  specification
    xlabels         True          request tick labels according to the standard tick label
                                  specification
    xlogbase        None          if a number, the axis and transformation are logarithmic
                                  with ticks at the given base (10 being the most common)
    (same for y)
    arrows          None          if a new identifier, create arrow markers and draw them
                                  at the ends of the coordinate axes
    text_attr       {}            a dictionary of attributes for label text
    axis_attr       {}            a dictionary of attributes for the axis lines
    """

    def __repr__(self):
        if self.trans is None:
            return "<Plot (%d items)>" % len(self.d)
        else:
            return "<Plot (%d items) %s>" % (len(self.d), self.trans.func_name)

    def __init__(self, xmin, xmax, ymin, ymax, *d, **kwds):
        self.xmin, self.xmax, self.ymin, self.ymax = xmin, xmax, ymin, ymax
        self.d = list(d)
        defaults = {"trans": None,
                    "x": 5, "y": 5, "width": 90, "height": 90,
                    "flipx": False, "flipy": True,
                    "minusInfinity": -1000,
                    "atx": 0, "xticks": -10, "xminiticks": True, "xlabels": True, "xlogbase": None,
                    "aty": 0, "yticks": -10, "yminiticks": True, "ylabels": True, "ylogbase": None,
                    "arrows": None,
                    "text_attr": {}, "axis_attr": {},
                   }
        defaults.update(kwds)
        kwds = defaults

        self.trans = kwds["trans"]; del kwds["trans"]
        self.x = kwds["x"]; del kwds["x"]
        self.y = kwds["y"]; del kwds["y"]
        self.width = kwds["width"]; del kwds["width"]
        self.height = kwds["height"]; del kwds["height"]
        self.flipx = kwds["flipx"]; del kwds["flipx"]
        self.flipy = kwds["flipy"]; del kwds["flipy"]
        self.minusInfinity = kwds["minusInfinity"]; del kwds["minusInfinity"]
        self.atx = kwds["atx"]; del kwds["atx"]
        self.xticks = kwds["xticks"]; del kwds["xticks"]
        self.xminiticks = kwds["xminiticks"]; del kwds["xminiticks"]
        self.xlabels = kwds["xlabels"]; del kwds["xlabels"]
        self.xlogbase = kwds["xlogbase"]; del kwds["xlogbase"]
        self.aty = kwds["aty"]; del kwds["aty"]
        self.yticks = kwds["yticks"]; del kwds["yticks"]
        self.yminiticks = kwds["yminiticks"]; del kwds["yminiticks"]
        self.ylabels = kwds["ylabels"]; del kwds["ylabels"]
        self.ylogbase = kwds["ylogbase"]; del kwds["ylogbase"]
        self.arrows = kwds["arrows"]; del kwds["arrows"]
        self.text_attr = kwds["text_attr"]; del kwds["text_attr"]
        self.axis_attr = kwds["axis_attr"]; del kwds["axis_attr"]
        if len(kwds) != 0:
            raise TypeError, "Plot() got unexpected keyword arguments %s" % kwds.keys()

    def SVG(self, trans=None):
        """Apply the transformation "trans" and return an SVG object."""
        if trans is None:
            trans = self.trans
        if isinstance(trans, basestring):
            trans = totrans(trans)

        self.last_window = window(self.xmin, self.xmax, self.ymin, self.ymax,
                                  x=self.x, y=self.y, width=self.width, height=self.height,
                                  xlogbase=self.xlogbase, ylogbase=self.ylogbase,
                                  minusInfinity=self.minusInfinity, flipx=self.flipx, flipy=self.flipy)

        d = ([Axes(self.xmin, self.xmax, self.ymin, self.ymax, self.atx, self.aty,
                   self.xticks, self.xminiticks, self.xlabels, self.xlogbase,
                   self.yticks, self.yminiticks, self.ylabels, self.ylogbase,
                   self.arrows, self.text_attr, **self.axis_attr)]
             + self.d)

        return Fig(Fig(*d, **{"trans": trans})).SVG(self.last_window)


class Frame:
    text_defaults = {"stroke": "none", "fill": "black", "font-size": 5, }
    axis_defaults = {}

    tick_length = 1.5
    minitick_length = 0.75
    text_xaxis_offset = 1.
    text_yaxis_offset = 2.
    text_xtitle_offset = 6.
    text_ytitle_offset = 12.

    def __repr__(self):
        return "<Frame (%d items)>" % len(self.d)

    def __init__(self, xmin, xmax, ymin, ymax, *d, **kwds):
        """Acts like Fig, but draws a coordinate frame around the data. You also need to supply plot ranges.

        Frame(xmin, xmax, ymin, ymax, obj, obj, obj..., keyword options...)

        xmin, xmax      required        minimum and maximum x values (in the objs' coordinates)
        ymin, ymax      required        minimum and maximum y values (in the objs' coordinates)
        obj             optional list   drawing primitives
        keyword options keyword list    options defined below

        The following are keyword options, with their default values:

        x, y            20, 5         upper-left corner of the Frame in SVG coordinates
        width, height   75, 80        width and height of the Frame in SVG coordinates
        flipx, flipy    False, True   flip the sign of the coordinate axis
        minusInfinity   -1000         if an axis is logarithmic and an object is plotted at 0 or
                                      a negative value, -1000 will be used as a stand-in for NaN
        xtitle          None          if a string, label the x axis
        xticks          -10           request ticks according to the standard tick specification
                                      (see help(Ticks))
        xminiticks      True          request miniticks according to the standard minitick
                                      specification
        xlabels         True          request tick labels according to the standard tick label
                                      specification
        xlogbase        None          if a number, the axis and transformation are logarithmic
                                      with ticks at the given base (10 being the most common)
        (same for y)
        text_attr       {}            a dictionary of attributes for label text
        axis_attr       {}            a dictionary of attributes for the axis lines
        """

        self.xmin, self.xmax, self.ymin, self.ymax = xmin, xmax, ymin, ymax
        self.d = list(d)
        defaults = {"x": 20, "y": 5, "width": 75, "height": 80,
                    "flipx": False, "flipy": True, "minusInfinity": -1000,
                    "xtitle": None, "xticks": -10, "xminiticks": True, "xlabels": True,
                    "x2labels": None, "xlogbase": None,
                    "ytitle": None, "yticks": -10, "yminiticks": True, "ylabels": True,
                    "y2labels": None, "ylogbase": None,
                    "text_attr": {}, "axis_attr": {},
                   }
        defaults.update(kwds)
        kwds = defaults

        self.x = kwds["x"]; del kwds["x"]
        self.y = kwds["y"]; del kwds["y"]
        self.width = kwds["width"]; del kwds["width"]
        self.height = kwds["height"]; del kwds["height"]
        self.flipx = kwds["flipx"]; del kwds["flipx"]
        self.flipy = kwds["flipy"]; del kwds["flipy"]
        self.minusInfinity = kwds["minusInfinity"]; del kwds["minusInfinity"]
        self.xtitle = kwds["xtitle"]; del kwds["xtitle"]
        self.xticks = kwds["xticks"]; del kwds["xticks"]
        self.xminiticks = kwds["xminiticks"]; del kwds["xminiticks"]
        self.xlabels = kwds["xlabels"]; del kwds["xlabels"]
        self.x2labels = kwds["x2labels"]; del kwds["x2labels"]
        self.xlogbase = kwds["xlogbase"]; del kwds["xlogbase"]
        self.ytitle = kwds["ytitle"]; del kwds["ytitle"]
        self.yticks = kwds["yticks"]; del kwds["yticks"]
        self.yminiticks = kwds["yminiticks"]; del kwds["yminiticks"]
        self.ylabels = kwds["ylabels"]; del kwds["ylabels"]
        self.y2labels = kwds["y2labels"]; del kwds["y2labels"]
        self.ylogbase = kwds["ylogbase"]; del kwds["ylogbase"]

        self.text_attr = dict(self.text_defaults)
        self.text_attr.update(kwds["text_attr"]); del kwds["text_attr"]

        self.axis_attr = dict(self.axis_defaults)
        self.axis_attr.update(kwds["axis_attr"]); del kwds["axis_attr"]

        if len(kwds) != 0:
            raise TypeError, "Frame() got unexpected keyword arguments %s" % kwds.keys()

    def SVG(self):
        """Apply the window transformation and return an SVG object."""

        self.last_window = window(self.xmin, self.xmax, self.ymin, self.ymax,
                                  x=self.x, y=self.y, width=self.width, height=self.height,
                                  xlogbase=self.xlogbase, ylogbase=self.ylogbase,
                                  minusInfinity=self.minusInfinity, flipx=self.flipx, flipy=self.flipy)

        left = YAxis(self.ymin, self.ymax, self.xmin, self.yticks, self.yminiticks, self.ylabels, self.ylogbase,
                     None, None, None, self.text_attr, **self.axis_attr)
        right = YAxis(self.ymin, self.ymax, self.xmax, self.yticks, self.yminiticks, self.y2labels, self.ylogbase,
                      None, None, None, self.text_attr, **self.axis_attr)
        bottom = XAxis(self.xmin, self.xmax, self.ymin, self.xticks, self.xminiticks, self.xlabels, self.xlogbase,
                       None, None, None, self.text_attr, **self.axis_attr)
        top = XAxis(self.xmin, self.xmax, self.ymax, self.xticks, self.xminiticks, self.x2labels, self.xlogbase,
                    None, None, None, self.text_attr, **self.axis_attr)

        left.tick_start = -self.tick_length
        left.tick_end = 0
        left.minitick_start = -self.minitick_length
        left.minitick_end = 0.
        left.text_start = self.text_yaxis_offset

        right.tick_start = 0.
        right.tick_end = self.tick_length
        right.minitick_start = 0.
        right.minitick_end = self.minitick_length
        right.text_start = -self.text_yaxis_offset
        right.text_attr["text-anchor"] = "start"

        bottom.tick_start = 0.
        bottom.tick_end = self.tick_length
        bottom.minitick_start = 0.
        bottom.minitick_end = self.minitick_length
        bottom.text_start = -self.text_xaxis_offset

        top.tick_start = -self.tick_length
        top.tick_end = 0.
        top.minitick_start = -self.minitick_length
        top.minitick_end = 0.
        top.text_start = self.text_xaxis_offset
        top.text_attr["dominant-baseline"] = "text-after-edge"

        output = Fig(*self.d).SVG(self.last_window)
        output.prepend(left.SVG(self.last_window))
        output.prepend(bottom.SVG(self.last_window))
        output.prepend(right.SVG(self.last_window))
        output.prepend(top.SVG(self.last_window))

        if self.xtitle is not None:
            output.append(SVG("text", self.xtitle, transform="translate(%g, %g)" % ((self.x + self.width/2.), (self.y + self.height + self.text_xtitle_offset)), dominant_baseline="text-before-edge", **self.text_attr))
        if self.ytitle is not None:
            output.append(SVG("text", self.ytitle, transform="translate(%g, %g) rotate(-90)" % ((self.x - self.text_ytitle_offset), (self.y + self.height/2.)), **self.text_attr))
        return output

######################################################################

def pathtoPath(svg):
    """Converts SVG("path", d="...") into Path(d=[...])."""
    if not isinstance(svg, SVG) or svg.t != "path":
        raise TypeError, "Only SVG <path /> objects can be converted into Paths"
    attr = dict(svg.attr)
    d = attr["d"]
    del attr["d"]
    for key in attr.keys():
        if not isinstance(key, str):
            value = attr[key]
            del attr[key]
            attr[str(key)] = value
    return Path(d, **attr)


class Path:
    """Path represents an SVG path, an arbitrary set of curves and
    straight segments. Unlike SVG("path", d="..."), Path stores
    coordinates as a list of numbers, rather than a string, so that it is
    transformable in a Fig.

    Path(d, attribute=value)

    d                       required        path data
    attribute=value pairs   keyword list    SVG attributes

    See http://www.w3.org/TR/SVG/paths.html for specification of paths
    from text.

    Internally, Path data is a list of tuples with these definitions:

        * ("Z/z",): close the current path
        * ("H/h", x) or ("V/v", y): a horizontal or vertical line
          segment to x or y
        * ("M/m/L/l/T/t", x, y, global): moveto, lineto, or smooth
          quadratic curveto point (x, y). If global=True, (x, y) should
          not be transformed.
        * ("S/sQ/q", cx, cy, cglobal, x, y, global): polybezier or
          smooth quadratic curveto point (x, y) using (cx, cy) as a
          control point. If cglobal or global=True, (cx, cy) or (x, y)
          should not be transformed.
        * ("C/c", c1x, c1y, c1global, c2x, c2y, c2global, x, y, global):
          cubic curveto point (x, y) using (c1x, c1y) and (c2x, c2y) as
          control points. If c1global, c2global, or global=True, (c1x, c1y),
          (c2x, c2y), or (x, y) should not be transformed.
        * ("A/a", rx, ry, rglobal, x-axis-rotation, angle, large-arc-flag,
          sweep-flag, x, y, global): arcto point (x, y) using the
          aforementioned parameters.
        * (",/.", rx, ry, rglobal, angle, x, y, global): an ellipse at
          point (x, y) with radii (rx, ry). If angle is 0, the whole
          ellipse is drawn; otherwise, a partial ellipse is drawn.
    """
    defaults = {}

    def __repr__(self):
        return "<Path (%d nodes) %s>" % (len(self.d), self.attr)

    def __init__(self, d=[], **attr):
        if isinstance(d, basestring):
            self.d = self.parse(d)
        else:
            self.d = list(d)

        self.attr = dict(self.defaults)
        self.attr.update(attr)

    def parse_whitespace(self, index, pathdata):
        """Part of Path's text-command parsing algorithm; used internally."""
        while index < len(pathdata) and pathdata[index] in (" ", "\t", "\r", "\n", ","):
            index += 1
        return index, pathdata

    def parse_command(self, index, pathdata):
        """Part of Path's text-command parsing algorithm; used internally."""
        index, pathdata = self.parse_whitespace(index, pathdata)

        if index >= len(pathdata):
            return None, index, pathdata
        command = pathdata[index]
        if "A" <= command <= "Z" or "a" <= command <= "z":
            index += 1
            return command, index, pathdata
        else:
            return None, index, pathdata

    def parse_number(self, index, pathdata):
        """Part of Path's text-command parsing algorithm; used internally."""
        index, pathdata = self.parse_whitespace(index, pathdata)

        if index >= len(pathdata):
            return None, index, pathdata
        first_digit = pathdata[index]

        if "0" <= first_digit <= "9" or first_digit in ("-", "+", "."):
            start = index
            while index < len(pathdata) and ("0" <= pathdata[index] <= "9" or pathdata[index] in ("-", "+", ".", "e", "E")):
                index += 1
            end = index

            index = end
            return float(pathdata[start:end]), index, pathdata
        else:
            return None, index, pathdata

    def parse_boolean(self, index, pathdata):
        """Part of Path's text-command parsing algorithm; used internally."""
        index, pathdata = self.parse_whitespace(index, pathdata)

        if index >= len(pathdata):
            return None, index, pathdata
        first_digit = pathdata[index]

        if first_digit in ("0", "1"):
            index += 1
            return int(first_digit), index, pathdata
        else:
            return None, index, pathdata

    def parse(self, pathdata):
        """Parses text-commands, converting them into a list of tuples.
        Called by the constructor."""
        output = []
        index = 0
        while True:
            command, index, pathdata = self.parse_command(index, pathdata)
            index, pathdata = self.parse_whitespace(index, pathdata)

            if command is None and index == len(pathdata):
                break  # this is the normal way out of the loop
            if command in ("Z", "z"):
                output.append((command,))

            ######################
            elif command in ("H", "h", "V", "v"):
                errstring = "Path command \"%s\" requires a number at index %d" % (command, index)
                num1, index, pathdata = self.parse_number(index, pathdata)
                if num1 is None:
                    raise ValueError, errstring

                while num1 is not None:
                    output.append((command, num1))
                    num1, index, pathdata = self.parse_number(index, pathdata)

            ######################
            elif command in ("M", "m", "L", "l", "T", "t"):
                errstring = "Path command \"%s\" requires an x,y pair at index %d" % (command, index)
                num1, index, pathdata = self.parse_number(index, pathdata)
                num2, index, pathdata = self.parse_number(index, pathdata)

                if num1 is None:
                    raise ValueError, errstring

                while num1 is not None:
                    if num2 is None:
                        raise ValueError, errstring
                    output.append((command, num1, num2, False))

                    num1, index, pathdata = self.parse_number(index, pathdata)
                    num2, index, pathdata = self.parse_number(index, pathdata)

            ######################
            elif command in ("S", "s", "Q", "q"):
                errstring = "Path command \"%s\" requires a cx,cy,x,y quadruplet at index %d" % (command, index)
                num1, index, pathdata = self.parse_number(index, pathdata)
                num2, index, pathdata = self.parse_number(index, pathdata)
                num3, index, pathdata = self.parse_number(index, pathdata)
                num4, index, pathdata = self.parse_number(index, pathdata)

                if num1 is None:
                    raise ValueError, errstring

                while num1 is not None:
                    if num2 is None or num3 is None or num4 is None:
                        raise ValueError, errstring
                    output.append((command, num1, num2, False, num3, num4, False))

                    num1, index, pathdata = self.parse_number(index, pathdata)
                    num2, index, pathdata = self.parse_number(index, pathdata)
                    num3, index, pathdata = self.parse_number(index, pathdata)
                    num4, index, pathdata = self.parse_number(index, pathdata)

            ######################
            elif command in ("C", "c"):
                errstring = "Path command \"%s\" requires a c1x,c1y,c2x,c2y,x,y sextuplet at index %d" % (command, index)
                num1, index, pathdata = self.parse_number(index, pathdata)
                num2, index, pathdata = self.parse_number(index, pathdata)
                num3, index, pathdata = self.parse_number(index, pathdata)
                num4, index, pathdata = self.parse_number(index, pathdata)
                num5, index, pathdata = self.parse_number(index, pathdata)
                num6, index, pathdata = self.parse_number(index, pathdata)

                if num1 is None:
                    raise ValueError, errstring

                while num1 is not None:
                    if num2 is None or num3 is None or num4 is None or num5 is None or num6 is None:
                        raise ValueError, errstring

                    output.append((command, num1, num2, False, num3, num4, False, num5, num6, False))

                    num1, index, pathdata = self.parse_number(index, pathdata)
                    num2, index, pathdata = self.parse_number(index, pathdata)
                    num3, index, pathdata = self.parse_number(index, pathdata)
                    num4, index, pathdata = self.parse_number(index, pathdata)
                    num5, index, pathdata = self.parse_number(index, pathdata)
                    num6, index, pathdata = self.parse_number(index, pathdata)

            ######################
            elif command in ("A", "a"):
                errstring = "Path command \"%s\" requires a rx,ry,angle,large-arc-flag,sweep-flag,x,y septuplet at index %d" % (command, index)
                num1, index, pathdata = self.parse_number(index, pathdata)
                num2, index, pathdata = self.parse_number(index, pathdata)
                num3, index, pathdata = self.parse_number(index, pathdata)
                num4, index, pathdata = self.parse_boolean(index, pathdata)
                num5, index, pathdata = self.parse_boolean(index, pathdata)
                num6, index, pathdata = self.parse_number(index, pathdata)
                num7, index, pathdata = self.parse_number(index, pathdata)

                if num1 is None:
                    raise ValueError, errstring

                while num1 is not None:
                    if num2 is None or num3 is None or num4 is None or num5 is None or num6 is None or num7 is None:
                        raise ValueError, errstring

                    output.append((command, num1, num2, False, num3, num4, num5, num6, num7, False))

                    num1, index, pathdata = self.parse_number(index, pathdata)
                    num2, index, pathdata = self.parse_number(index, pathdata)
                    num3, index, pathdata = self.parse_number(index, pathdata)
                    num4, index, pathdata = self.parse_boolean(index, pathdata)
                    num5, index, pathdata = self.parse_boolean(index, pathdata)
                    num6, index, pathdata = self.parse_number(index, pathdata)
                    num7, index, pathdata = self.parse_number(index, pathdata)

        return output

    def SVG(self, trans=None):
        """Apply the transformation "trans" and return an SVG object."""
        if isinstance(trans, basestring):
            trans = totrans(trans)

        x, y, X, Y = None, None, None, None
        output = []
        for datum in self.d:
            if not isinstance(datum, (tuple, list)):
                raise TypeError, "pathdata elements must be tuples/lists"

            command = datum[0]

            ######################
            if command in ("Z", "z"):
                x, y, X, Y = None, None, None, None
                output.append("Z")

            ######################
            elif command in ("H", "h", "V", "v"):
                command, num1 = datum

                if command == "H" or (command == "h" and x is None):
                    x = num1
                elif command == "h":
                    x += num1
                elif command == "V" or (command == "v" and y is None):
                    y = num1
                elif command == "v":
                    y += num1

                if trans is None:
                    X, Y = x, y
                else:
                    X, Y = trans(x, y)

                output.append("L%g %g" % (X, Y))

            ######################
            elif command in ("M", "m", "L", "l", "T", "t"):
                command, num1, num2, isglobal12 = datum

                if trans is None or isglobal12:
                    if command.isupper() or X is None or Y is None:
                        X, Y = num1, num2
                    else:
                        X += num1
                        Y += num2
                    x, y = X, Y

                else:
                    if command.isupper() or x is None or y is None:
                        x, y = num1, num2
                    else:
                        x += num1
                        y += num2
                    X, Y = trans(x, y)

                COMMAND = command.capitalize()
                output.append("%s%g %g" % (COMMAND, X, Y))

            ######################
            elif command in ("S", "s", "Q", "q"):
                command, num1, num2, isglobal12, num3, num4, isglobal34 = datum

                if trans is None or isglobal12:
                    if command.isupper() or X is None or Y is None:
                        CX, CY = num1, num2
                    else:
                        CX = X + num1
                        CY = Y + num2

                else:
                    if command.isupper() or x is None or y is None:
                        cx, cy = num1, num2
                    else:
                        cx = x + num1
                        cy = y + num2
                    CX, CY = trans(cx, cy)

                if trans is None or isglobal34:
                    if command.isupper() or X is None or Y is None:
                        X, Y = num3, num4
                    else:
                        X += num3
                        Y += num4
                    x, y = X, Y

                else:
                    if command.isupper() or x is None or y is None:
                        x, y = num3, num4
                    else:
                        x += num3
                        y += num4
                    X, Y = trans(x, y)

                COMMAND = command.capitalize()
                output.append("%s%g %g %g %g" % (COMMAND, CX, CY, X, Y))

            ######################
            elif command in ("C", "c"):
                command, num1, num2, isglobal12, num3, num4, isglobal34, num5, num6, isglobal56 = datum

                if trans is None or isglobal12:
                    if command.isupper() or X is None or Y is None:
                        C1X, C1Y = num1, num2
                    else:
                        C1X = X + num1
                        C1Y = Y + num2

                else:
                    if command.isupper() or x is None or y is None:
                        c1x, c1y = num1, num2
                    else:
                        c1x = x + num1
                        c1y = y + num2
                    C1X, C1Y = trans(c1x, c1y)

                if trans is None or isglobal34:
                    if command.isupper() or X is None or Y is None:
                        C2X, C2Y = num3, num4
                    else:
                        C2X = X + num3
                        C2Y = Y + num4

                else:
                    if command.isupper() or x is None or y is None:
                        c2x, c2y = num3, num4
                    else:
                        c2x = x + num3
                        c2y = y + num4
                    C2X, C2Y = trans(c2x, c2y)

                if trans is None or isglobal56:
                    if command.isupper() or X is None or Y is None:
                        X, Y = num5, num6
                    else:
                        X += num5
                        Y += num6
                    x, y = X, Y

                else:
                    if command.isupper() or x is None or y is None:
                        x, y = num5, num6
                    else:
                        x += num5
                        y += num6
                    X, Y = trans(x, y)

                COMMAND = command.capitalize()
                output.append("%s%g %g %g %g %g %g" % (COMMAND, C1X, C1Y, C2X, C2Y, X, Y))

            ######################
            elif command in ("A", "a"):
                command, num1, num2, isglobal12, angle, large_arc_flag, sweep_flag, num3, num4, isglobal34 = datum

                oldx, oldy = x, y
                OLDX, OLDY = X, Y

                if trans is None or isglobal34:
                    if command.isupper() or X is None or Y is None:
                        X, Y = num3, num4
                    else:
                        X += num3
                        Y += num4
                    x, y = X, Y

                else:
                    if command.isupper() or x is None or y is None:
                        x, y = num3, num4
                    else:
                        x += num3
                        y += num4
                    X, Y = trans(x, y)

                if x is not None and y is not None:
                    centerx, centery = (x + oldx)/2., (y + oldy)/2.
                CENTERX, CENTERY = (X + OLDX)/2., (Y + OLDY)/2.

                if trans is None or isglobal12:
                    RX = CENTERX + num1
                    RY = CENTERY + num2

                else:
                    rx = centerx + num1
                    ry = centery + num2
                    RX, RY = trans(rx, ry)

                COMMAND = command.capitalize()
                output.append("%s%g %g %g %d %d %g %g" % (COMMAND, RX - CENTERX, RY - CENTERY, angle, large_arc_flag, sweep_flag, X, Y))

            elif command in (",", "."):
                command, num1, num2, isglobal12, angle, num3, num4, isglobal34 = datum
                if trans is None or isglobal34:
                    if command == "." or X is None or Y is None:
                        X, Y = num3, num4
                    else:
                        X += num3
                        Y += num4
                        x, y = None, None

                else:
                    if command == "." or x is None or y is None:
                        x, y = num3, num4
                    else:
                        x += num3
                        y += num4
                    X, Y = trans(x, y)

                if trans is None or isglobal12:
                    RX = X + num1
                    RY = Y + num2

                else:
                    rx = x + num1
                    ry = y + num2
                    RX, RY = trans(rx, ry)

                RX, RY = RX - X, RY - Y

                X1, Y1 = X + RX * math.cos(angle*math.pi/180.), Y + RX * math.sin(angle*math.pi/180.)
                X2, Y2 = X + RY * math.sin(angle*math.pi/180.), Y - RY * math.cos(angle*math.pi/180.)
                X3, Y3 = X - RX * math.cos(angle*math.pi/180.), Y - RX * math.sin(angle*math.pi/180.)
                X4, Y4 = X - RY * math.sin(angle*math.pi/180.), Y + RY * math.cos(angle*math.pi/180.)

                output.append("M%g %gA%g %g %g 0 0 %g %gA%g %g %g 0 0 %g %gA%g %g %g 0 0 %g %gA%g %g %g 0 0 %g %g" % (
                              X1, Y1, RX, RY, angle, X2, Y2, RX, RY, angle, X3, Y3, RX, RY, angle, X4, Y4, RX, RY, angle, X1, Y1))

        return SVG("path", d="".join(output), **self.attr)

######################################################################

def funcRtoC(expr, var="t", globals=None, locals=None):
    """Converts a complex "z(t)" string to a function acceptable for Curve.

    expr    required        string in the form "z(t)"
    var     default="t"     name of the independent variable
    globals default=None    dict of global variables used in the expression;
                            you may want to use Python's builtin globals()
    locals  default=None    dict of local variables
    """
    if locals is None:
        locals = {}  # python 2.3's eval() won't accept None
    g = cmath.__dict__
    if globals is not None:
        g.update(globals)
    output = eval("lambda %s: (%s)" % (var, expr), g, locals)
    split = lambda z: (z.real, z.imag)
    output2 = lambda t: split(output(t))
    set_func_name(output2, "%s -> %s" % (var, expr))
    return output2


def funcRtoR2(expr, var="t", globals=None, locals=None):
    """Converts a "f(t), g(t)" string to a function acceptable for Curve.

    expr    required        string in the form "f(t), g(t)"
    var     default="t"     name of the independent variable
    globals default=None    dict of global variables used in the expression;
                            you may want to use Python's builtin globals()
    locals  default=None    dict of local variables
    """
    if locals is None:
        locals = {}  # python 2.3's eval() won't accept None
    g = math.__dict__
    if globals is not None:
        g.update(globals)
    output = eval("lambda %s: (%s)" % (var, expr), g, locals)
    set_func_name(output, "%s -> %s" % (var, expr))
    return output


def funcRtoR(expr, var="x", globals=None, locals=None):
    """Converts a "f(x)" string to a function acceptable for Curve.

    expr    required        string in the form "f(x)"
    var     default="x"     name of the independent variable
    globals default=None    dict of global variables used in the expression;
                            you may want to use Python's builtin globals()
    locals  default=None    dict of local variables
    """
    if locals is None:
        locals = {}  # python 2.3's eval() won't accept None
    g = math.__dict__
    if globals is not None:
        g.update(globals)
    output = eval("lambda %s: (%s, %s)" % (var, var, expr), g, locals)
    set_func_name(output, "%s -> %s" % (var, expr))
    return output


class Curve:
    """Draws a parametric function as a path.

    Curve(f, low, high, loop, attribute=value)

    f                      required         a Python callable or string in
                                            the form "f(t), g(t)"
    low, high              required         left and right endpoints
    loop                   default=False    if True, connect the endpoints
    attribute=value pairs  keyword list     SVG attributes
    """
    defaults = {}
    random_sampling = True
    recursion_limit = 15
    linearity_limit = 0.05
    discontinuity_limit = 5.

    def __repr__(self):
        return "<Curve %s [%s, %s] %s>" % (self.f, self.low, self.high, self.attr)

    def __init__(self, f, low, high, loop=False, **attr):
        self.f = f
        self.low = low
        self.high = high
        self.loop = loop

        self.attr = dict(self.defaults)
        self.attr.update(attr)

    ### nested class Sample
    class Sample:
        def __repr__(self):
            t, x, y, X, Y = self.t, self.x, self.y, self.X, self.Y
            if t is not None:
                t = "%g" % t
            if x is not None:
                x = "%g" % x
            if y is not None:
                y = "%g" % y
            if X is not None:
                X = "%g" % X
            if Y is not None:
                Y = "%g" % Y
            return "<Curve.Sample t=%s x=%s y=%s X=%s Y=%s>" % (t, x, y, X, Y)

        def __init__(self, t):
            self.t = t

        def link(self, left, right):
            self.left, self.right = left, right

        def evaluate(self, f, trans):
            self.x, self.y = f(self.t)
            if trans is None:
                self.X, self.Y = self.x, self.y
            else:
                self.X, self.Y = trans(self.x, self.y)
    ### end Sample

    ### nested class Samples
    class Samples:
        def __repr__(self):
            return "<Curve.Samples (%d samples)>" % len(self)

        def __init__(self, left, right):
            self.left, self.right = left, right

        def __len__(self):
            count = 0
            current = self.left
            while current is not None:
                count += 1
                current = current.right
            return count

        def __iter__(self):
            self.current = self.left
            return self

        def next(self):
            current = self.current
            if current is None:
                raise StopIteration
            self.current = self.current.right
            return current
    ### end nested class

    def sample(self, trans=None):
        """Adaptive-sampling algorithm that chooses the best sample points
        for a parametric curve between two endpoints and detects
        discontinuities.  Called by SVG()."""
        oldrecursionlimit = sys.getrecursionlimit()
        sys.setrecursionlimit(self.recursion_limit + 100)
        try:
            # the best way to keep all the information while sampling is to make a linked list
            if not (self.low < self.high):
                raise ValueError, "low must be less than high"
            low, high = self.Sample(float(self.low)), self.Sample(float(self.high))
            low.link(None, high)
            high.link(low, None)

            low.evaluate(self.f, trans)
            high.evaluate(self.f, trans)

            # adaptive sampling between the low and high points
            self.subsample(low, high, 0, trans)

            # Prune excess points where the curve is nearly linear
            left = low
            while left.right is not None:
                # increment mid and right
                mid = left.right
                right = mid.right
                if (right is not None and
                    left.X is not None and left.Y is not None and
                    mid.X is not None and mid.Y is not None and
                    right.X is not None and right.Y is not None):
                    numer = left.X*(right.Y - mid.Y) + mid.X*(left.Y - right.Y) + right.X*(mid.Y - left.Y)
                    denom = math.sqrt((left.X - right.X)**2 + (left.Y - right.Y)**2)
                    if denom != 0. and abs(numer/denom) < self.linearity_limit:
                        # drop mid (the garbage collector will get it)
                        left.right = right
                        right.left = left
                    else:
                        # increment left
                        left = left.right
                else:
                    left = left.right

            self.last_samples = self.Samples(low, high)

        finally:
            sys.setrecursionlimit(oldrecursionlimit)

    def subsample(self, left, right, depth, trans=None):
        """Part of the adaptive-sampling algorithm that chooses the best
        sample points.  Called by sample()."""

        if self.random_sampling:
            mid = self.Sample(left.t + random.uniform(0.3, 0.7) * (right.t - left.t))
        else:
            mid = self.Sample(left.t + 0.5 * (right.t - left.t))

        left.right = mid
        right.left = mid
        mid.link(left, right)
        mid.evaluate(self.f, trans)

        # calculate the distance of closest approach of mid to the line between left and right
        numer = left.X*(right.Y - mid.Y) + mid.X*(left.Y - right.Y) + right.X*(mid.Y - left.Y)
        denom = math.sqrt((left.X - right.X)**2 + (left.Y - right.Y)**2)

        # if we haven't sampled enough or left fails to be close enough to right, or mid fails to be linear enough...
        if (depth < 3 or
            (denom == 0 and left.t != right.t) or
            denom > self.discontinuity_limit or
            (denom != 0. and abs(numer/denom) > self.linearity_limit)):

            # and we haven't sampled too many points
            if depth < self.recursion_limit:
                self.subsample(left, mid, depth+1, trans)
                self.subsample(mid, right, depth+1, trans)

            else:
                # We've sampled many points and yet it's still not a small linear gap.
                # Break the line: it's a discontinuity
                mid.y = mid.Y = None

    def SVG(self, trans=None):
        """Apply the transformation "trans" and return an SVG object."""
        return self.Path(trans).SVG()

    def Path(self, trans=None, local=False):
        """Apply the transformation "trans" and return a Path object in
        global coordinates.  If local=True, return a Path in local coordinates
        (which must be transformed again)."""

        if isinstance(trans, basestring):
            trans = totrans(trans)
        if isinstance(self.f, basestring):
            self.f = funcRtoR2(self.f)

        self.sample(trans)

        output = []
        for s in self.last_samples:
            if s.X is not None and s.Y is not None:
                if s.left is None or s.left.Y is None:
                    command = "M"
                else:
                    command = "L"

                if local:
                    output.append((command, s.x, s.y, False))
                else:
                    output.append((command, s.X, s.Y, True))

        if self.loop:
            output.append(("Z",))
        return Path(output, **self.attr)

######################################################################

class Poly:
    """Draws a curve specified by a sequence of points. The curve may be
    piecewise linear, like a polygon, or a Bezier curve.

    Poly(d, mode, loop, attribute=value)

    d                       required        list of tuples representing points
                                            and possibly control points
    mode                    default="L"     "lines", "bezier", "velocity",
                                            "foreback", "smooth", or an abbreviation
    loop                    default=False   if True, connect the first and last
                                            point, closing the loop
    attribute=value pairs   keyword list    SVG attributes

    The format of the tuples in d depends on the mode.

    "lines"/"L"         d=[(x,y), (x,y), ...]
                                            piecewise-linear segments joining the (x,y) points
    "bezier"/"B"        d=[(x, y, c1x, c1y, c2x, c2y), ...]
                                            Bezier curve with two control points (control points
                                            preceed (x,y), as in SVG paths). If (c1x,c1y) and
                                            (c2x,c2y) both equal (x,y), you get a linear
                                            interpolation ("lines")
    "velocity"/"V"      d=[(x, y, vx, vy), ...]
                                            curve that passes through (x,y) with velocity (vx,vy)
                                            (one unit of arclength per unit time); in other words,
                                            (vx,vy) is the tangent vector at (x,y). If (vx,vy) is
                                            (0,0), you get a linear interpolation ("lines").
    "foreback"/"F"      d=[(x, y, bx, by, fx, fy), ...]
                                            like "velocity" except that there is a left derivative
                                            (bx,by) and a right derivative (fx,fy). If (bx,by)
                                            equals (fx,fy) (with no minus sign), you get a
                                            "velocity" curve
    "smooth"/"S"        d=[(x,y), (x,y), ...]
                                            a "velocity" interpolation with (vx,vy)[i] equal to
                                            ((x,y)[i+1] - (x,y)[i-1])/2: the minimal derivative
    """
    defaults = {}

    def __repr__(self):
        return "<Poly (%d nodes) mode=%s loop=%s %s>" % (
               len(self.d), self.mode, repr(self.loop), self.attr)

    def __init__(self, d=[], mode="L", loop=False, **attr):
        self.d = list(d)
        self.mode = mode
        self.loop = loop

        self.attr = dict(self.defaults)
        self.attr.update(attr)

    def SVG(self, trans=None):
        """Apply the transformation "trans" and return an SVG object."""
        return self.Path(trans).SVG()

    def Path(self, trans=None, local=False):
        """Apply the transformation "trans" and return a Path object in
        global coordinates.  If local=True, return a Path in local coordinates
        (which must be transformed again)."""
        if isinstance(trans, basestring):
            trans = totrans(trans)

        if self.mode[0] == "L" or self.mode[0] == "l":
            mode = "L"
        elif self.mode[0] == "B" or self.mode[0] == "b":
            mode = "B"
        elif self.mode[0] == "V" or self.mode[0] == "v":
            mode = "V"
        elif self.mode[0] == "F" or self.mode[0] == "f":
            mode = "F"
        elif self.mode[0] == "S" or self.mode[0] == "s":
            mode = "S"

            vx, vy = [0.]*len(self.d), [0.]*len(self.d)
            for i in xrange(len(self.d)):
                inext = (i+1) % len(self.d)
                iprev = (i-1) % len(self.d)

                vx[i] = (self.d[inext][0] - self.d[iprev][0])/2.
                vy[i] = (self.d[inext][1] - self.d[iprev][1])/2.
                if not self.loop and (i == 0 or i == len(self.d)-1):
                    vx[i], vy[i] = 0., 0.

        else:
            raise ValueError, "mode must be \"lines\", \"bezier\", \"velocity\", \"foreback\", \"smooth\", or an abbreviation"

        d = []
        indexes = range(len(self.d))
        if self.loop and len(self.d) > 0:
            indexes.append(0)

        for i in indexes:
            inext = (i+1) % len(self.d)
            iprev = (i-1) % len(self.d)

            x, y = self.d[i][0], self.d[i][1]

            if trans is None:
                X, Y = x, y
            else:
                X, Y = trans(x, y)

            if d == []:
                if local:
                    d.append(("M", x, y, False))
                else:
                    d.append(("M", X, Y, True))

            elif mode == "L":
                if local:
                    d.append(("L", x, y, False))
                else:
                    d.append(("L", X, Y, True))

            elif mode == "B":
                c1x, c1y = self.d[i][2], self.d[i][3]
                if trans is None:
                    C1X, C1Y = c1x, c1y
                else:
                    C1X, C1Y = trans(c1x, c1y)

                c2x, c2y = self.d[i][4], self.d[i][5]
                if trans is None:
                    C2X, C2Y = c2x, c2y
                else:
                    C2X, C2Y = trans(c2x, c2y)

                if local:
                    d.append(("C", c1x, c1y, False, c2x, c2y, False, x, y, False))
                else:
                    d.append(("C", C1X, C1Y, True, C2X, C2Y, True, X, Y, True))

            elif mode == "V":
                c1x, c1y = self.d[iprev][2]/3. + self.d[iprev][0], self.d[iprev][3]/3. + self.d[iprev][1]
                c2x, c2y = self.d[i][2]/-3. + x, self.d[i][3]/-3. + y

                if trans is None:
                    C1X, C1Y = c1x, c1y
                else:
                    C1X, C1Y = trans(c1x, c1y)
                if trans is None:
                    C2X, C2Y = c2x, c2y
                else:
                    C2X, C2Y = trans(c2x, c2y)

                if local:
                    d.append(("C", c1x, c1y, False, c2x, c2y, False, x, y, False))
                else:
                    d.append(("C", C1X, C1Y, True, C2X, C2Y, True, X, Y, True))

            elif mode == "F":
                c1x, c1y = self.d[iprev][4]/3. + self.d[iprev][0], self.d[iprev][5]/3. + self.d[iprev][1]
                c2x, c2y = self.d[i][2]/-3. + x, self.d[i][3]/-3. + y

                if trans is None:
                    C1X, C1Y = c1x, c1y
                else:
                    C1X, C1Y = trans(c1x, c1y)
                if trans is None:
                    C2X, C2Y = c2x, c2y
                else:
                    C2X, C2Y = trans(c2x, c2y)

                if local:
                    d.append(("C", c1x, c1y, False, c2x, c2y, False, x, y, False))
                else:
                    d.append(("C", C1X, C1Y, True, C2X, C2Y, True, X, Y, True))

            elif mode == "S":
                c1x, c1y = vx[iprev]/3. + self.d[iprev][0], vy[iprev]/3. + self.d[iprev][1]
                c2x, c2y = vx[i]/-3. + x, vy[i]/-3. + y

                if trans is None:
                    C1X, C1Y = c1x, c1y
                else:
                    C1X, C1Y = trans(c1x, c1y)
                if trans is None:
                    C2X, C2Y = c2x, c2y
                else:
                    C2X, C2Y = trans(c2x, c2y)

                if local:
                    d.append(("C", c1x, c1y, False, c2x, c2y, False, x, y, False))
                else:
                    d.append(("C", C1X, C1Y, True, C2X, C2Y, True, X, Y, True))

        if self.loop and len(self.d) > 0:
            d.append(("Z",))

        return Path(d, **self.attr)

######################################################################

class Text:
    """Draws a text string at a specified point in local coordinates.

    x, y                   required      location of the point in local coordinates
    d                      required      text/Unicode string
    attribute=value pairs  keyword list  SVG attributes
    """

    defaults = {"stroke": "none", "fill": "black", "font-size": 5, }

    def __repr__(self):
        return "<Text %s at (%g, %g) %s>" % (repr(self.d), self.x, self.y, self.attr)

    def __init__(self, x, y, d, **attr):
        self.x = x
        self.y = y
        self.d = unicode(d)
        self.attr = dict(self.defaults)
        self.attr.update(attr)

    def SVG(self, trans=None):
        """Apply the transformation "trans" and return an SVG object."""
        if isinstance(trans, basestring):
            trans = totrans(trans)

        X, Y = self.x, self.y
        if trans is not None:
            X, Y = trans(X, Y)
        return SVG("text", self.d, x=X, y=Y, **self.attr)


class TextGlobal:
    """Draws a text string at a specified point in global coordinates.

    x, y                   required      location of the point in global coordinates
    d                      required      text/Unicode string
    attribute=value pairs  keyword list  SVG attributes
    """
    defaults = {"stroke": "none", "fill": "black", "font-size": 5, }

    def __repr__(self):
        return "<TextGlobal %s at (%s, %s) %s>" % (repr(self.d), str(self.x), str(self.y), self.attr)

    def __init__(self, x, y, d, **attr):
        self.x = x
        self.y = y
        self.d = unicode(d)
        self.attr = dict(self.defaults)
        self.attr.update(attr)

    def SVG(self, trans=None):
        """Apply the transformation "trans" and return an SVG object."""
        return SVG("text", self.d, x=self.x, y=self.y, **self.attr)

######################################################################

_symbol_templates = {"dot": SVG("symbol", SVG("circle", cx=0, cy=0, r=1, stroke="none", fill="black"), viewBox="0 0 1 1", overflow="visible"),
                    "box": SVG("symbol", SVG("rect", x1=-1, y1=-1, x2=1, y2=1, stroke="none", fill="black"), viewBox="0 0 1 1", overflow="visible"),
                    "uptri": SVG("symbol", SVG("path", d="M -1 0.866 L 1 0.866 L 0 -0.866 Z", stroke="none", fill="black"), viewBox="0 0 1 1", overflow="visible"),
                    "downtri": SVG("symbol", SVG("path", d="M -1 -0.866 L 1 -0.866 L 0 0.866 Z", stroke="none", fill="black"), viewBox="0 0 1 1", overflow="visible"),
                    }

def make_symbol(id, shape="dot", **attr):
    """Creates a new instance of an SVG symbol to avoid cross-linking objects.

    id                    required         a new identifier (string/Unicode)
    shape                 default="dot"  the shape name from _symbol_templates
    attribute=value list  keyword list     modify the SVG attributes of the new symbol
    """
    output = copy.deepcopy(_symbol_templates[shape])
    for i in output.sub:
        i.attr.update(attr_preprocess(attr))
    output["id"] = id
    return output

_circular_dot = make_symbol("circular_dot")


class Dots:
    """Dots draws SVG symbols at a set of points.

    d                      required               list of (x,y) points
    symbol                 default=None           SVG symbol or a new identifier to
                                                  label an auto-generated symbol;
                                                  if None, use pre-defined _circular_dot
    width, height          default=1, 1           width and height of the symbols
                                                  in SVG coordinates
    attribute=value pairs  keyword list           SVG attributes
    """
    defaults = {}

    def __repr__(self):
        return "<Dots (%d nodes) %s>" % (len(self.d), self.attr)

    def __init__(self, d=[], symbol=None, width=1., height=1., **attr):
        self.d = list(d)
        self.width = width
        self.height = height

        self.attr = dict(self.defaults)
        self.attr.update(attr)

        if symbol is None:
            self.symbol = _circular_dot
        elif isinstance(symbol, SVG):
            self.symbol = symbol
        else:
            self.symbol = make_symbol(symbol)

    def SVG(self, trans=None):
        """Apply the transformation "trans" and return an SVG object."""
        if isinstance(trans, basestring):
            trans = totrans(trans)

        output = SVG("g", SVG("defs", self.symbol))
        id = "#%s" % self.symbol["id"]

        for p in self.d:
            x, y = p[0], p[1]

            if trans is None:
                X, Y = x, y
            else:
                X, Y = trans(x, y)

            item = SVG("use", x=X, y=Y, xlink__href=id)
            if self.width is not None:
                item["width"] = self.width
            if self.height is not None:
                item["height"] = self.height
            output.append(item)

        return output

######################################################################

_marker_templates = {"arrow_start": SVG("marker", SVG("path", d="M 9 3.6 L 10.5 0 L 0 3.6 L 10.5 7.2 L 9 3.6 Z"), viewBox="0 0 10.5 7.2", refX="9", refY="3.6", markerWidth="10.5", markerHeight="7.2", markerUnits="strokeWidth", orient="auto", stroke="none", fill="black"),
                    "arrow_end": SVG("marker", SVG("path", d="M 1.5 3.6 L 0 0 L 10.5 3.6 L 0 7.2 L 1.5 3.6 Z"), viewBox="0 0 10.5 7.2", refX="1.5", refY="3.6", markerWidth="10.5", markerHeight="7.2", markerUnits="strokeWidth", orient="auto", stroke="none", fill="black"),
                    }

def make_marker(id, shape, **attr):
    """Creates a new instance of an SVG marker to avoid cross-linking objects.

    id                     required         a new identifier (string/Unicode)
    shape                  required         the shape name from _marker_templates
    attribute=value list   keyword list     modify the SVG attributes of the new marker
    """
    output = copy.deepcopy(_marker_templates[shape])
    for i in output.sub:
        i.attr.update(attr_preprocess(attr))
    output["id"] = id
    return output


class Line(Curve):
    """Draws a line between two points.

    Line(x1, y1, x2, y2, arrow_start, arrow_end, attribute=value)

    x1, y1                  required        the starting point
    x2, y2                  required        the ending point
    arrow_start             default=None    if an identifier string/Unicode,
                                            draw a new arrow object at the
                                            beginning of the line; if a marker,
                                            draw that marker instead
    arrow_end               default=None    same for the end of the line
    attribute=value pairs   keyword list    SVG attributes
    """
    defaults = {}

    def __repr__(self):
        return "<Line (%g, %g) to (%g, %g) %s>" % (
               self.x1, self.y1, self.x2, self.y2, self.attr)

    def __init__(self, x1, y1, x2, y2, arrow_start=None, arrow_end=None, **attr):
        self.x1, self.y1, self.x2, self.y2 = x1, y1, x2, y2
        self.arrow_start, self.arrow_end = arrow_start, arrow_end

        self.attr = dict(self.defaults)
        self.attr.update(attr)

    def SVG(self, trans=None):
        """Apply the transformation "trans" and return an SVG object."""

        line = self.Path(trans).SVG()

        if ((self.arrow_start != False and self.arrow_start is not None) or
            (self.arrow_end != False and self.arrow_end is not None)):
            defs = SVG("defs")

            if self.arrow_start != False and self.arrow_start is not None:
                if isinstance(self.arrow_start, SVG):
                    defs.append(self.arrow_start)
                    line.attr["marker-start"] = "url(#%s)" % self.arrow_start["id"]
                elif isinstance(self.arrow_start, basestring):
                    defs.append(make_marker(self.arrow_start, "arrow_start"))
                    line.attr["marker-start"] = "url(#%s)" % self.arrow_start
                else:
                    raise TypeError, "arrow_start must be False/None or an id string for the new marker"

            if self.arrow_end != False and self.arrow_end is not None:
                if isinstance(self.arrow_end, SVG):
                    defs.append(self.arrow_end)
                    line.attr["marker-end"] = "url(#%s)" % self.arrow_end["id"]
                elif isinstance(self.arrow_end, basestring):
                    defs.append(make_marker(self.arrow_end, "arrow_end"))
                    line.attr["marker-end"] = "url(#%s)" % self.arrow_end
                else:
                    raise TypeError, "arrow_end must be False/None or an id string for the new marker"

            return SVG("g", defs, line)

        return line

    def Path(self, trans=None, local=False):
        """Apply the transformation "trans" and return a Path object in
        global coordinates.  If local=True, return a Path in local coordinates
        (which must be transformed again)."""
        self.f = lambda t: (self.x1 + t*(self.x2 - self.x1), self.y1 + t*(self.y2 - self.y1))
        self.low = 0.
        self.high = 1.
        self.loop = False

        if trans is None:
            return Path([("M", self.x1, self.y1, not local), ("L", self.x2, self.y2, not local)], **self.attr)
        else:
            return Curve.Path(self, trans, local)


class LineGlobal:
    """Draws a line between two points, one or both of which is in
    global coordinates.

    Line(x1, y1, x2, y2, lcoal1, local2, arrow_start, arrow_end, attribute=value)

    x1, y1                  required        the starting point
    x2, y2                  required        the ending point
    local1                  default=False   if True, interpret first point as a
                                            local coordinate (apply transform)
    local2                  default=False   if True, interpret second point as a
                                            local coordinate (apply transform)
    arrow_start             default=None    if an identifier string/Unicode,
                                            draw a new arrow object at the
                                            beginning of the line; if a marker,
                                            draw that marker instead
    arrow_end               default=None    same for the end of the line
    attribute=value pairs   keyword list    SVG attributes
    """
    defaults = {}

    def __repr__(self):
        local1, local2 = "", ""
        if self.local1:
            local1 = "L"
        if self.local2:
            local2 = "L"

        return "<LineGlobal %s(%s, %s) to %s(%s, %s) %s>" % (
               local1, str(self.x1), str(self.y1), local2, str(self.x2), str(self.y2), self.attr)

    def __init__(self, x1, y1, x2, y2, local1=False, local2=False, arrow_start=None, arrow_end=None, **attr):
        self.x1, self.y1, self.x2, self.y2 = x1, y1, x2, y2
        self.local1, self.local2 = local1, local2
        self.arrow_start, self.arrow_end = arrow_start, arrow_end

        self.attr = dict(self.defaults)
        self.attr.update(attr)

    def SVG(self, trans=None):
        """Apply the transformation "trans" and return an SVG object."""
        if isinstance(trans, basestring):
            trans = totrans(trans)

        X1, Y1, X2, Y2 = self.x1, self.y1, self.x2, self.y2

        if self.local1:
            X1, Y1 = trans(X1, Y1)
        if self.local2:
            X2, Y2 = trans(X2, Y2)

        line = SVG("path", d="M%s %s L%s %s" % (X1, Y1, X2, Y2), **self.attr)

        if ((self.arrow_start != False and self.arrow_start is not None) or
            (self.arrow_end != False and self.arrow_end is not None)):
            defs = SVG("defs")

            if self.arrow_start != False and self.arrow_start is not None:
                if isinstance(self.arrow_start, SVG):
                    defs.append(self.arrow_start)
                    line.attr["marker-start"] = "url(#%s)" % self.arrow_start["id"]
                elif isinstance(self.arrow_start, basestring):
                    defs.append(make_marker(self.arrow_start, "arrow_start"))
                    line.attr["marker-start"] = "url(#%s)" % self.arrow_start
                else:
                    raise TypeError, "arrow_start must be False/None or an id string for the new marker"

            if self.arrow_end != False and self.arrow_end is not None:
                if isinstance(self.arrow_end, SVG):
                    defs.append(self.arrow_end)
                    line.attr["marker-end"] = "url(#%s)" % self.arrow_end["id"]
                elif isinstance(self.arrow_end, basestring):
                    defs.append(make_marker(self.arrow_end, "arrow_end"))
                    line.attr["marker-end"] = "url(#%s)" % self.arrow_end
                else:
                    raise TypeError, "arrow_end must be False/None or an id string for the new marker"

            return SVG("g", defs, line)

        return line


class VLine(Line):
    """Draws a vertical line.

    VLine(y1, y2, x, attribute=value)

    y1, y2                  required        y range
    x                       required        x position
    attribute=value pairs   keyword list    SVG attributes
    """
    defaults = {}

    def __repr__(self):
        return "<VLine (%g, %g) at x=%s %s>" % (self.y1, self.y2, self.x, self.attr)

    def __init__(self, y1, y2, x, **attr):
        self.x = x
        self.attr = dict(self.defaults)
        self.attr.update(attr)
        Line.__init__(self, x, y1, x, y2, **self.attr)

    def Path(self, trans=None, local=False):
        """Apply the transformation "trans" and return a Path object in
        global coordinates.  If local=True, return a Path in local coordinates
        (which must be transformed again)."""
        self.x1 = self.x
        self.x2 = self.x
        return Line.Path(self, trans, local)


class HLine(Line):
    """Draws a horizontal line.

    HLine(x1, x2, y, attribute=value)

    x1, x2                  required        x range
    y                       required        y position
    attribute=value pairs   keyword list    SVG attributes
    """
    defaults = {}

    def __repr__(self):
        return "<HLine (%g, %g) at y=%s %s>" % (self.x1, self.x2, self.y, self.attr)

    def __init__(self, x1, x2, y, **attr):
        self.y = y
        self.attr = dict(self.defaults)
        self.attr.update(attr)
        Line.__init__(self, x1, y, x2, y, **self.attr)

    def Path(self, trans=None, local=False):
        """Apply the transformation "trans" and return a Path object in
        global coordinates.  If local=True, return a Path in local coordinates
        (which must be transformed again)."""
        self.y1 = self.y
        self.y2 = self.y
        return Line.Path(self, trans, local)

######################################################################

class Rect(Curve):
    """Draws a rectangle.

    Rect(x1, y1, x2, y2, attribute=value)

    x1, y1                  required        the starting point
    x2, y2                  required        the ending point
    attribute=value pairs   keyword list    SVG attributes
    """
    defaults = {}

    def __repr__(self):
        return "<Rect (%g, %g), (%g, %g) %s>" % (
               self.x1, self.y1, self.x2, self.y2, self.attr)

    def __init__(self, x1, y1, x2, y2, **attr):
        self.x1, self.y1, self.x2, self.y2 = x1, y1, x2, y2

        self.attr = dict(self.defaults)
        self.attr.update(attr)

    def SVG(self, trans=None):
        """Apply the transformation "trans" and return an SVG object."""
        return self.Path(trans).SVG()

    def Path(self, trans=None, local=False):
        """Apply the transformation "trans" and return a Path object in
        global coordinates.  If local=True, return a Path in local coordinates
        (which must be transformed again)."""
        if trans is None:
            return Path([("M", self.x1, self.y1, not local), ("L", self.x2, self.y1, not local), ("L", self.x2, self.y2, not local), ("L", self.x1, self.y2, not local), ("Z",)], **self.attr)

        else:
            self.low = 0.
            self.high = 1.
            self.loop = False

            self.f = lambda t: (self.x1 + t*(self.x2 - self.x1), self.y1)
            d1 = Curve.Path(self, trans, local).d

            self.f = lambda t: (self.x2, self.y1 + t*(self.y2 - self.y1))
            d2 = Curve.Path(self, trans, local).d
            del d2[0]

            self.f = lambda t: (self.x2 + t*(self.x1 - self.x2), self.y2)
            d3 = Curve.Path(self, trans, local).d
            del d3[0]

            self.f = lambda t: (self.x1, self.y2 + t*(self.y1 - self.y2))
            d4 = Curve.Path(self, trans, local).d
            del d4[0]

            return Path(d=(d1 + d2 + d3 + d4 + [("Z",)]), **self.attr)

######################################################################

class Ellipse(Curve):
    """Draws an ellipse from a semimajor vector (ax,ay) and a semiminor
    length (b).

    Ellipse(x, y, ax, ay, b, attribute=value)

    x, y                    required        the center of the ellipse/circle
    ax, ay                  required        a vector indicating the length
                                            and direction of the semimajor axis
    b                       required        the length of the semiminor axis.
                                            If equal to sqrt(ax2 + ay2), the
                                            ellipse is a circle
    attribute=value pairs   keyword list    SVG attributes

    (If sqrt(ax**2 + ay**2) is less than b, then (ax,ay) is actually the
    semiminor axis.)
    """
    defaults = {}

    def __repr__(self):
        return "<Ellipse (%g, %g) a=(%g, %g), b=%g %s>" % (
               self.x, self.y, self.ax, self.ay, self.b, self.attr)

    def __init__(self, x, y, ax, ay, b, **attr):
        self.x, self.y, self.ax, self.ay, self.b = x, y, ax, ay, b

        self.attr = dict(self.defaults)
        self.attr.update(attr)

    def SVG(self, trans=None):
        """Apply the transformation "trans" and return an SVG object."""
        return self.Path(trans).SVG()

    def Path(self, trans=None, local=False):
        """Apply the transformation "trans" and return a Path object in
        global coordinates.  If local=True, return a Path in local coordinates
        (which must be transformed again)."""
        angle = math.atan2(self.ay, self.ax) + math.pi/2.
        bx = self.b * math.cos(angle)
        by = self.b * math.sin(angle)

        self.f = lambda t: (self.x + self.ax*math.cos(t) + bx*math.sin(t), self.y + self.ay*math.cos(t) + by*math.sin(t))
        self.low = -math.pi
        self.high = math.pi
        self.loop = True
        return Curve.Path(self, trans, local)

######################################################################

def unumber(x):
    """Converts numbers to a Unicode string, taking advantage of special
    Unicode characters to make nice minus signs and scientific notation.
    """
    output = u"%g" % x

    if output[0] == u"-":
        output = u"\u2013" + output[1:]

    index = output.find(u"e")
    if index != -1:
        uniout = unicode(output[:index]) + u"\u00d710"
        saw_nonzero = False
        for n in output[index+1:]:
            if n == u"+":
                pass # uniout += u"\u207a"
            elif n == u"-":
                uniout += u"\u207b"
            elif n == u"0":
                if saw_nonzero:
                    uniout += u"\u2070"
            elif n == u"1":
                saw_nonzero = True
                uniout += u"\u00b9"
            elif n == u"2":
                saw_nonzero = True
                uniout += u"\u00b2"
            elif n == u"3":
                saw_nonzero = True
                uniout += u"\u00b3"
            elif u"4" <= n <= u"9":
                saw_nonzero = True
                if saw_nonzero:
                    uniout += eval("u\"\\u%x\"" % (0x2070 + ord(n) - ord(u"0")))
            else:
                uniout += n

        if uniout[:2] == u"1\u00d7":
            uniout = uniout[2:]
        return uniout

    return output


class Ticks:
    """Superclass for all graphics primitives that draw ticks,
    miniticks, and tick labels.  This class only draws the ticks.

    Ticks(f, low, high, ticks, miniticks, labels, logbase, arrow_start,
          arrow_end, text_attr, attribute=value)

    f                       required        parametric function along which ticks
                                            will be drawn; has the same format as
                                            the function used in Curve
    low, high               required        range of the independent variable
    ticks                   default=-10     request ticks according to the standard
                                            tick specification (see below)
    miniticks               default=True    request miniticks according to the
                                            standard minitick specification (below)
    labels                  True            request tick labels according to the
                                            standard tick label specification (below)
    logbase                 default=None    if a number, the axis is logarithmic with
                                            ticks at the given base (usually 10)
    arrow_start             default=None    if a new string identifier, draw an arrow
                                            at the low-end of the axis, referenced by
                                            that identifier; if an SVG marker object,
                                            use that marker
    arrow_end               default=None    if a new string identifier, draw an arrow
                                            at the high-end of the axis, referenced by
                                            that identifier; if an SVG marker object,
                                            use that marker
    text_attr               default={}      SVG attributes for the text labels
    attribute=value pairs   keyword list    SVG attributes for the tick marks

    Standard tick specification:

        * True: same as -10 (below).
        * Positive number N: draw exactly N ticks, including the endpoints. To
          subdivide an axis into 10 equal-sized segments, ask for 11 ticks.
        * Negative number -N: draw at least N ticks. Ticks will be chosen with
          "natural" values, multiples of 2 or 5.
        * List of values: draw a tick mark at each value.
        * Dict of value, label pairs: draw a tick mark at each value, labeling
          it with the given string. This lets you say things like {3.14159: "pi"}.
        * False or None: no ticks.

    Standard minitick specification:

        * True: draw miniticks with "natural" values, more closely spaced than
          the ticks.
        * Positive number N: draw exactly N miniticks, including the endpoints.
          To subdivide an axis into 100 equal-sized segments, ask for 101 miniticks.
        * Negative number -N: draw at least N miniticks.
        * List of values: draw a minitick mark at each value.
        * False or None: no miniticks.

    Standard tick label specification:

        * True: use the unumber function (described below)
        * Format string: standard format strings, e.g. "%5.2f" for 12.34
        * Python callable: function that converts numbers to strings
        * False or None: no labels
    """
    defaults = {"stroke-width": "0.25pt", }
    text_defaults = {"stroke": "none", "fill": "black", "font-size": 5, }
    tick_start = -1.5
    tick_end = 1.5
    minitick_start = -0.75
    minitick_end = 0.75
    text_start = 2.5
    text_angle = 0.

    def __repr__(self):
        return "<Ticks %s from %s to %s ticks=%s labels=%s %s>" % (
               self.f, self.low, self.high, str(self.ticks), str(self.labels), self.attr)

    def __init__(self, f, low, high, ticks=-10, miniticks=True, labels=True, logbase=None,
                 arrow_start=None, arrow_end=None, text_attr={}, **attr):
        self.f = f
        self.low = low
        self.high = high
        self.ticks = ticks
        self.miniticks = miniticks
        self.labels = labels
        self.logbase = logbase
        self.arrow_start = arrow_start
        self.arrow_end = arrow_end

        self.attr = dict(self.defaults)
        self.attr.update(attr)

        self.text_attr = dict(self.text_defaults)
        self.text_attr.update(text_attr)

    def orient_tickmark(self, t, trans=None):
        """Return the position, normalized local x vector, normalized
        local y vector, and angle of a tick at position t.

        Normally only used internally.
        """
        if isinstance(trans, basestring):
            trans = totrans(trans)
        if trans is None:
            f = self.f
        else:
            f = lambda t: trans(*self.f(t))

        eps = _epsilon * abs(self.high - self.low)

        X, Y = f(t)
        Xprime, Yprime = f(t + eps)
        xhatx, xhaty = (Xprime - X)/eps, (Yprime - Y)/eps

        norm = math.sqrt(xhatx**2 + xhaty**2)
        if norm != 0:
            xhatx, xhaty = xhatx/norm, xhaty/norm
        else:
            xhatx, xhaty = 1., 0.

        angle = math.atan2(xhaty, xhatx) + math.pi/2.
        yhatx, yhaty = math.cos(angle), math.sin(angle)

        return (X, Y), (xhatx, xhaty), (yhatx, yhaty), angle

    def SVG(self, trans=None):
        """Apply the transformation "trans" and return an SVG object."""
        if isinstance(trans, basestring):
            trans = totrans(trans)

        self.last_ticks, self.last_miniticks = self.interpret()
        tickmarks = Path([], **self.attr)
        minitickmarks = Path([], **self.attr)
        output = SVG("g")

        if ((self.arrow_start != False and self.arrow_start is not None) or
            (self.arrow_end != False and self.arrow_end is not None)):
            defs = SVG("defs")

            if self.arrow_start != False and self.arrow_start is not None:
                if isinstance(self.arrow_start, SVG):
                    defs.append(self.arrow_start)
                elif isinstance(self.arrow_start, basestring):
                    defs.append(make_marker(self.arrow_start, "arrow_start"))
                else:
                    raise TypeError, "arrow_start must be False/None or an id string for the new marker"

            if self.arrow_end != False and self.arrow_end is not None:
                if isinstance(self.arrow_end, SVG):
                    defs.append(self.arrow_end)
                elif isinstance(self.arrow_end, basestring):
                    defs.append(make_marker(self.arrow_end, "arrow_end"))
                else:
                    raise TypeError, "arrow_end must be False/None or an id string for the new marker"

            output.append(defs)

        eps = _epsilon * (self.high - self.low)

        for t, label in self.last_ticks.items():
            (X, Y), (xhatx, xhaty), (yhatx, yhaty), angle = self.orient_tickmark(t, trans)

            if ((not self.arrow_start or abs(t - self.low) > eps) and
                (not self.arrow_end or abs(t - self.high) > eps)):
                tickmarks.d.append(("M", X - yhatx*self.tick_start, Y - yhaty*self.tick_start, True))
                tickmarks.d.append(("L", X - yhatx*self.tick_end, Y - yhaty*self.tick_end, True))

            angle = (angle - math.pi/2.)*180./math.pi + self.text_angle

            ########### a HACK! ############ (to be removed when Inkscape handles baselines)
            if _hacks["inkscape-text-vertical-shift"]:
                if self.text_start > 0:
                    X += math.cos(angle*math.pi/180. + math.pi/2.) * 2.
                    Y += math.sin(angle*math.pi/180. + math.pi/2.) * 2.
                else:
                    X += math.cos(angle*math.pi/180. + math.pi/2.) * 2. * 2.5
                    Y += math.sin(angle*math.pi/180. + math.pi/2.) * 2. * 2.5
            ########### end hack ###########

            if label != "":
                output.append(SVG("text", label, transform="translate(%g, %g) rotate(%g)" %
                                  (X - yhatx*self.text_start, Y - yhaty*self.text_start, angle), **self.text_attr))

        for t in self.last_miniticks:
            skip = False
            for tt in self.last_ticks.keys():
                if abs(t - tt) < eps:
                    skip = True
                    break
            if not skip:
                (X, Y), (xhatx, xhaty), (yhatx, yhaty), angle = self.orient_tickmark(t, trans)

            if ((not self.arrow_start or abs(t - self.low) > eps) and
                (not self.arrow_end or abs(t - self.high) > eps)):
                minitickmarks.d.append(("M", X - yhatx*self.minitick_start, Y - yhaty*self.minitick_start, True))
                minitickmarks.d.append(("L", X - yhatx*self.minitick_end, Y - yhaty*self.minitick_end, True))

        output.prepend(tickmarks.SVG(trans))
        output.prepend(minitickmarks.SVG(trans))
        return output

    def interpret(self):
        """Evaluate and return optimal ticks and miniticks according to
        the standard minitick specification.

        Normally only used internally.
        """

        if self.labels is None or self.labels == False:
            format = lambda x: ""

        elif self.labels == True:
            format = unumber

        elif isinstance(self.labels, basestring):
            format = lambda x: (self.labels % x)

        elif callable(self.labels):
            format = self.labels

        else:
            raise TypeError, "labels must be None/False, True, a format string, or a number->string function"

        # Now for the ticks
        ticks = self.ticks

        # Case 1: ticks is None/False
        if ticks is None or ticks == False:
            return {}, []

        # Case 2: ticks is the number of desired ticks
        elif isinstance(ticks, (int, long)):
            if ticks == True:
                ticks = -10

            if self.logbase is None:
                ticks = self.compute_ticks(ticks, format)
            else:
                ticks = self.compute_logticks(self.logbase, ticks, format)

            # Now for the miniticks
            if self.miniticks == True:
                if self.logbase is None:
                    return ticks, self.compute_miniticks(ticks)
                else:
                    return ticks, self.compute_logminiticks(self.logbase)

            elif isinstance(self.miniticks, (int, long)):
                return ticks, self.regular_miniticks(self.miniticks)

            elif getattr(self.miniticks, "__iter__", False):
                return ticks, self.miniticks

            elif self.miniticks == False or self.miniticks is None:
                return ticks, []

            else:
                raise TypeError, "miniticks must be None/False, True, a number of desired miniticks, or a list of numbers"

        # Cases 3 & 4: ticks is iterable
        elif getattr(ticks, "__iter__", False):

            # Case 3: ticks is some kind of list
            if not isinstance(ticks, dict):
                output = {}
                eps = _epsilon * (self.high - self.low)
                for x in ticks:
                    if format == unumber and abs(x) < eps:
                        output[x] = u"0"
                    else:
                        output[x] = format(x)
                ticks = output

            # Case 4: ticks is a dict
            else:
                pass

            # Now for the miniticks
            if self.miniticks == True:
                if self.logbase is None:
                    return ticks, self.compute_miniticks(ticks)
                else:
                    return ticks, self.compute_logminiticks(self.logbase)

            elif isinstance(self.miniticks, (int, long)):
                return ticks, self.regular_miniticks(self.miniticks)

            elif getattr(self.miniticks, "__iter__", False):
                return ticks, self.miniticks

            elif self.miniticks == False or self.miniticks is None:
                return ticks, []

            else:
                raise TypeError, "miniticks must be None/False, True, a number of desired miniticks, or a list of numbers"

        else:
            raise TypeError, "ticks must be None/False, a number of desired ticks, a list of numbers, or a dictionary of explicit markers"

    def compute_ticks(self, N, format):
        """Return less than -N or exactly N optimal linear ticks.

        Normally only used internally.
        """
        if self.low >= self.high:
            raise ValueError, "low must be less than high"
        if N == 1:
            raise ValueError, "N can be 0 or >1 to specify the exact number of ticks or negative to specify a maximum"

        eps = _epsilon * (self.high - self.low)

        if N >= 0:
            output = {}
            x = self.low
            for i in xrange(N):
                if format == unumber and abs(x) < eps:
                    label = u"0"
                else:
                    label = format(x)
                output[x] = label
                x += (self.high - self.low)/(N-1.)
            return output

        N = -N

        counter = 0
        granularity = 10**math.ceil(math.log10(max(abs(self.low), abs(self.high))))
        lowN = math.ceil(1.*self.low / granularity)
        highN = math.floor(1.*self.high / granularity)

        while lowN > highN:
            countermod3 = counter % 3
            if countermod3 == 0:
                granularity *= 0.5
            elif countermod3 == 1:
                granularity *= 0.4
            else:
                granularity *= 0.5
            counter += 1
            lowN = math.ceil(1.*self.low / granularity)
            highN = math.floor(1.*self.high / granularity)

        last_granularity = granularity
        last_trial = None

        while True:
            trial = {}
            for n in range(int(lowN), int(highN)+1):
                x = n * granularity
                if format == unumber and abs(x) < eps:
                    label = u"0"
                else:
                    label = format(x)
                trial[x] = label

            if int(highN)+1 - int(lowN) >= N:
                if last_trial is None:
                    v1, v2 = self.low, self.high
                    return {v1: format(v1), v2: format(v2)}
                else:
                    low_in_ticks, high_in_ticks = False, False
                    for t in last_trial.keys():
                        if 1.*abs(t - self.low)/last_granularity < _epsilon:
                            low_in_ticks = True
                        if 1.*abs(t - self.high)/last_granularity < _epsilon:
                            high_in_ticks = True

                    lowN = 1.*self.low / last_granularity
                    highN = 1.*self.high / last_granularity
                    if abs(lowN - round(lowN)) < _epsilon and not low_in_ticks:
                        last_trial[self.low] = format(self.low)
                    if abs(highN - round(highN)) < _epsilon and not high_in_ticks:
                        last_trial[self.high] = format(self.high)
                    return last_trial

            last_granularity = granularity
            last_trial = trial

            countermod3 = counter % 3
            if countermod3 == 0:
                granularity *= 0.5
            elif countermod3 == 1:
                granularity *= 0.4
            else:
                granularity *= 0.5
            counter += 1
            lowN = math.ceil(1.*self.low / granularity)
            highN = math.floor(1.*self.high / granularity)

    def regular_miniticks(self, N):
        """Return exactly N linear ticks.

        Normally only used internally.
        """
        output = []
        x = self.low
        for i in xrange(N):
            output.append(x)
            x += (self.high - self.low)/(N-1.)
        return output

    def compute_miniticks(self, original_ticks):
        """Return optimal linear miniticks, given a set of ticks.

        Normally only used internally.
        """
        if len(original_ticks) < 2:
            original_ticks = ticks(self.low, self.high) # XXX ticks is undefined!
        original_ticks = original_ticks.keys()
        original_ticks.sort()

        if self.low > original_ticks[0] + _epsilon or self.high < original_ticks[-1] - _epsilon:
            raise ValueError, "original_ticks {%g...%g} extend beyond [%g, %g]" % (original_ticks[0], original_ticks[-1], self.low, self.high)

        granularities = []
        for i in range(len(original_ticks)-1):
            granularities.append(original_ticks[i+1] - original_ticks[i])
        spacing = 10**(math.ceil(math.log10(min(granularities)) - 1))

        output = []
        x = original_ticks[0] - math.ceil(1.*(original_ticks[0] - self.low) / spacing) * spacing

        while x <= self.high:
            if x >= self.low:
                already_in_ticks = False
                for t in original_ticks:
                    if abs(x-t) < _epsilon * (self.high - self.low):
                        already_in_ticks = True
                if not already_in_ticks:
                    output.append(x)
            x += spacing
        return output

    def compute_logticks(self, base, N, format):
        """Return less than -N or exactly N optimal logarithmic ticks.

        Normally only used internally.
        """
        if self.low >= self.high:
            raise ValueError, "low must be less than high"
        if N == 1:
            raise ValueError, "N can be 0 or >1 to specify the exact number of ticks or negative to specify a maximum"

        eps = _epsilon * (self.high - self.low)

        if N >= 0:
            output = {}
            x = self.low
            for i in xrange(N):
                if format == unumber and abs(x) < eps:
                    label = u"0"
                else:
                    label = format(x)
                output[x] = label
                x += (self.high - self.low)/(N-1.)
            return output

        N = -N

        lowN = math.floor(math.log(self.low, base))
        highN = math.ceil(math.log(self.high, base))
        output = {}
        for n in range(int(lowN), int(highN)+1):
            x = base**n
            label = format(x)
            if self.low <= x <= self.high:
                output[x] = label

        for i in range(1, len(output)):
            keys = output.keys()
            keys.sort()
            keys = keys[::i]
            values = map(lambda k: output[k], keys)
            if len(values) <= N:
                for k in output.keys():
                    if k not in keys:
                        output[k] = ""
                break

        if len(output) <= 2:
            output2 = self.compute_ticks(N=-int(math.ceil(N/2.)), format=format)
            lowest = min(output2)

            for k in output:
                if k < lowest:
                    output2[k] = output[k]
            output = output2

        return output

    def compute_logminiticks(self, base):
        """Return optimal logarithmic miniticks, given a set of ticks.

        Normally only used internally.
        """
        if self.low >= self.high:
            raise ValueError, "low must be less than high"

        lowN = math.floor(math.log(self.low, base))
        highN = math.ceil(math.log(self.high, base))
        output = []
        num_ticks = 0
        for n in range(int(lowN), int(highN)+1):
            x = base**n
            if self.low <= x <= self.high:
                num_ticks += 1
            for m in range(2, int(math.ceil(base))):
                minix = m * x
                if self.low <= minix <= self.high:
                    output.append(minix)

        if num_ticks <= 2:
            return []
        else:
            return output

######################################################################

class CurveAxis(Curve, Ticks):
    """Draw an axis with tick marks along a parametric curve.

    CurveAxis(f, low, high, ticks, miniticks, labels, logbase, arrow_start, arrow_end,
    text_attr, attribute=value)

    f                      required         a Python callable or string in
                                            the form "f(t), g(t)", just like Curve
    low, high              required         left and right endpoints
    ticks                  default=-10      request ticks according to the standard
                                            tick specification (see help(Ticks))
    miniticks              default=True     request miniticks according to the
                                            standard minitick specification
    labels                 True             request tick labels according to the
                                            standard tick label specification
    logbase                default=None     if a number, the x axis is logarithmic
                                            with ticks at the given base (10 being
                                            the most common)
    arrow_start            default=None     if a new string identifier, draw an
                                            arrow at the low-end of the axis,
                                            referenced by that identifier; if an
                                            SVG marker object, use that marker
    arrow_end              default=None     if a new string identifier, draw an
                                            arrow at the high-end of the axis,
                                            referenced by that identifier; if an
                                            SVG marker object, use that marker
    text_attr              default={}       SVG attributes for the text labels
    attribute=value pairs  keyword list     SVG attributes
    """
    defaults = {"stroke-width": "0.25pt", }
    text_defaults = {"stroke": "none", "fill": "black", "font-size": 5, }

    def __repr__(self):
        return "<CurveAxis %s [%s, %s] ticks=%s labels=%s %s>" % (
               self.f, self.low, self.high, str(self.ticks), str(self.labels), self.attr)

    def __init__(self, f, low, high, ticks=-10, miniticks=True, labels=True, logbase=None,
                 arrow_start=None, arrow_end=None, text_attr={}, **attr):
        tattr = dict(self.text_defaults)
        tattr.update(text_attr)
        Curve.__init__(self, f, low, high)
        Ticks.__init__(self, f, low, high, ticks, miniticks, labels, logbase, arrow_start, arrow_end, tattr, **attr)

    def SVG(self, trans=None):
        """Apply the transformation "trans" and return an SVG object."""
        func = Curve.SVG(self, trans)
        ticks = Ticks.SVG(self, trans) # returns a <g />

        if self.arrow_start != False and self.arrow_start is not None:
            if isinstance(self.arrow_start, basestring):
                func.attr["marker-start"] = "url(#%s)" % self.arrow_start
            else:
                func.attr["marker-start"] = "url(#%s)" % self.arrow_start.id

        if self.arrow_end != False and self.arrow_end is not None:
            if isinstance(self.arrow_end, basestring):
                func.attr["marker-end"] = "url(#%s)" % self.arrow_end
            else:
                func.attr["marker-end"] = "url(#%s)" % self.arrow_end.id

        ticks.append(func)
        return ticks


class LineAxis(Line, Ticks):
    """Draws an axis with tick marks along a line.

    LineAxis(x1, y1, x2, y2, start, end, ticks, miniticks, labels, logbase,
    arrow_start, arrow_end, text_attr, attribute=value)

    x1, y1                  required        starting point
    x2, y2                  required        ending point
    start, end              default=0, 1    values to start and end labeling
    ticks                   default=-10     request ticks according to the standard
                                            tick specification (see help(Ticks))
    miniticks               default=True    request miniticks according to the
                                            standard minitick specification
    labels                  True            request tick labels according to the
                                            standard tick label specification
    logbase                 default=None    if a number, the x axis is logarithmic
                                            with ticks at the given base (usually 10)
    arrow_start             default=None    if a new string identifier, draw an arrow
                                            at the low-end of the axis, referenced by
                                            that identifier; if an SVG marker object,
                                            use that marker
    arrow_end               default=None    if a new string identifier, draw an arrow
                                            at the high-end of the axis, referenced by
                                            that identifier; if an SVG marker object,
                                            use that marker
    text_attr               default={}      SVG attributes for the text labels
    attribute=value pairs   keyword list    SVG attributes
    """
    defaults = {"stroke-width": "0.25pt", }
    text_defaults = {"stroke": "none", "fill": "black", "font-size": 5, }

    def __repr__(self):
        return "<LineAxis (%g, %g) to (%g, %g) ticks=%s labels=%s %s>" % (
               self.x1, self.y1, self.x2, self.y2, str(self.ticks), str(self.labels), self.attr)

    def __init__(self, x1, y1, x2, y2, start=0., end=1., ticks=-10, miniticks=True, labels=True,
                 logbase=None, arrow_start=None, arrow_end=None, exclude=None, text_attr={}, **attr):
        self.start = start
        self.end = end
        self.exclude = exclude
        tattr = dict(self.text_defaults)
        tattr.update(text_attr)
        Line.__init__(self, x1, y1, x2, y2, **attr)
        Ticks.__init__(self, None, None, None, ticks, miniticks, labels, logbase, arrow_start, arrow_end, tattr, **attr)

    def interpret(self):
        if self.exclude is not None and not (isinstance(self.exclude, (tuple, list)) and len(self.exclude) == 2 and
                                             isinstance(self.exclude[0], (int, long, float)) and isinstance(self.exclude[1], (int, long, float))):
            raise TypeError, "exclude must either be None or (low, high)"

        ticks, miniticks = Ticks.interpret(self)
        if self.exclude is None:
            return ticks, miniticks

        ticks2 = {}
        for loc, label in ticks.items():
            if self.exclude[0] <= loc <= self.exclude[1]:
                ticks2[loc] = ""
            else:
                ticks2[loc] = label

        return ticks2, miniticks

    def SVG(self, trans=None):
        """Apply the transformation "trans" and return an SVG object."""
        line = Line.SVG(self, trans) # must be evaluated first, to set self.f, self.low, self.high

        f01 = self.f
        self.f = lambda t: f01(1. * (t - self.start) / (self.end - self.start))
        self.low = self.start
        self.high = self.end

        if self.arrow_start != False and self.arrow_start is not None:
            if isinstance(self.arrow_start, basestring):
                line.attr["marker-start"] = "url(#%s)" % self.arrow_start
            else:
                line.attr["marker-start"] = "url(#%s)" % self.arrow_start.id

        if self.arrow_end != False and self.arrow_end is not None:
            if isinstance(self.arrow_end, basestring):
                line.attr["marker-end"] = "url(#%s)" % self.arrow_end
            else:
                line.attr["marker-end"] = "url(#%s)" % self.arrow_end.id

        ticks = Ticks.SVG(self, trans) # returns a <g />
        ticks.append(line)
        return ticks


class XAxis(LineAxis):
    """Draws an x axis with tick marks.

    XAxis(xmin, xmax, aty, ticks, miniticks, labels, logbase, arrow_start, arrow_end,
    exclude, text_attr, attribute=value)

    xmin, xmax              required        the x range
    aty                     default=0       y position to draw the axis
    ticks                   default=-10     request ticks according to the standard
                                            tick specification (see help(Ticks))
    miniticks               default=True    request miniticks according to the
                                            standard minitick specification
    labels                  True            request tick labels according to the
                                            standard tick label specification
    logbase                 default=None    if a number, the x axis is logarithmic
                                            with ticks at the given base (usually 10)
    arrow_start             default=None    if a new string identifier, draw an arrow
                                            at the low-end of the axis, referenced by
                                            that identifier; if an SVG marker object,
                                            use that marker
    arrow_end               default=None    if a new string identifier, draw an arrow
                                            at the high-end of the axis, referenced by
                                            that identifier; if an SVG marker object,
                                            use that marker
    exclude                 default=None    if a (low, high) pair, don't draw text
                                            labels within this range
    text_attr               default={}      SVG attributes for the text labels
    attribute=value pairs   keyword list    SVG attributes for all lines

    The exclude option is provided for Axes to keep text from overlapping
    where the axes cross. Normal users are not likely to need it.
    """
    defaults = {"stroke-width": "0.25pt", }
    text_defaults = {"stroke": "none", "fill": "black", "font-size": 5, "dominant-baseline": "text-before-edge", }
    text_start = -1.
    text_angle = 0.

    def __repr__(self):
        return "<XAxis (%g, %g) at y=%g ticks=%s labels=%s %s>" % (
               self.xmin, self.xmax, self.aty, str(self.ticks), str(self.labels), self.attr) # XXX self.xmin/xmax undefd!

    def __init__(self, xmin, xmax, aty=0, ticks=-10, miniticks=True, labels=True, logbase=None,
                 arrow_start=None, arrow_end=None, exclude=None, text_attr={}, **attr):
        self.aty = aty
        tattr = dict(self.text_defaults)
        tattr.update(text_attr)
        LineAxis.__init__(self, xmin, aty, xmax, aty, xmin, xmax, ticks, miniticks, labels, logbase, arrow_start, arrow_end, exclude, tattr, **attr)

    def SVG(self, trans=None):
        """Apply the transformation "trans" and return an SVG object."""
        self.y1 = self.aty
        self.y2 = self.aty
        return LineAxis.SVG(self, trans)


class YAxis(LineAxis):
    """Draws a y axis with tick marks.

    YAxis(ymin, ymax, atx, ticks, miniticks, labels, logbase, arrow_start, arrow_end,
    exclude, text_attr, attribute=value)

    ymin, ymax              required        the y range
    atx                     default=0       x position to draw the axis
    ticks                   default=-10     request ticks according to the standard
                                            tick specification (see help(Ticks))
    miniticks               default=True    request miniticks according to the
                                            standard minitick specification
    labels                  True            request tick labels according to the
                                            standard tick label specification
    logbase                 default=None    if a number, the y axis is logarithmic
                                            with ticks at the given base (usually 10)
    arrow_start             default=None    if a new string identifier, draw an arrow
                                            at the low-end of the axis, referenced by
                                            that identifier; if an SVG marker object,
                                            use that marker
    arrow_end               default=None    if a new string identifier, draw an arrow
                                            at the high-end of the axis, referenced by
                                            that identifier; if an SVG marker object,
                                            use that marker
    exclude                 default=None    if a (low, high) pair, don't draw text
                                            labels within this range
    text_attr               default={}      SVG attributes for the text labels
    attribute=value pairs   keyword list    SVG attributes for all lines

    The exclude option is provided for Axes to keep text from overlapping
    where the axes cross. Normal users are not likely to need it.
    """
    defaults = {"stroke-width": "0.25pt", }
    text_defaults = {"stroke": "none", "fill": "black", "font-size": 5, "text-anchor": "end", "dominant-baseline": "middle", }
    text_start = 2.5
    text_angle = 90.

    def __repr__(self):
        return "<YAxis (%g, %g) at x=%g ticks=%s labels=%s %s>" % (
               self.ymin, self.ymax, self.atx, str(self.ticks), str(self.labels), self.attr) # XXX self.ymin/ymax undefd!

    def __init__(self, ymin, ymax, atx=0, ticks=-10, miniticks=True, labels=True, logbase=None,
                 arrow_start=None, arrow_end=None, exclude=None, text_attr={}, **attr):
        self.atx = atx
        tattr = dict(self.text_defaults)
        tattr.update(text_attr)
        LineAxis.__init__(self, atx, ymin, atx, ymax, ymin, ymax, ticks, miniticks, labels, logbase, arrow_start, arrow_end, exclude, tattr, **attr)

    def SVG(self, trans=None):
        """Apply the transformation "trans" and return an SVG object."""
        self.x1 = self.atx
        self.x2 = self.atx
        return LineAxis.SVG(self, trans)


class Axes:
    """Draw a pair of intersecting x-y axes.

    Axes(xmin, xmax, ymin, ymax, atx, aty, xticks, xminiticks, xlabels, xlogbase,
    yticks, yminiticks, ylabels, ylogbase, arrows, text_attr, attribute=value)

    xmin, xmax               required       the x range
    ymin, ymax               required       the y range
    atx, aty                 default=0, 0   point where the axes try to cross;
                                            if outside the range, the axes will
                                            cross at the closest corner
    xticks                   default=-10    request ticks according to the standard
                                            tick specification (see help(Ticks))
    xminiticks               default=True   request miniticks according to the
                                            standard minitick specification
    xlabels                  True           request tick labels according to the
                                            standard tick label specification
    xlogbase                 default=None   if a number, the x axis is logarithmic
                                            with ticks at the given base (usually 10)
    yticks                   default=-10    request ticks according to the standard
                                            tick specification
    yminiticks               default=True   request miniticks according to the
                                            standard minitick specification
    ylabels                  True           request tick labels according to the
                                            standard tick label specification
    ylogbase                 default=None   if a number, the y axis is logarithmic
                                            with ticks at the given base (usually 10)
    arrows                   default=None   if a new string identifier, draw arrows
                                            referenced by that identifier
    text_attr                default={}     SVG attributes for the text labels
    attribute=value pairs    keyword list   SVG attributes for all lines
    """
    defaults = {"stroke-width": "0.25pt", }
    text_defaults = {"stroke": "none", "fill": "black", "font-size": 5, }

    def __repr__(self):
        return "<Axes x=(%g, %g) y=(%g, %g) at (%g, %g) %s>" % (
               self.xmin, self.xmax, self.ymin, self.ymax, self.atx, self.aty, self.attr)

    def __init__(self, xmin, xmax, ymin, ymax, atx=0, aty=0,
                 xticks=-10, xminiticks=True, xlabels=True, xlogbase=None,
                 yticks=-10, yminiticks=True, ylabels=True, ylogbase=None,
                 arrows=None, text_attr={}, **attr):
        self.xmin, self.xmax = xmin, xmax
        self.ymin, self.ymax = ymin, ymax
        self.atx, self.aty = atx, aty
        self.xticks, self.xminiticks, self.xlabels, self.xlogbase = xticks, xminiticks, xlabels, xlogbase
        self.yticks, self.yminiticks, self.ylabels, self.ylogbase = yticks, yminiticks, ylabels, ylogbase
        self.arrows = arrows

        self.text_attr = dict(self.text_defaults)
        self.text_attr.update(text_attr)

        self.attr = dict(self.defaults)
        self.attr.update(attr)

    def SVG(self, trans=None):
        """Apply the transformation "trans" and return an SVG object."""
        atx, aty = self.atx, self.aty
        if atx < self.xmin:
            atx = self.xmin
        if atx > self.xmax:
            atx = self.xmax
        if aty < self.ymin:
            aty = self.ymin
        if aty > self.ymax:
            aty = self.ymax

        xmargin = 0.1 * abs(self.ymin - self.ymax)
        xexclude = atx - xmargin, atx + xmargin

        ymargin = 0.1 * abs(self.xmin - self.xmax)
        yexclude = aty - ymargin, aty + ymargin

        if self.arrows is not None and self.arrows != False:
            xarrow_start = self.arrows + ".xstart"
            xarrow_end = self.arrows + ".xend"
            yarrow_start = self.arrows + ".ystart"
            yarrow_end = self.arrows + ".yend"
        else:
            xarrow_start = xarrow_end = yarrow_start = yarrow_end = None

        xaxis = XAxis(self.xmin, self.xmax, aty, self.xticks, self.xminiticks, self.xlabels, self.xlogbase, xarrow_start, xarrow_end, exclude=xexclude, text_attr=self.text_attr, **self.attr).SVG(trans)
        yaxis = YAxis(self.ymin, self.ymax, atx, self.yticks, self.yminiticks, self.ylabels, self.ylogbase, yarrow_start, yarrow_end, exclude=yexclude, text_attr=self.text_attr, **self.attr).SVG(trans)
        return SVG("g", *(xaxis.sub + yaxis.sub))

######################################################################

class HGrid(Ticks):
    """Draws the horizontal lines of a grid over a specified region
    using the standard tick specification (see help(Ticks)) to place the
    grid lines.

    HGrid(xmin, xmax, low, high, ticks, miniticks, logbase, mini_attr, attribute=value)

    xmin, xmax              required        the x range
    low, high               required        the y range
    ticks                   default=-10     request ticks according to the standard
                                            tick specification (see help(Ticks))
    miniticks               default=False   request miniticks according to the
                                            standard minitick specification
    logbase                 default=None    if a number, the axis is logarithmic
                                            with ticks at the given base (usually 10)
    mini_attr               default={}      SVG attributes for the minitick-lines
                                            (if miniticks != False)
    attribute=value pairs   keyword list    SVG attributes for the major tick lines
    """
    defaults = {"stroke-width": "0.25pt", "stroke": "gray", }
    mini_defaults = {"stroke-width": "0.25pt", "stroke": "lightgray", "stroke-dasharray": "1,1", }

    def __repr__(self):
        return "<HGrid x=(%g, %g) %g <= y <= %g ticks=%s miniticks=%s %s>" % (
               self.xmin, self.xmax, self.low, self.high, str(self.ticks), str(self.miniticks), self.attr)

    def __init__(self, xmin, xmax, low, high, ticks=-10, miniticks=False, logbase=None, mini_attr={}, **attr):
        self.xmin, self.xmax = xmin, xmax

        self.mini_attr = dict(self.mini_defaults)
        self.mini_attr.update(mini_attr)

        Ticks.__init__(self, None, low, high, ticks, miniticks, None, logbase)

        self.attr = dict(self.defaults)
        self.attr.update(attr)

    def SVG(self, trans=None):
        """Apply the transformation "trans" and return an SVG object."""
        self.last_ticks, self.last_miniticks = Ticks.interpret(self)

        ticksd = []
        for t in self.last_ticks.keys():
            ticksd += Line(self.xmin, t, self.xmax, t).Path(trans).d

        miniticksd = []
        for t in self.last_miniticks:
            miniticksd += Line(self.xmin, t, self.xmax, t).Path(trans).d

        return SVG("g", Path(d=ticksd, **self.attr).SVG(), Path(d=miniticksd, **self.mini_attr).SVG())


class VGrid(Ticks):
    """Draws the vertical lines of a grid over a specified region
    using the standard tick specification (see help(Ticks)) to place the
    grid lines.

    HGrid(ymin, ymax, low, high, ticks, miniticks, logbase, mini_attr, attribute=value)

    ymin, ymax              required        the y range
    low, high               required        the x range
    ticks                   default=-10     request ticks according to the standard
                                            tick specification (see help(Ticks))
    miniticks               default=False   request miniticks according to the
                                            standard minitick specification
    logbase                 default=None    if a number, the axis is logarithmic
                                            with ticks at the given base (usually 10)
    mini_attr               default={}      SVG attributes for the minitick-lines
                                            (if miniticks != False)
    attribute=value pairs   keyword list    SVG attributes for the major tick lines
    """
    defaults = {"stroke-width": "0.25pt", "stroke": "gray", }
    mini_defaults = {"stroke-width": "0.25pt", "stroke": "lightgray", "stroke-dasharray": "1,1", }

    def __repr__(self):
        return "<VGrid y=(%g, %g) %g <= x <= %g ticks=%s miniticks=%s %s>" % (
               self.ymin, self.ymax, self.low, self.high, str(self.ticks), str(self.miniticks), self.attr)

    def __init__(self, ymin, ymax, low, high, ticks=-10, miniticks=False, logbase=None, mini_attr={}, **attr):
        self.ymin, self.ymax = ymin, ymax

        self.mini_attr = dict(self.mini_defaults)
        self.mini_attr.update(mini_attr)

        Ticks.__init__(self, None, low, high, ticks, miniticks, None, logbase)

        self.attr = dict(self.defaults)
        self.attr.update(attr)

    def SVG(self, trans=None):
        """Apply the transformation "trans" and return an SVG object."""
        self.last_ticks, self.last_miniticks = Ticks.interpret(self)

        ticksd = []
        for t in self.last_ticks.keys():
            ticksd += Line(t, self.ymin, t, self.ymax).Path(trans).d

        miniticksd = []
        for t in self.last_miniticks:
            miniticksd += Line(t, self.ymin, t, self.ymax).Path(trans).d

        return SVG("g", Path(d=ticksd, **self.attr).SVG(), Path(d=miniticksd, **self.mini_attr).SVG())


class Grid(Ticks):
    """Draws a grid over a specified region using the standard tick
    specification (see help(Ticks)) to place the grid lines.

    Grid(xmin, xmax, ymin, ymax, ticks, miniticks, logbase, mini_attr, attribute=value)

    xmin, xmax              required        the x range
    ymin, ymax              required        the y range
    ticks                   default=-10     request ticks according to the standard
                                            tick specification (see help(Ticks))
    miniticks               default=False   request miniticks according to the
                                            standard minitick specification
    logbase                 default=None    if a number, the axis is logarithmic
                                            with ticks at the given base (usually 10)
    mini_attr               default={}      SVG attributes for the minitick-lines
                                            (if miniticks != False)
    attribute=value pairs   keyword list    SVG attributes for the major tick lines
    """
    defaults = {"stroke-width": "0.25pt", "stroke": "gray", }
    mini_defaults = {"stroke-width": "0.25pt", "stroke": "lightgray", "stroke-dasharray": "1,1", }

    def __repr__(self):
        return "<Grid x=(%g, %g) y=(%g, %g) ticks=%s miniticks=%s %s>" % (
               self.xmin, self.xmax, self.ymin, self.ymax, str(self.ticks), str(self.miniticks), self.attr)

    def __init__(self, xmin, xmax, ymin, ymax, ticks=-10, miniticks=False, logbase=None, mini_attr={}, **attr):
        self.xmin, self.xmax = xmin, xmax
        self.ymin, self.ymax = ymin, ymax

        self.mini_attr = dict(self.mini_defaults)
        self.mini_attr.update(mini_attr)

        Ticks.__init__(self, None, None, None, ticks, miniticks, None, logbase)

        self.attr = dict(self.defaults)
        self.attr.update(attr)

    def SVG(self, trans=None):
        """Apply the transformation "trans" and return an SVG object."""
        self.low, self.high = self.xmin, self.xmax
        self.last_xticks, self.last_xminiticks = Ticks.interpret(self)
        self.low, self.high = self.ymin, self.ymax
        self.last_yticks, self.last_yminiticks = Ticks.interpret(self)

        ticksd = []
        for t in self.last_xticks.keys():
            ticksd += Line(t, self.ymin, t, self.ymax).Path(trans).d
        for t in self.last_yticks.keys():
            ticksd += Line(self.xmin, t, self.xmax, t).Path(trans).d

        miniticksd = []
        for t in self.last_xminiticks:
            miniticksd += Line(t, self.ymin, t, self.ymax).Path(trans).d
        for t in self.last_yminiticks:
            miniticksd += Line(self.xmin, t, self.xmax, t).Path(trans).d

        return SVG("g", Path(d=ticksd, **self.attr).SVG(), Path(d=miniticksd, **self.mini_attr).SVG())

######################################################################

class XErrorBars:
    """Draws x error bars at a set of points. This is usually used
    before (under) a set of Dots at the same points.

    XErrorBars(d, attribute=value)

    d                       required        list of (x,y,xerr...) points
    attribute=value pairs   keyword list    SVG attributes

    If points in d have

        * 3 elements, the third is the symmetric error bar
        * 4 elements, the third and fourth are the asymmetric lower and
          upper error bar. The third element should be negative,
          e.g. (5, 5, -1, 2) is a bar from 4 to 7.
        * more than 4, a tick mark is placed at each value. This lets
          you nest errors from different sources, correlated and
          uncorrelated, statistical and systematic, etc.
    """
    defaults = {"stroke-width": "0.25pt", }

    def __repr__(self):
        return "<XErrorBars (%d nodes)>" % len(self.d)

    def __init__(self, d=[], **attr):
        self.d = list(d)

        self.attr = dict(self.defaults)
        self.attr.update(attr)

    def SVG(self, trans=None):
        """Apply the transformation "trans" and return an SVG object."""
        if isinstance(trans, basestring):
            trans = totrans(trans) # only once

        output = SVG("g")
        for p in self.d:
            x, y = p[0], p[1]

            if len(p) == 3:
                bars = [x - p[2], x + p[2]]
            else:
                bars = [x + pi for pi in p[2:]]

            start, end = min(bars), max(bars)
            output.append(LineAxis(start, y, end, y, start, end, bars, False, False, **self.attr).SVG(trans))

        return output


class YErrorBars:
    """Draws y error bars at a set of points. This is usually used
    before (under) a set of Dots at the same points.

    YErrorBars(d, attribute=value)

    d                       required        list of (x,y,yerr...) points
    attribute=value pairs   keyword list    SVG attributes

    If points in d have

        * 3 elements, the third is the symmetric error bar
        * 4 elements, the third and fourth are the asymmetric lower and
          upper error bar. The third element should be negative,
          e.g. (5, 5, -1, 2) is a bar from 4 to 7.
        * more than 4, a tick mark is placed at each value. This lets
          you nest errors from different sources, correlated and
          uncorrelated, statistical and systematic, etc.
    """
    defaults = {"stroke-width": "0.25pt", }

    def __repr__(self):
        return "<YErrorBars (%d nodes)>" % len(self.d)

    def __init__(self, d=[], **attr):
        self.d = list(d)

        self.attr = dict(self.defaults)
        self.attr.update(attr)

    def SVG(self, trans=None):
        """Apply the transformation "trans" and return an SVG object."""
        if isinstance(trans, basestring):
            trans = totrans(trans) # only once

        output = SVG("g")
        for p in self.d:
            x, y = p[0], p[1]

            if len(p) == 3:
                bars = [y - p[2], y + p[2]]
            else:
                bars = [y + pi for pi in p[2:]]

            start, end = min(bars), max(bars)
            output.append(LineAxis(x, start, x, end, start, end, bars, False, False, **self.attr).SVG(trans))

        return output