color.cpp 122.1 KB
Newer Older
1 2 3 4 5 6 7 8
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
9 10
//
//                           License Agreement
11 12
//                For Open Source Computer Vision Library
//
13 14
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009-2010, Willow Garage Inc., all rights reserved.
15 16 17 18 19 20 21 22 23 24 25 26
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
27
//   * The name of the copyright holders may not be used to endorse or promote products
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

/********************************* COPYRIGHT NOTICE *******************************\
  The function for RGB to Lab conversion is based on the MATLAB script
  RGB2Lab.m translated by Mark Ruzon from C code by Yossi Rubner, 23 September 1997.
  See the page [http://vision.stanford.edu/~ruzon/software/rgblab.html]
\**********************************************************************************/

/********************************* COPYRIGHT NOTICE *******************************\
  Original code for Bayer->BGR/RGB conversion is provided by Dirk Schaefer
  from MD-Mathematische Dienste GmbH. Below is the copyright notice:

    IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
    By downloading, copying, installing or using the software you agree
    to this license. If you do not agree to this license, do not download,
    install, copy or use the software.

    Contributors License Agreement:

      Copyright (c) 2002,
      MD-Mathematische Dienste GmbH
      Im Defdahl 5-10
      44141 Dortmund
      Germany
      www.md-it.de
  
    Redistribution and use in source and binary forms,
    with or without modification, are permitted provided
    that the following conditions are met: 

    Redistributions of source code must retain
    the above copyright notice, this list of conditions and the following disclaimer. 
    Redistributions in binary form must reproduce the above copyright notice,
    this list of conditions and the following disclaimer in the documentation
    and/or other materials provided with the distribution. 
    The name of Contributor may not be used to endorse or promote products
    derived from this software without specific prior written permission. 

    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
    AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
    THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
    PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE
    FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
    STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
    THE POSSIBILITY OF SUCH DAMAGE.
\**********************************************************************************/

#include "precomp.hpp"
93
#include <limits>
94
#include <iostream>
95

96 97
namespace cv
{
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

// computes cubic spline coefficients for a function: (xi=i, yi=f[i]), i=0..n
template<typename _Tp> static void splineBuild(const _Tp* f, int n, _Tp* tab)
{
    _Tp cn = 0;
    int i;
    tab[0] = tab[1] = (_Tp)0;
    
    for(i = 1; i < n-1; i++)
    {
        _Tp t = 3*(f[i+1] - 2*f[i] + f[i-1]);
        _Tp l = 1/(4 - tab[(i-1)*4]);
        tab[i*4] = l; tab[i*4+1] = (t - tab[(i-1)*4+1])*l;
    }
    
    for(i = n-1; i >= 0; i--)
    {
        _Tp c = tab[i*4+1] - tab[i*4]*cn;
        _Tp b = f[i+1] - f[i] - (cn + c*2)*(_Tp)0.3333333333333333;
        _Tp d = (cn - c)*(_Tp)0.3333333333333333;
        tab[i*4] = f[i]; tab[i*4+1] = b;
        tab[i*4+2] = c; tab[i*4+3] = d;
        cn = c;
    }
}

// interpolates value of a function at x, 0 <= x <= n using a cubic spline.
template<typename _Tp> static inline _Tp splineInterpolate(_Tp x, const _Tp* tab, int n)
{
    int ix = cvFloor(x);
    ix = std::min(std::max(ix, 0), n-1);
    x -= ix;
    tab += ix*4;
    return ((tab[3]*x + tab[2])*x + tab[1])*x + tab[0];
}    

134 135 136 137 138 139 140
    
template<typename _Tp> struct ColorChannel
{
    typedef float worktype_f;
    static _Tp max() { return std::numeric_limits<_Tp>::max(); }
    static _Tp half() { return (_Tp)(max()/2 + 1); } 
};
141

142 143 144 145 146 147
template<> struct ColorChannel<float>
{
    typedef float worktype_f;
    static float max() { return 1.f; }
    static float half() { return 0.5f; }
};
148

149 150 151 152 153 154
/*template<> struct ColorChannel<double>
{
    typedef double worktype_f;
    static double max() { return 1.; }
    static double half() { return 0.5; }
};*/
155

156 157
    
///////////////////////////// Top-level template function ////////////////////////////////
158

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
template<class Cvt> void CvtColorLoop(const Mat& srcmat, Mat& dstmat, const Cvt& cvt)
{
    typedef typename Cvt::channel_type _Tp;
    Size sz = srcmat.size();
    const uchar* src = srcmat.data;
    uchar* dst = dstmat.data;
    size_t srcstep = srcmat.step, dststep = dstmat.step;
    
    if( srcmat.isContinuous() && dstmat.isContinuous() )
    {
        sz.width *= sz.height;
        sz.height = 1;
    }    
    
    for( ; sz.height--; src += srcstep, dst += dststep )
        cvt((const _Tp*)src, (_Tp*)dst, sz.width);
175
}
176 177 178 179 180
    
    
////////////////// Various 3/4-channel to 3/4-channel RGB transformations /////////////////
    
template<typename _Tp> struct RGB2RGB
181
{
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
    typedef _Tp channel_type;
    
    RGB2RGB(int _srccn, int _dstcn, int _blueIdx) : srccn(_srccn), dstcn(_dstcn), blueIdx(_blueIdx) {}
    void operator()(const _Tp* src, _Tp* dst, int n) const
    {
        int scn = srccn, dcn = dstcn, bidx = blueIdx;
        if( dcn == 3 )
        {
            n *= 3;
            for( int i = 0; i < n; i += 3, src += scn )
            {
                _Tp t0 = src[bidx], t1 = src[1], t2 = src[bidx ^ 2];
                dst[i] = t0; dst[i+1] = t1; dst[i+2] = t2;
            }
        }
        else if( scn == 3 )
        {
            n *= 3;
            _Tp alpha = ColorChannel<_Tp>::max();
            for( int i = 0; i < n; i += 3, dst += 4 )
            {
                _Tp t0 = src[i], t1 = src[i+1], t2 = src[i+2];
                dst[bidx] = t0; dst[1] = t1; dst[bidx^2] = t2; dst[3] = alpha;
            }
        }
        else
        {
            n *= 4;
            for( int i = 0; i < n; i += 4 )
            {
                _Tp t0 = src[i], t1 = src[i+1], t2 = src[i+2], t3 = src[i+3];
                dst[i] = t2; dst[i+1] = t1; dst[i+2] = t0; dst[i+3] = t3;
            }
        }
    }
    
    int srccn, dstcn, blueIdx;
};
    
/////////// Transforming 16-bit (565 or 555) RGB to/from 24/32-bit (888[8]) RGB //////////
222

223 224 225 226 227 228 229 230
struct RGB5x52RGB
{
    typedef uchar channel_type;
    
    RGB5x52RGB(int _dstcn, int _blueIdx, int _greenBits)
		: dstcn(_dstcn), blueIdx(_blueIdx), greenBits(_greenBits) {}
		
    void operator()(const uchar* src, uchar* dst, int n) const
231
    {
232 233 234
        int dcn = dstcn, bidx = blueIdx;
        if( greenBits == 6 )
            for( int i = 0; i < n; i++, dst += dcn )
235 236
            {
                unsigned t = ((const ushort*)src)[i];
237
                dst[bidx] = (uchar)(t << 3);
238
                dst[1] = (uchar)((t >> 3) & ~3);
239 240 241
                dst[bidx ^ 2] = (uchar)((t >> 8) & ~7);
                if( dcn == 4 )
                    dst[3] = 255;
242 243
            }
        else
244
            for( int i = 0; i < n; i++, dst += dcn )
245 246
            {
                unsigned t = ((const ushort*)src)[i];
247
                dst[bidx] = (uchar)(t << 3);
248
                dst[1] = (uchar)((t >> 2) & ~7);
249 250 251
                dst[bidx ^ 2] = (uchar)((t >> 7) & ~7);
                if( dcn == 4 )
                    dst[3] = t & 0x8000 ? 255 : 0;
252 253
            }
    }
254 255 256
    
    int dstcn, blueIdx, greenBits;
};
257

258 259
    
struct RGB2RGB5x5
260
{
261 262 263 264 265 266
    typedef uchar channel_type;
    
    RGB2RGB5x5(int _srccn, int _blueIdx, int _greenBits)
		: srccn(_srccn), blueIdx(_blueIdx), greenBits(_greenBits) {}
		
    void operator()(const uchar* src, uchar* dst, int n) const
267
    {
268 269 270
        int scn = srccn, bidx = blueIdx;
        if( greenBits == 6 )
            for( int i = 0; i < n; i++, src += scn )
271
            {
272 273 274 275 276 277
                ((ushort*)dst)[i] = (ushort)((src[bidx] >> 3)|((src[1]&~3) << 3)|((src[bidx^2]&~7) << 8));
            }
        else if( scn == 3 )
            for( int i = 0; i < n; i++, src += 3 )
            {
                ((ushort*)dst)[i] = (ushort)((src[bidx] >> 3)|((src[1]&~7) << 2)|((src[bidx^2]&~7) << 7));
278 279
            }
        else
280
            for( int i = 0; i < n; i++, src += 4 )
281
            {
282 283
                ((ushort*)dst)[i] = (ushort)((src[bidx] >> 3)|((src[1]&~7) << 2)|
                    ((src[bidx^2]&~7) << 7)|(src[3] ? 0x8000 : 0));
284 285
            }
    }
286 287 288 289 290
    
    int srccn, blueIdx, greenBits;
};
    
///////////////////////////////// Color to/from Grayscale ////////////////////////////////
291

292 293
template<typename _Tp>
struct Gray2RGB
294
{
295 296 297 298
    typedef _Tp channel_type;
    
    Gray2RGB(int _dstcn) : dstcn(_dstcn) {}
    void operator()(const _Tp* src, _Tp* dst, int n) const
299
    {
300 301 302 303 304 305
        if( dstcn == 3 )
            for( int i = 0; i < n; i++, dst += 3 )
            {
                dst[0] = dst[1] = dst[2] = src[i];
            }
        else
306
        {
307 308
            _Tp alpha = ColorChannel<_Tp>::max();
            for( int i = 0; i < n; i++, dst += 4 )
309
            {
310 311
                dst[0] = dst[1] = dst[2] = src[i];
                dst[3] = alpha;
312 313 314
            }
        }
    }
315 316 317 318
    
    int dstcn;
};
  
319

320
struct Gray2RGB5x5
321
{
322 323 324 325
    typedef uchar channel_type;
    
    Gray2RGB5x5(int _greenBits) : greenBits(_greenBits) {}
    void operator()(const uchar* src, uchar* dst, int n) const
326
    {
327 328
        if( greenBits == 6 )
            for( int i = 0; i < n; i++ )
329
            {
330 331
                int t = src[i];
                ((ushort*)dst)[i] = (ushort)((t >> 3)|((t & ~3) << 3)|((t & ~7) << 8));
332 333
            }
        else
334
            for( int i = 0; i < n; i++ )
335
            {
336 337
                int t = src[i] >> 3;
                ((ushort*)dst)[i] = (ushort)(t|(t << 5)|(t << 10));
338 339
            }
    }
340 341
    int greenBits;
};
342 343


344 345 346 347 348
#undef R2Y
#undef G2Y
#undef B2Y
    
enum
349
{
350 351 352 353 354 355 356 357
    yuv_shift = 14,
    xyz_shift = 12,
    R2Y = 4899,
    G2Y = 9617,
    B2Y = 1868,
    BLOCK_SIZE = 256
};

358

359 360 361 362 363 364
struct RGB5x52Gray
{
    typedef uchar channel_type;
    
    RGB5x52Gray(int _greenBits) : greenBits(_greenBits) {}
    void operator()(const uchar* src, uchar* dst, int n) const
365
    {
366 367
        if( greenBits == 6 )
            for( int i = 0; i < n; i++ )
368
            {
369 370 371 372
                int t = ((ushort*)src)[i];
                dst[i] = (uchar)CV_DESCALE(((t << 3) & 0xf8)*B2Y +
                                           ((t >> 3) & 0xfc)*G2Y +
                                           ((t >> 8) & 0xf8)*R2Y, yuv_shift);
373 374
            }
        else
375
            for( int i = 0; i < n; i++ )
376
            {
377 378 379 380
                int t = ((ushort*)src)[i];
                dst[i] = (uchar)CV_DESCALE(((t << 3) & 0xf8)*B2Y +
                                           ((t >> 2) & 0xf8)*G2Y +
                                           ((t >> 7) & 0xf8)*R2Y, yuv_shift);
381 382
            }
    }
383 384
    int greenBits;
};
385 386


387
template<typename _Tp> struct RGB2Gray
388
{
389 390 391
    typedef _Tp channel_type;
    
    RGB2Gray(int _srccn, int blueIdx, const float* _coeffs) : srccn(_srccn)
392
    {
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
        static const float coeffs0[] = { 0.299f, 0.587f, 0.114f };
        memcpy( coeffs, _coeffs ? _coeffs : coeffs0, 3*sizeof(coeffs[0]) );
        if(blueIdx == 0)
            std::swap(coeffs[0], coeffs[2]);
    }
    
    void operator()(const _Tp* src, _Tp* dst, int n) const
    {
        int scn = srccn;
        float cb = coeffs[0], cg = coeffs[1], cr = coeffs[2];
        for(int i = 0; i < n; i++, src += scn)
            dst[i] = saturate_cast<_Tp>(src[0]*cb + src[1]*cg + src[2]*cr);
    }
    int srccn;
    float coeffs[3];
};

    
template<> struct RGB2Gray<uchar>
{
    typedef uchar channel_type;
414
    
415 416 417 418 419 420 421 422 423
    RGB2Gray<uchar>(int _srccn, int blueIdx, const int* coeffs) : srccn(_srccn)
    {
        const int coeffs0[] = { R2Y, G2Y, B2Y };
        if(!coeffs) coeffs = coeffs0;
        
        int b = 0, g = 0, r = (1 << (yuv_shift-1));
        int db = coeffs[blueIdx^2], dg = coeffs[1], dr = coeffs[blueIdx];
        
        for( int i = 0; i < 256; i++, b += db, g += dg, r += dr )
424 425 426 427 428 429
        {
            tab[i] = b;
            tab[i+256] = g;
            tab[i+512] = r;
        }
    }
430
    void operator()(const uchar* src, uchar* dst, int n) const
431
    {
432 433 434 435
        int scn = srccn;
		const int* _tab = tab;
        for(int i = 0; i < n; i++, src += scn)
            dst[i] = (uchar)((_tab[src[0]] + _tab[src[1]+256] + _tab[src[2]+512]) >> yuv_shift);
436
    }
437 438 439
    int srccn, blueIdx;
    int tab[256*3];
};
440

441 442
    
template<> struct RGB2Gray<ushort>
443
{
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
    typedef ushort channel_type;
    
    RGB2Gray<ushort>(int _srccn, int blueIdx, const int* _coeffs) : srccn(_srccn)
    {
        static const int coeffs0[] = { R2Y, G2Y, B2Y };
        memcpy(coeffs, _coeffs ? _coeffs : coeffs0, 3*sizeof(coeffs[0]));
        if( blueIdx == 0 )
            std::swap(coeffs[0], coeffs[2]);
    }
    
    void operator()(const ushort* src, ushort* dst, int n) const
    {
        int scn = srccn, cb = coeffs[0], cg = coeffs[1], cr = coeffs[2];
        for(int i = 0; i < n; i++, src += scn)
            dst[i] = (ushort)CV_DESCALE((unsigned)(src[0]*cb + src[1]*cg + src[2]*cr), yuv_shift);
    }
    int srccn;
    int coeffs[3];
};
463

464 465
    
///////////////////////////////////// RGB <-> YCrCb //////////////////////////////////////
466

467
template<typename _Tp> struct RGB2YCrCb_f
468
{
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
    typedef _Tp channel_type;
    
    RGB2YCrCb_f(int _srccn, int _blueIdx, const float* _coeffs) : srccn(_srccn), blueIdx(_blueIdx)
	{
		static const float coeffs0[] = {0.299f, 0.587f, 0.114f, 0.713f, 0.564f};
		memcpy(coeffs, _coeffs ? _coeffs : coeffs0, 5*sizeof(coeffs[0]));
		if(blueIdx==0) std::swap(coeffs[0], coeffs[2]);
	}
	
    void operator()(const _Tp* src, _Tp* dst, int n) const
    {
        int scn = srccn, bidx = blueIdx;
        const _Tp delta = ColorChannel<_Tp>::half();
		float C0 = coeffs[0], C1 = coeffs[1], C2 = coeffs[2], C3 = coeffs[3], C4 = coeffs[4];
        n *= 3;
        for(int i = 0; i < n; i += 3, src += scn)
        {
            _Tp Y = saturate_cast<_Tp>(src[0]*C0 + src[1]*C1 + src[2]*C2);
            _Tp Cr = saturate_cast<_Tp>((src[bidx^2] - Y)*C3 + delta);
            _Tp Cb = saturate_cast<_Tp>((src[bidx] - Y)*C4 + delta);
            dst[i] = Y; dst[i+1] = Cr; dst[i+2] = Cb;
        }
    }
    int srccn, blueIdx;
 	float coeffs[5];
};
495 496


497
template<typename _Tp> struct RGB2YCrCb_i
498
{
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
    typedef _Tp channel_type;
    
    RGB2YCrCb_i(int _srccn, int _blueIdx, const int* _coeffs)
		: srccn(_srccn), blueIdx(_blueIdx)
	{
		static const int coeffs0[] = {R2Y, G2Y, B2Y, 11682, 9241};
		memcpy(coeffs, _coeffs ? _coeffs : coeffs0, 5*sizeof(coeffs[0]));
		if(blueIdx==0) std::swap(coeffs[0], coeffs[2]);
	}
    void operator()(const _Tp* src, _Tp* dst, int n) const
    {
        int scn = srccn, bidx = blueIdx;
		int C0 = coeffs[0], C1 = coeffs[1], C2 = coeffs[2], C3 = coeffs[3], C4 = coeffs[4];
        int delta = ColorChannel<_Tp>::half()*(1 << yuv_shift);
        n *= 3;
        for(int i = 0; i < n; i += 3, src += scn)
        {
            int Y = CV_DESCALE(src[0]*C0 + src[1]*C1 + src[2]*C2, yuv_shift);
            int Cr = CV_DESCALE((src[bidx^2] - Y)*C3 + delta, yuv_shift);
            int Cb = CV_DESCALE((src[bidx] - Y)*C4 + delta, yuv_shift);
            dst[i] = saturate_cast<_Tp>(Y);
            dst[i+1] = saturate_cast<_Tp>(Cr);
            dst[i+2] = saturate_cast<_Tp>(Cb);
        }
    }
    int srccn, blueIdx;
	int coeffs[5];
};    
527 528


529 530 531 532 533 534 535 536 537 538 539
template<typename _Tp> struct YCrCb2RGB_f
{
    typedef _Tp channel_type;
    
    YCrCb2RGB_f(int _dstcn, int _blueIdx, const float* _coeffs)
		: dstcn(_dstcn), blueIdx(_blueIdx)
	{
		static const float coeffs0[] = {1.403f, -0.714f, -0.344f, 1.773f}; 
		memcpy(coeffs, _coeffs ? _coeffs : coeffs0, 4*sizeof(coeffs[0]));
	}
    void operator()(const _Tp* src, _Tp* dst, int n) const
540
    {
541 542 543 544 545
        int dcn = dstcn, bidx = blueIdx;
        const _Tp delta = ColorChannel<_Tp>::half(), alpha = ColorChannel<_Tp>::max();
        float C0 = coeffs[0], C1 = coeffs[1], C2 = coeffs[2], C3 = coeffs[3];
        n *= 3;
        for(int i = 0; i < n; i += 3, dst += dcn)
546
        {
547 548 549
            _Tp Y = src[i];
            _Tp Cr = src[i+1];
            _Tp Cb = src[i+2];
550
            
551 552 553
            _Tp b = saturate_cast<_Tp>(Y + (Cb - delta)*C3);
            _Tp g = saturate_cast<_Tp>(Y + (Cb - delta)*C2 + (Cr - delta)*C1);
            _Tp r = saturate_cast<_Tp>(Y + (Cr - delta)*C0);
554
            
555 556 557
            dst[bidx] = b; dst[1] = g; dst[bidx^2] = r;
            if( dcn == 4 )
                dst[3] = alpha;
558 559
        }
    }
560 561 562
    int dstcn, blueIdx;
	float coeffs[4];
}; 
563 564


565
template<typename _Tp> struct YCrCb2RGB_i
566
{
567 568 569 570
    typedef _Tp channel_type;
    
    YCrCb2RGB_i(int _dstcn, int _blueIdx, const int* _coeffs)
        : dstcn(_dstcn), blueIdx(_blueIdx)
571
    {
572 573 574 575 576 577 578 579 580 581 582
        static const int coeffs0[] = {22987, -11698, -5636, 29049}; 
		memcpy(coeffs, _coeffs ? _coeffs : coeffs0, 4*sizeof(coeffs[0]));
    }
    
    void operator()(const _Tp* src, _Tp* dst, int n) const
    {
        int dcn = dstcn, bidx = blueIdx;
        const _Tp delta = ColorChannel<_Tp>::half(), alpha = ColorChannel<_Tp>::max();
        int C0 = coeffs[0], C1 = coeffs[1], C2 = coeffs[2], C3 = coeffs[3];
        n *= 3;
        for(int i = 0; i < n; i += 3, dst += dcn)
583
        {
584 585 586
            _Tp Y = src[i];
            _Tp Cr = src[i+1];
            _Tp Cb = src[i+2];
587
            
588 589 590 591 592 593 594 595 596
            int b = Y + CV_DESCALE((Cb - delta)*C3, yuv_shift);
            int g = Y + CV_DESCALE((Cb - delta)*C2 + (Cr - delta)*C1, yuv_shift);
            int r = Y + CV_DESCALE((Cr - delta)*C0, yuv_shift);
            
            dst[bidx] = saturate_cast<_Tp>(b);
            dst[1] = saturate_cast<_Tp>(g);
            dst[bidx^2] = saturate_cast<_Tp>(r);
            if( dcn == 4 )
                dst[3] = alpha;
597 598
        }
    }
599 600 601
    int dstcn, blueIdx;
    int coeffs[4];
};    
602

603 604
    
////////////////////////////////////// RGB <-> XYZ ///////////////////////////////////////
605

606 607 608 609 610 611 612 613
static const float sRGB2XYZ_D65[] =
{
    0.412453f, 0.357580f, 0.180423f,
    0.212671f, 0.715160f, 0.072169f,
    0.019334f, 0.119193f, 0.950227f
};
    
static const float XYZ2sRGB_D65[] =
614
{
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
    3.240479f, -1.53715f, -0.498535f,
    -0.969256f, 1.875991f, 0.041556f,
    0.055648f, -0.204043f, 1.057311f
};
    
template<typename _Tp> struct RGB2XYZ_f
{
    typedef _Tp channel_type;
    
    RGB2XYZ_f(int _srccn, int blueIdx, const float* _coeffs) : srccn(_srccn)
    {
        memcpy(coeffs, _coeffs ? _coeffs : sRGB2XYZ_D65, 9*sizeof(coeffs[0]));
        if(blueIdx == 0)
        {
            std::swap(coeffs[0], coeffs[2]);
            std::swap(coeffs[3], coeffs[5]);
            std::swap(coeffs[6], coeffs[8]);
        }
    }
    void operator()(const _Tp* src, _Tp* dst, int n) const
    {
        int scn = srccn;
        float C0 = coeffs[0], C1 = coeffs[1], C2 = coeffs[2],
              C3 = coeffs[3], C4 = coeffs[4], C5 = coeffs[5],
              C6 = coeffs[6], C7 = coeffs[7], C8 = coeffs[8];
        
        n *= 3;
        for(int i = 0; i < n; i += 3, src += scn)
        {
			_Tp X = saturate_cast<_Tp>(src[0]*C0 + src[1]*C1 + src[2]*C2);
			_Tp Y = saturate_cast<_Tp>(src[0]*C3 + src[1]*C4 + src[2]*C5);
			_Tp Z = saturate_cast<_Tp>(src[0]*C6 + src[1]*C7 + src[2]*C8);
            dst[i] = X; dst[i+1] = Y; dst[i+2] = Z;
        }
    }
    int srccn;
    float coeffs[9];
652 653 654
};


655
template<typename _Tp> struct RGB2XYZ_i
656
{
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
    typedef _Tp channel_type;
    
    RGB2XYZ_i(int _srccn, int blueIdx, const float* _coeffs) : srccn(_srccn)
    {
        static const int coeffs0[] =
        {
            1689,    1465,    739,   
            871,     2929,    296,   
            79,      488,     3892
        };
        for( int i = 0; i < 9; i++ )
            coeffs[i] = _coeffs ? cvRound(_coeffs[i]*(1 << xyz_shift)) : coeffs0[i];
        if(blueIdx == 0)
        {
            std::swap(coeffs[0], coeffs[2]);
            std::swap(coeffs[3], coeffs[5]);
            std::swap(coeffs[6], coeffs[8]);
        }
    }
    void operator()(const _Tp* src, _Tp* dst, int n) const
    {
        int scn = srccn;
        int C0 = coeffs[0], C1 = coeffs[1], C2 = coeffs[2],
            C3 = coeffs[3], C4 = coeffs[4], C5 = coeffs[5],
            C6 = coeffs[6], C7 = coeffs[7], C8 = coeffs[8];
        n *= 3;
        for(int i = 0; i < n; i += 3, src += scn)
        {
            int X = CV_DESCALE(src[0]*C0 + src[1]*C1 + src[2]*C2, xyz_shift);
            int Y = CV_DESCALE(src[0]*C3 + src[1]*C4 + src[2]*C5, xyz_shift);
            int Z = CV_DESCALE(src[0]*C6 + src[1]*C7 + src[2]*C8, xyz_shift);
            dst[i] = saturate_cast<_Tp>(X); dst[i+1] = saturate_cast<_Tp>(Y);
            dst[i+2] = saturate_cast<_Tp>(Z);
        }
    }
    int srccn;
    int coeffs[9];
};
    
    
template<typename _Tp> struct XYZ2RGB_f
{
    typedef _Tp channel_type;
    
    XYZ2RGB_f(int _dstcn, int _blueIdx, const float* _coeffs)
    : dstcn(_dstcn), blueIdx(_blueIdx)
    {
        memcpy(coeffs, _coeffs ? _coeffs : XYZ2sRGB_D65, 9*sizeof(coeffs[0]));
        if(blueIdx == 0)
        {
            std::swap(coeffs[0], coeffs[6]);
            std::swap(coeffs[1], coeffs[7]);
            std::swap(coeffs[2], coeffs[8]);
        }
    }
    
    void operator()(const _Tp* src, _Tp* dst, int n) const
    {
        int dcn = dstcn;
		_Tp alpha = ColorChannel<_Tp>::max();
        float C0 = coeffs[0], C1 = coeffs[1], C2 = coeffs[2],
              C3 = coeffs[3], C4 = coeffs[4], C5 = coeffs[5],
              C6 = coeffs[6], C7 = coeffs[7], C8 = coeffs[8];
        n *= 3;
        for(int i = 0; i < n; i += 3, dst += dcn)
        {
			_Tp B = saturate_cast<_Tp>(src[i]*C0 + src[i+1]*C1 + src[i+2]*C2);
			_Tp G = saturate_cast<_Tp>(src[i]*C3 + src[i+1]*C4 + src[i+2]*C5);
			_Tp R = saturate_cast<_Tp>(src[i]*C6 + src[i+1]*C7 + src[i+2]*C8);
            dst[0] = B; dst[1] = G; dst[2] = R;
			if( dcn == 4 )
				dst[3] = alpha;
        }
    }
    int dstcn, blueIdx;
    float coeffs[9];
733 734 735
};


736
template<typename _Tp> struct XYZ2RGB_i
737
{
738 739 740 741
    typedef _Tp channel_type;
    
    XYZ2RGB_i(int _dstcn, int _blueIdx, const int* _coeffs)
    : dstcn(_dstcn), blueIdx(_blueIdx)
742
    {
743
        static const int coeffs0[] =
744
        {
745 746 747 748 749 750 751 752 753 754 755 756
            13273,  -6296,  -2042,  
            -3970,   7684,    170,   
              228,   -836,   4331
        };
        for(int i = 0; i < 9; i++)
            coeffs[i] = _coeffs ? cvRound(_coeffs[i]*(1 << xyz_shift)) : coeffs0[i];
        
        if(blueIdx == 0)
        {
            std::swap(coeffs[0], coeffs[6]);
            std::swap(coeffs[1], coeffs[7]);
            std::swap(coeffs[2], coeffs[8]);
757 758
        }
    }
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
    void operator()(const _Tp* src, _Tp* dst, int n) const
    {
        int dcn = dstcn;
        _Tp alpha = ColorChannel<_Tp>::max();
        int C0 = coeffs[0], C1 = coeffs[1], C2 = coeffs[2],
            C3 = coeffs[3], C4 = coeffs[4], C5 = coeffs[5],
            C6 = coeffs[6], C7 = coeffs[7], C8 = coeffs[8];
        n *= 3;
        for(int i = 0; i < n; i += 3, dst += dcn)
        {
            int B = CV_DESCALE(src[i]*C0 + src[i+1]*C1 + src[i+2]*C2, xyz_shift);
            int G = CV_DESCALE(src[i]*C3 + src[i+1]*C4 + src[i+2]*C5, xyz_shift);
            int R = CV_DESCALE(src[i]*C6 + src[i+1]*C7 + src[i+2]*C8, xyz_shift);
            dst[0] = saturate_cast<_Tp>(B); dst[1] = saturate_cast<_Tp>(G);
            dst[2] = saturate_cast<_Tp>(R);
            if( dcn == 4 )
				dst[3] = alpha;
        }
    }
    int dstcn, blueIdx;
    int coeffs[9];
};
    

////////////////////////////////////// RGB <-> HSV ///////////////////////////////////////


struct RGB2HSV_b
{
    typedef uchar channel_type;
    
    RGB2HSV_b(int _srccn, int _blueIdx, int _hrange)
791 792 793 794
    : srccn(_srccn), blueIdx(_blueIdx), hrange(_hrange)
    {
        CV_Assert( hrange == 180 || hrange == 256 );
    }
795
    
796
    void operator()(const uchar* src, uchar* dst, int n) const
797
    {
798 799 800
        int i, bidx = blueIdx, scn = srccn;
        const int hsv_shift = 12;
        
801 802 803 804 805 806 807
        static int sdiv_table[256];
        static int hdiv_table180[256];
        static int hdiv_table256[256];
        static volatile bool initialized = false;
        
        int hr = hrange;
        const int* hdiv_table = hr == 180 ? hdiv_table180 : hdiv_table256;
808 809
        n *= 3;
        
810 811 812 813 814 815 816 817 818 819 820 821
        if( !initialized )
        {
            sdiv_table[0] = hdiv_table180[0] = hdiv_table256[0] = 0;
            for( i = 1; i < 256; i++ )
            {
                sdiv_table[i] = saturate_cast<int>((255 << hsv_shift)/(1.*i));
                hdiv_table180[i] = saturate_cast<int>((180 << hsv_shift)/(6.*i));
                hdiv_table256[i] = saturate_cast<int>((256 << hsv_shift)/(6.*i));
            }
            initialized = true;
        }
        
822
        for( i = 0; i < n; i += 3, src += scn )
823
        {
824
            int b = src[bidx], g = src[1], r = src[bidx^2];
825 826 827
            int h, s, v = b;
            int vmin = b, diff;
            int vr, vg;
828
            
829 830 831 832
            CV_CALC_MAX_8U( v, g );
            CV_CALC_MAX_8U( v, r );
            CV_CALC_MIN_8U( vmin, g );
            CV_CALC_MIN_8U( vmin, r );
833
            
834 835 836
            diff = v - vmin;
            vr = v == r ? -1 : 0;
            vg = v == g ? -1 : 0;
837
            
838
            s = (diff * sdiv_table[v] + (1 << (hsv_shift-1))) >> hsv_shift;
839 840
            h = (vr & (g - b)) +
                (~vr & ((vg & (b - r + 2 * diff)) + ((~vg) & (r - g + 4 * diff))));
841
            h = (h * hdiv_table[diff] + (1 << (hsv_shift-1))) >> hsv_shift;
842 843
            h += h < 0 ? hr : 0;
            
844
            dst[i] = saturate_cast<uchar>(h);
845 846 847 848
            dst[i+1] = (uchar)s;
            dst[i+2] = (uchar)v;
        }
    }
849 850 851
                 
    int srccn, blueIdx, hrange;
};    
852

853 854
                 
struct RGB2HSV_f
855
{
856 857 858 859 860 861
    typedef float channel_type;
    
    RGB2HSV_f(int _srccn, int _blueIdx, float _hrange)
    : srccn(_srccn), blueIdx(_blueIdx), hrange(_hrange) {}
    
    void operator()(const float* src, float* dst, int n) const
862
    {
863 864 865 866 867
        int i, bidx = blueIdx, scn = srccn;
        float hscale = hrange*(1.f/360.f);
        n *= 3;
    
        for( i = 0; i < n; i += 3, src += scn )
868
        {
869
            float b = src[bidx], g = src[1], r = src[bidx^2];
870
            float h, s, v;
871
            
872
            float vmin, diff;
873
            
874 875 876 877 878
            v = vmin = r;
            if( v < g ) v = g;
            if( v < b ) v = b;
            if( vmin > g ) vmin = g;
            if( vmin > b ) vmin = b;
879
            
880 881 882 883 884 885 886 887 888
            diff = v - vmin;
            s = diff/(float)(fabs(v) + FLT_EPSILON);
            diff = (float)(60./(diff + FLT_EPSILON));
            if( v == r )
                h = (g - b)*diff;
            else if( v == g )
                h = (b - r)*diff + 120.f;
            else
                h = (r - g)*diff + 240.f;
889
            
890
            if( h < 0 ) h += 360.f;
891 892
            
            dst[i] = h*hscale;
893 894 895 896
            dst[i+1] = s;
            dst[i+2] = v;
        }
    }
897 898 899 900
    
    int srccn, blueIdx;
    float hrange;
};
901 902


903
struct HSV2RGB_f
904
{
905 906 907 908 909 910
    typedef float channel_type;
    
    HSV2RGB_f(int _dstcn, int _blueIdx, float _hrange)
    : dstcn(_dstcn), blueIdx(_blueIdx), hscale(6.f/_hrange) {}
    
    void operator()(const float* src, float* dst, int n) const
911
    {
912 913 914 915 916 917
        int i, bidx = blueIdx, dcn = dstcn;
        float _hscale = hscale;
        float alpha = ColorChannel<float>::max();
        n *= 3;
        
        for( i = 0; i < n; i += 3, dst += dcn )
918 919 920 921 922 923 924 925 926 927 928 929
        {
            float h = src[i], s = src[i+1], v = src[i+2];
            float b, g, r;

            if( s == 0 )
                b = g = r = v;
            else
            {
                static const int sector_data[][3]=
                    {{1,3,0}, {1,0,2}, {3,0,1}, {0,2,1}, {0,1,3}, {2,1,0}};
                float tab[4];
                int sector;
930
                h *= _hscale;
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
                if( h < 0 )
                    do h += 6; while( h < 0 );
                else if( h >= 6 )
                    do h -= 6; while( h >= 6 );
                sector = cvFloor(h);
                h -= sector;

                tab[0] = v;
                tab[1] = v*(1.f - s);
                tab[2] = v*(1.f - s*h);
                tab[3] = v*(1.f - s*(1.f - h));
                
                b = tab[sector_data[sector][0]];
                g = tab[sector_data[sector][1]];
                r = tab[sector_data[sector][2]];
            }

948
            dst[bidx] = b;
949
            dst[1] = g;
950 951 952
            dst[bidx^2] = r;
            if( dcn == 4 )
                dst[3] = alpha;
953 954 955
        }
    }

956 957 958 959
    int dstcn, blueIdx;
    float hscale;
};
    
960

961
struct HSV2RGB_b
962
{
963 964 965
    typedef uchar channel_type;
    
    HSV2RGB_b(int _dstcn, int _blueIdx, int _hrange)
966
    : dstcn(_dstcn), cvt(3, _blueIdx, (float)_hrange)
967 968 969
    {}
    
    void operator()(const uchar* src, uchar* dst, int n) const
970
    {
971 972 973 974 975
        int i, j, dcn = dstcn;
        uchar alpha = ColorChannel<uchar>::max();
        float buf[3*BLOCK_SIZE];
        
        for( i = 0; i < n; i += BLOCK_SIZE, src += BLOCK_SIZE*3 )
976
        {
977 978 979
            int dn = std::min(n - i, (int)BLOCK_SIZE);
            
            for( j = 0; j < dn*3; j += 3 )
980
            {
981 982 983
                buf[j] = src[j];
                buf[j+1] = src[j+1]*(1.f/255.f);
                buf[j+2] = src[j+2]*(1.f/255.f);
984
            }
985 986 987
            cvt(buf, buf, dn);
            
            for( j = 0; j < dn*3; j += 3, dst += dcn )
988
            {
989 990 991 992 993
                dst[0] = saturate_cast<uchar>(buf[j]*255.f);
                dst[1] = saturate_cast<uchar>(buf[j+1]*255.f);
                dst[2] = saturate_cast<uchar>(buf[j+2]*255.f);
                if( dcn == 4 )
                    dst[3] = alpha;
994 995 996
            }
        }
    }
997 998 999 1000
    
    int dstcn;
    HSV2RGB_f cvt;
};
1001

1002 1003
    
///////////////////////////////////// RGB <-> HLS ////////////////////////////////////////
1004

1005
struct RGB2HLS_f
1006
{
1007 1008 1009 1010 1011 1012
    typedef float channel_type;
    
    RGB2HLS_f(int _srccn, int _blueIdx, float _hrange)
    : srccn(_srccn), blueIdx(_blueIdx), hrange(_hrange) {}
    
    void operator()(const float* src, float* dst, int n) const
1013
    {
1014 1015 1016 1017 1018
        int i, bidx = blueIdx, scn = srccn;
        float hscale = hrange*(1.f/360.f);
        n *= 3;
        
        for( i = 0; i < n; i += 3, src += scn )
1019
        {
1020
            float b = src[bidx], g = src[1], r = src[bidx^2];
1021 1022
            float h = 0.f, s = 0.f, l;
            float vmin, vmax, diff;
1023
            
1024 1025 1026 1027 1028
            vmax = vmin = r;
            if( vmax < g ) vmax = g;
            if( vmax < b ) vmax = b;
            if( vmin > g ) vmin = g;
            if( vmin > b ) vmin = b;
1029
            
1030 1031
            diff = vmax - vmin;
            l = (vmax + vmin)*0.5f;
1032
            
1033 1034 1035 1036
            if( diff > FLT_EPSILON )
            {
                s = l < 0.5f ? diff/(vmax + vmin) : diff/(2 - vmax - vmin);
                diff = 60.f/diff;
1037
                
1038 1039 1040 1041 1042 1043
                if( vmax == r )
                    h = (g - b)*diff;
                else if( vmax == g )
                    h = (b - r)*diff + 120.f;
                else
                    h = (r - g)*diff + 240.f;
1044
                
1045 1046
                if( h < 0.f ) h += 360.f;
            }
1047 1048
            
            dst[i] = h*hscale;
1049 1050 1051 1052
            dst[i+1] = l;
            dst[i+2] = s;
        }
    }
1053 1054 1055 1056 1057 1058 1059
    
    int srccn, blueIdx;
    float hrange;
};
    
    
struct RGB2HLS_b
1060
{
1061 1062 1063 1064 1065 1066
    typedef uchar channel_type;
    
    RGB2HLS_b(int _srccn, int _blueIdx, int _hrange)
    : srccn(_srccn), cvt(3, _blueIdx, (float)_hrange) {}
    
    void operator()(const uchar* src, uchar* dst, int n) const
1067
    {
1068 1069 1070 1071
        int i, j, scn = srccn;
        float buf[3*BLOCK_SIZE];
        
        for( i = 0; i < n; i += BLOCK_SIZE, dst += BLOCK_SIZE*3 )
1072
        {
1073 1074 1075
            int dn = std::min(n - i, (int)BLOCK_SIZE);
            
            for( j = 0; j < dn*3; j += 3, src += scn )
1076
            {
1077 1078 1079
                buf[j] = src[0]*(1.f/255.f);
                buf[j+1] = src[1]*(1.f/255.f);
                buf[j+2] = src[2]*(1.f/255.f);
1080
            }
1081 1082 1083
            cvt(buf, buf, dn);
            
            for( j = 0; j < dn*3; j += 3 )
1084
            {
1085 1086 1087
                dst[j] = saturate_cast<uchar>(buf[j]);
                dst[j+1] = saturate_cast<uchar>(buf[j+1]*255.f);
                dst[j+2] = saturate_cast<uchar>(buf[j+2]*255.f);
1088 1089 1090 1091
            }
        }
    }
    
1092 1093 1094 1095
    int srccn;
    RGB2HLS_f cvt;
};
    
1096

1097 1098 1099 1100 1101 1102 1103 1104
struct HLS2RGB_f
{
    typedef float channel_type;
    
    HLS2RGB_f(int _dstcn, int _blueIdx, float _hrange)
    : dstcn(_dstcn), blueIdx(_blueIdx), hscale(6.f/_hrange) {}
    
    void operator()(const float* src, float* dst, int n) const
1105
    {
1106 1107 1108 1109 1110 1111
        int i, bidx = blueIdx, dcn = dstcn;
        float _hscale = hscale;
        float alpha = ColorChannel<float>::max();
        n *= 3;
        
        for( i = 0; i < n; i += 3, dst += dcn )
1112 1113 1114
        {
            float h = src[i], l = src[i+1], s = src[i+2];
            float b, g, r;
1115
            
1116 1117 1118 1119 1120
            if( s == 0 )
                b = g = r = l;
            else
            {
                static const int sector_data[][3]=
1121
                {{1,3,0}, {1,0,2}, {3,0,1}, {0,2,1}, {0,1,3}, {2,1,0}};
1122 1123 1124 1125 1126
                float tab[4];
                int sector;
                
                float p2 = l <= 0.5f ? l*(1 + s) : l + s - l*s;
                float p1 = 2*l - p2;
1127 1128
                
                h *= _hscale;
1129 1130 1131 1132
                if( h < 0 )
                    do h += 6; while( h < 0 );
                else if( h >= 6 )
                    do h -= 6; while( h >= 6 );
1133
                
1134 1135 1136
                assert( 0 <= h && h < 6 );
                sector = cvFloor(h);
                h -= sector;
1137
                
1138 1139 1140 1141
                tab[0] = p2;
                tab[1] = p1;
                tab[2] = p1 + (p2 - p1)*(1-h);
                tab[3] = p1 + (p2 - p1)*h;
1142
                
1143 1144 1145 1146
                b = tab[sector_data[sector][0]];
                g = tab[sector_data[sector][1]];
                r = tab[sector_data[sector][2]];
            }
1147 1148
            
            dst[bidx] = b;
1149
            dst[1] = g;
1150 1151 1152
            dst[bidx^2] = r;
            if( dcn == 4 )
                dst[3] = alpha;
1153 1154
        }
    }
1155 1156 1157 1158 1159
        
    int dstcn, blueIdx;
    float hscale;
};
    
1160

1161
struct HLS2RGB_b
1162
{
1163 1164 1165
    typedef uchar channel_type;
    
    HLS2RGB_b(int _dstcn, int _blueIdx, int _hrange)
1166
    : dstcn(_dstcn), cvt(3, _blueIdx, (float)_hrange)
1167 1168 1169
    {}
    
    void operator()(const uchar* src, uchar* dst, int n) const
1170
    {
1171 1172 1173 1174 1175
        int i, j, dcn = dstcn;
        uchar alpha = ColorChannel<uchar>::max();
        float buf[3*BLOCK_SIZE];
        
        for( i = 0; i < n; i += BLOCK_SIZE, src += BLOCK_SIZE*3 )
1176
        {
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
            int dn = std::min(n - i, (int)BLOCK_SIZE);
            
            for( j = 0; j < dn*3; j += 3 )
            {
                buf[j] = src[j];
                buf[j+1] = src[j+1]*(1.f/255.f);
                buf[j+2] = src[j+2]*(1.f/255.f);
            }
            cvt(buf, buf, dn);
            
            for( j = 0; j < dn*3; j += 3, dst += dcn )
1188
            {
1189 1190 1191 1192 1193
                dst[0] = saturate_cast<uchar>(buf[j]*255.f);
                dst[1] = saturate_cast<uchar>(buf[j+1]*255.f);
                dst[2] = saturate_cast<uchar>(buf[j+2]*255.f);
                if( dcn == 4 )
                    dst[3] = alpha;
1194 1195 1196
            }
        }
    }
1197 1198 1199 1200
    
    int dstcn;
    HLS2RGB_f cvt;
};
1201

1202 1203
    
///////////////////////////////////// RGB <-> L*a*b* /////////////////////////////////////
1204

1205
static const float D65[] = { 0.950456f, 1.f, 1.088754f };
1206

1207 1208 1209
enum { LAB_CBRT_TAB_SIZE = 1024, GAMMA_TAB_SIZE = 1024 };
static float LabCbrtTab[LAB_CBRT_TAB_SIZE*4];
static const float LabCbrtTabScale = LAB_CBRT_TAB_SIZE/1.5f;
1210

1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
static float sRGBGammaTab[GAMMA_TAB_SIZE*4], sRGBInvGammaTab[GAMMA_TAB_SIZE*4];
static const float GammaTabScale = (float)GAMMA_TAB_SIZE;
    
static ushort sRGBGammaTab_b[256], linearGammaTab_b[256];    
#undef lab_shift
#define lab_shift xyz_shift
#define gamma_shift 3
#define lab_shift2 (lab_shift + gamma_shift)
#define LAB_CBRT_TAB_SIZE_B (256*3/2*(1<<gamma_shift))
static ushort LabCbrtTab_b[LAB_CBRT_TAB_SIZE_B];
    
static void initLabTabs()
{
    static bool initialized = false;
    if(!initialized)
1226
    {
1227
        float f[LAB_CBRT_TAB_SIZE+1], g[GAMMA_TAB_SIZE+1], ig[GAMMA_TAB_SIZE+1], scale = 1.f/LabCbrtTabScale;
1228 1229
        int i;
        for(i = 0; i <= LAB_CBRT_TAB_SIZE; i++)
1230
        {
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
            float x = i*scale;
            f[i] = x < 0.008856f ? x*7.787f + 0.13793103448275862f : cvCbrt(x);
        }
        splineBuild(f, LAB_CBRT_TAB_SIZE, LabCbrtTab);
        
        scale = 1.f/GammaTabScale;
        for(i = 0; i <= GAMMA_TAB_SIZE; i++)
        {
            float x = i*scale;
            g[i] = x <= 0.04045f ? x*(1.f/12.92f) : (float)pow((double)(x + 0.055)*(1./1.055), 2.4);
            ig[i] = x <= 0.0031308 ? x*12.92f : (float)(1.055*pow((double)x, 1./2.4) - 0.055);
        }
        splineBuild(g, GAMMA_TAB_SIZE, sRGBGammaTab);
        splineBuild(ig, GAMMA_TAB_SIZE, sRGBInvGammaTab);
        
        for(i = 0; i < 256; i++)
        {
            float x = i*(1.f/255.f);
            sRGBGammaTab_b[i] = saturate_cast<ushort>(255.f*(1 << gamma_shift)*(x <= 0.04045f ? x*(1.f/12.92f) : (float)pow((double)(x + 0.055)*(1./1.055), 2.4)));
            linearGammaTab_b[i] = (ushort)(i*(1 << gamma_shift));
1251
        }
1252 1253 1254 1255 1256 1257 1258
        
        for(i = 0; i < LAB_CBRT_TAB_SIZE_B; i++)
        {
            float x = i*(1.f/(255.f*(1 << gamma_shift)));
            LabCbrtTab_b[i] = saturate_cast<ushort>((1 << lab_shift2)*(x < 0.008856f ? x*7.787f + 0.13793103448275862f : cvCbrt(x)));
        }
        initialized = true;
1259 1260 1261
    }
}

1262 1263 1264 1265 1266 1267 1268 1269
struct RGB2Lab_b
{
    typedef uchar channel_type;
    
    RGB2Lab_b(int _srccn, int blueIdx, const float* _coeffs,
              const float* _whitept, bool _srgb)
    : srccn(_srccn), srgb(_srgb)
    {
1270
        static volatile int _3 = 3;
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
        initLabTabs();
        
        if(!_coeffs) _coeffs = sRGB2XYZ_D65;
        if(!_whitept) _whitept = D65;
        float scale[] =
        {
            (1 << lab_shift)/_whitept[0],
            (float)(1 << lab_shift),
            (1 << lab_shift)/_whitept[2]
        };
        
1282
        for( int i = 0; i < _3; i++ )
1283 1284 1285 1286
        {
            coeffs[i*3+(blueIdx^2)] = cvRound(_coeffs[i*3]*scale[i]);
            coeffs[i*3+1] = cvRound(_coeffs[i*3+1]*scale[i]);
            coeffs[i*3+blueIdx] = cvRound(_coeffs[i*3+2]*scale[i]);
1287
            
1288 1289
            CV_Assert( coeffs[i] >= 0 && coeffs[i*3+1] >= 0 && coeffs[i*3+2] >= 0 &&
                      coeffs[i*3] + coeffs[i*3+1] + coeffs[i*3+2] < 2*(1 << lab_shift) );
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
        }
    }
    
    void operator()(const uchar* src, uchar* dst, int n) const
    {
        const int Lscale = (116*255+50)/100;
        const int Lshift = -((16*255*(1 << lab_shift2) + 50)/100);
        const ushort* tab = srgb ? sRGBGammaTab_b : linearGammaTab_b;
        int i, scn = srccn;
        int C0 = coeffs[0], C1 = coeffs[1], C2 = coeffs[2],
            C3 = coeffs[3], C4 = coeffs[4], C5 = coeffs[5],
            C6 = coeffs[6], C7 = coeffs[7], C8 = coeffs[8];
        n *= 3;
        
        for( i = 0; i < n; i += 3, src += scn )
        {
            int R = tab[src[0]], G = tab[src[1]], B = tab[src[2]];
            int fX = LabCbrtTab_b[CV_DESCALE(R*C0 + G*C1 + B*C2, lab_shift)];
            int fY = LabCbrtTab_b[CV_DESCALE(R*C3 + G*C4 + B*C5, lab_shift)];
            int fZ = LabCbrtTab_b[CV_DESCALE(R*C6 + G*C7 + B*C8, lab_shift)];
            
            int L = CV_DESCALE( Lscale*fY + Lshift, lab_shift2 );
            int a = CV_DESCALE( 500*(fX - fY) + 128*(1 << lab_shift2), lab_shift2 );
            int b = CV_DESCALE( 200*(fY - fZ) + 128*(1 << lab_shift2), lab_shift2 );
            
            dst[i] = saturate_cast<uchar>(L);
            dst[i+1] = saturate_cast<uchar>(a);
            dst[i+2] = saturate_cast<uchar>(b);
        }
    }
    
    int srccn;
    int coeffs[9];
    bool srgb;
1324
};
1325 1326 1327
    
    
struct RGB2Lab_f
1328
{
1329 1330 1331 1332 1333
    typedef float channel_type;
    
    RGB2Lab_f(int _srccn, int blueIdx, const float* _coeffs,
              const float* _whitept, bool _srgb)
    : srccn(_srccn), srgb(_srgb)
1334
    {
1335
        volatile int _3 = 3;
1336 1337 1338 1339 1340 1341
        initLabTabs();
        
        if(!_coeffs) _coeffs = sRGB2XYZ_D65;
        if(!_whitept) _whitept = D65;
        float scale[] = { LabCbrtTabScale/_whitept[0], LabCbrtTabScale, LabCbrtTabScale/_whitept[2] };
        
1342
        for( int i = 0; i < _3; i++ )
1343
        {
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
            coeffs[i*3+(blueIdx^2)] = _coeffs[i*3]*scale[i];
            coeffs[i*3+1] = _coeffs[i*3+1]*scale[i];
            coeffs[i*3+blueIdx] = _coeffs[i*3+2]*scale[i];
            CV_Assert( coeffs[i*3] >= 0 && coeffs[i*3+1] >= 0 && coeffs[i*3+2] >= 0 &&
                       coeffs[i*3] + coeffs[i*3+1] + coeffs[i*3+2] < 1.5f*LabCbrtTabScale );
        }
    }
    
    void operator()(const float* src, float* dst, int n) const
    {
        int i, scn = srccn;
        float gscale = GammaTabScale;
        const float* gammaTab = srgb ? sRGBGammaTab : 0;
        float C0 = coeffs[0], C1 = coeffs[1], C2 = coeffs[2],
              C3 = coeffs[3], C4 = coeffs[4], C5 = coeffs[5],
              C6 = coeffs[6], C7 = coeffs[7], C8 = coeffs[8];
        n *= 3;
        
        for( i = 0; i < n; i += 3, src += scn )
        {
            float R = src[0], G = src[1], B = src[2];
            if( gammaTab )
1366
            {
1367 1368 1369
                R = splineInterpolate(R*gscale, gammaTab, GAMMA_TAB_SIZE);
                G = splineInterpolate(G*gscale, gammaTab, GAMMA_TAB_SIZE);
                B = splineInterpolate(B*gscale, gammaTab, GAMMA_TAB_SIZE);
1370
            }
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
            float fX = splineInterpolate(R*C0 + G*C1 + B*C2, LabCbrtTab, LAB_CBRT_TAB_SIZE); 
            float fY = splineInterpolate(R*C3 + G*C4 + B*C5, LabCbrtTab, LAB_CBRT_TAB_SIZE);
            float fZ = splineInterpolate(R*C6 + G*C7 + B*C8, LabCbrtTab, LAB_CBRT_TAB_SIZE);
            
            float L = 116.f*fY - 16.f;
            float a = 500.f*(fX - fY);
            float b = 200.f*(fY - fZ);
            
            dst[i] = L; dst[i+1] = a; dst[i+2] = b;
        }
    }
    
    int srccn;
    float coeffs[9];
    bool srgb;
};

    
struct Lab2RGB_f
{
    typedef float channel_type;
    
    Lab2RGB_f( int _dstcn, int blueIdx, const float* _coeffs,
               const float* _whitept, bool _srgb )
    : dstcn(_dstcn), srgb(_srgb)
    {
        initLabTabs();
        
        if(!_coeffs) _coeffs = XYZ2sRGB_D65;
        if(!_whitept) _whitept = D65;
        
        for( int i = 0; i < 3; i++ )
        {
            coeffs[i+(blueIdx^2)*3] = _coeffs[i]*_whitept[i];
            coeffs[i+3] = _coeffs[i+3]*_whitept[i];
            coeffs[i+blueIdx*3] = _coeffs[i+6]*_whitept[i];
        }
    }
    
    void operator()(const float* src, float* dst, int n) const
    {
        int i, dcn = dstcn;
        const float* gammaTab = srgb ? sRGBInvGammaTab : 0;
        float gscale = GammaTabScale;
        float C0 = coeffs[0], C1 = coeffs[1], C2 = coeffs[2],
              C3 = coeffs[3], C4 = coeffs[4], C5 = coeffs[5],
              C6 = coeffs[6], C7 = coeffs[7], C8 = coeffs[8];
        float alpha = ColorChannel<float>::max();
        n *= 3;
        
        for( i = 0; i < n; i += 3, dst += dcn )
        {
            float L = src[i], a = src[i+1], b = src[i+2];
            float Y = (L + 16.f)*(1.f/116.f);
            float X = (Y + a*0.002f);
            float Z = (Y - b*0.005f);
            Y = Y*Y*Y;
            X = X*X*X;
            Z = Z*Z*Z;
            
            float R = X*C0 + Y*C1 + Z*C2;
            float G = X*C3 + Y*C4 + Z*C5;
            float B = X*C6 + Y*C7 + Z*C8;
            
            if( gammaTab )
1436
            {
1437 1438 1439
                R = splineInterpolate(R*gscale, gammaTab, GAMMA_TAB_SIZE);
                G = splineInterpolate(G*gscale, gammaTab, GAMMA_TAB_SIZE);
                B = splineInterpolate(B*gscale, gammaTab, GAMMA_TAB_SIZE);
1440
            }
1441 1442 1443 1444
            
            dst[0] = R; dst[1] = G; dst[2] = B;
            if( dcn == 4 )
                dst[3] = alpha;
1445 1446
        }
    }
1447 1448 1449 1450 1451
    
    int dstcn;
    float coeffs[9];
    bool srgb;
};
1452

1453 1454
    
struct Lab2RGB_b
1455
{
1456 1457 1458 1459 1460 1461 1462
    typedef uchar channel_type;
    
    Lab2RGB_b( int _dstcn, int blueIdx, const float* _coeffs,
               const float* _whitept, bool _srgb )
    : dstcn(_dstcn), cvt(3, blueIdx, _coeffs, _whitept, _srgb ) {}
    
    void operator()(const uchar* src, uchar* dst, int n) const
1463
    {
1464 1465 1466 1467 1468
        int i, j, dcn = dstcn;
        uchar alpha = ColorChannel<uchar>::max();
        float buf[3*BLOCK_SIZE];
        
        for( i = 0; i < n; i += BLOCK_SIZE, src += BLOCK_SIZE*3 )
1469
        {
1470 1471 1472
            int dn = std::min(n - i, (int)BLOCK_SIZE);
            
            for( j = 0; j < dn*3; j += 3 )
1473
            {
1474 1475 1476
                buf[j] = src[j]*(100.f/255.f);
                buf[j+1] = (float)(src[j+1] - 128);
                buf[j+2] = (float)(src[j+2] - 128);
1477
            }
1478 1479 1480
            cvt(buf, buf, dn);
            
            for( j = 0; j < dn*3; j += 3, dst += dcn )
1481
            {
1482 1483 1484 1485 1486
                dst[0] = saturate_cast<uchar>(buf[j]*255.f);
                dst[1] = saturate_cast<uchar>(buf[j+1]*255.f);
                dst[2] = saturate_cast<uchar>(buf[j+2]*255.f);
                if( dcn == 4 )
                    dst[3] = alpha;
1487 1488 1489
            }
        }
    }
1490 1491 1492 1493 1494 1495 1496
    
    int dstcn;
    Lab2RGB_f cvt;
};
    
    
///////////////////////////////////// RGB <-> L*u*v* /////////////////////////////////////
1497

1498
struct RGB2Luv_f
1499
{
1500 1501 1502 1503 1504
    typedef float channel_type;
    
    RGB2Luv_f( int _srccn, int blueIdx, const float* _coeffs,
               const float* whitept, bool _srgb )
    : srccn(_srccn), srgb(_srgb)
1505
    {
1506
		volatile int i;
1507 1508 1509 1510 1511
        initLabTabs();
        
        if(!_coeffs) _coeffs = sRGB2XYZ_D65;
        if(!whitept) whitept = D65;
        
1512
        for( i = 0; i < 3; i++ )
1513
        {
1514
            coeffs[i*3] = _coeffs[i*3];
1515
            coeffs[i*3+1] = _coeffs[i*3+1];
1516 1517 1518
            coeffs[i*3+2] = _coeffs[i*3+2];
            if( blueIdx == 0 )
                std::swap(coeffs[i*3], coeffs[i*3+2]);
1519 1520
            CV_Assert( coeffs[i*3] >= 0 && coeffs[i*3+1] >= 0 && coeffs[i*3+2] >= 0 &&
                      coeffs[i*3] + coeffs[i*3+1] + coeffs[i*3+2] < 1.5f );
1521
        }
1522 1523 1524 1525 1526 1527
        
        float d = 1.f/(whitept[0] + whitept[1]*15 + whitept[2]*3);
        un = 4*whitept[0]*d;
        vn = 9*whitept[1]*d;
        
        CV_Assert(whitept[1] == 1.f);
1528
    }
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
    
    void operator()(const float* src, float* dst, int n) const
    {
        int i, scn = srccn;
        float gscale = GammaTabScale;
        const float* gammaTab = srgb ? sRGBGammaTab : 0;
        float C0 = coeffs[0], C1 = coeffs[1], C2 = coeffs[2],
              C3 = coeffs[3], C4 = coeffs[4], C5 = coeffs[5],
              C6 = coeffs[6], C7 = coeffs[7], C8 = coeffs[8];
        float _un = 13*un, _vn = 13*vn;
        n *= 3;
        
        for( i = 0; i < n; i += 3, src += scn )
        {
            float R = src[0], G = src[1], B = src[2];
            if( gammaTab )
            {
                R = splineInterpolate(R*gscale, gammaTab, GAMMA_TAB_SIZE);
                G = splineInterpolate(G*gscale, gammaTab, GAMMA_TAB_SIZE);
                B = splineInterpolate(B*gscale, gammaTab, GAMMA_TAB_SIZE);
            }
            
            float X = R*C0 + G*C1 + B*C2;
            float Y = R*C3 + G*C4 + B*C5;
            float Z = R*C6 + G*C7 + B*C8;
            
            float L = splineInterpolate(Y*LabCbrtTabScale, LabCbrtTab, LAB_CBRT_TAB_SIZE);
            L = 116.f*L - 16.f;
            
            float d = (4*13) / std::max(X + 15 * Y + 3 * Z, FLT_EPSILON);            
            float u = L*(X*d - _un);
1560
            float v = L*((9*0.25f)*Y*d - _vn);
1561 1562 1563 1564 1565 1566 1567 1568 1569
            
            dst[i] = L; dst[i+1] = u; dst[i+2] = v;
        }
    }
    
    int srccn;
    float coeffs[9], un, vn;
    bool srgb;
};
1570

1571 1572
    
struct Luv2RGB_f
1573
{
1574 1575 1576 1577 1578
    typedef float channel_type;
    
    Luv2RGB_f( int _dstcn, int blueIdx, const float* _coeffs,
              const float* whitept, bool _srgb )
    : dstcn(_dstcn), srgb(_srgb)
1579
    {
1580 1581 1582 1583 1584 1585
        initLabTabs();
        
        if(!_coeffs) _coeffs = XYZ2sRGB_D65;
        if(!whitept) whitept = D65;
        
        for( int i = 0; i < 3; i++ )
1586
        {
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
            coeffs[i+(blueIdx^2)*3] = _coeffs[i];
            coeffs[i+3] = _coeffs[i+3];
            coeffs[i+blueIdx*3] = _coeffs[i+6];
        }
        
        float d = 1.f/(whitept[0] + whitept[1]*15 + whitept[2]*3);
        un = 4*whitept[0]*d;
        vn = 9*whitept[1]*d;
        
        CV_Assert(whitept[1] == 1.f);
    }
    
    void operator()(const float* src, float* dst, int n) const
    {
        int i, dcn = dstcn;
        const float* gammaTab = srgb ? sRGBInvGammaTab : 0;
        float gscale = GammaTabScale;
        float C0 = coeffs[0], C1 = coeffs[1], C2 = coeffs[2],
              C3 = coeffs[3], C4 = coeffs[4], C5 = coeffs[5],
              C6 = coeffs[6], C7 = coeffs[7], C8 = coeffs[8];
        float alpha = ColorChannel<float>::max();
        float _un = un, _vn = vn;
        n *= 3;
        
        for( i = 0; i < n; i += 3, dst += dcn )
        {
            float L = src[i], u = src[i+1], v = src[i+2], d, X, Y, Z;
            Y = (L + 16.f) * (1.f/116.f);
            Y = Y*Y*Y;
            d = (1.f/13.f)/L;
            u = u*d + _un;
            v = v*d + _vn;
            float iv = 1.f/v;
            X = 2.25f * u * Y * iv ;
1621
            Z = (12 - 3 * u - 20 * v) * Y * 0.25f * iv;                
1622 1623 1624 1625 1626 1627
                        
            float R = X*C0 + Y*C1 + Z*C2;
            float G = X*C3 + Y*C4 + Z*C5;
            float B = X*C6 + Y*C7 + Z*C8;
            
            if( gammaTab )
1628
            {
1629 1630 1631
                R = splineInterpolate(R*gscale, gammaTab, GAMMA_TAB_SIZE);
                G = splineInterpolate(G*gscale, gammaTab, GAMMA_TAB_SIZE);
                B = splineInterpolate(B*gscale, gammaTab, GAMMA_TAB_SIZE);
1632
            }
1633 1634 1635 1636
            
            dst[0] = R; dst[1] = G; dst[2] = B;
            if( dcn == 4 )
                dst[3] = alpha;
1637 1638
        }
    }
1639 1640 1641 1642 1643
    
    int dstcn;
    float coeffs[9], un, vn;
    bool srgb;
};
1644

1645 1646
    
struct RGB2Luv_b
1647
{
1648 1649 1650 1651 1652 1653 1654
    typedef uchar channel_type;
    
    RGB2Luv_b( int _srccn, int blueIdx, const float* _coeffs,
               const float* _whitept, bool _srgb )
    : srccn(_srccn), cvt(3, blueIdx, _coeffs, _whitept, _srgb) {}
    
    void operator()(const uchar* src, uchar* dst, int n) const
1655
    {
1656 1657 1658 1659
        int i, j, scn = srccn;
        float buf[3*BLOCK_SIZE];
        
        for( i = 0; i < n; i += BLOCK_SIZE, dst += BLOCK_SIZE*3 )
1660
        {
1661 1662 1663
            int dn = std::min(n - i, (int)BLOCK_SIZE);
            
            for( j = 0; j < dn*3; j += 3, src += scn )
1664
            {
1665 1666 1667
                buf[j] = src[0]*(1.f/255.f);
                buf[j+1] = (float)(src[1]*(1.f/255.f));
                buf[j+2] = (float)(src[2]*(1.f/255.f));
1668
            }
1669 1670 1671
            cvt(buf, buf, dn);
            
            for( j = 0; j < dn*3; j += 3 )
1672
            {
1673 1674 1675
                dst[j] = saturate_cast<uchar>(buf[j]*2.55f);
                dst[j+1] = saturate_cast<uchar>(buf[j+1]*0.72033898305084743f + 96.525423728813564f);
                dst[j+2] = saturate_cast<uchar>(buf[j+2]*0.99609375f + 139.453125f);
1676 1677 1678
            }
        }
    }
1679 1680 1681 1682 1683
    
    int srccn;
    RGB2Luv_f cvt;
};
    
1684

1685
struct Luv2RGB_b
1686
{
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
    typedef uchar channel_type;
    
    Luv2RGB_b( int _dstcn, int blueIdx, const float* _coeffs,
               const float* _whitept, bool _srgb )
    : dstcn(_dstcn), cvt(3, blueIdx, _coeffs, _whitept, _srgb ) {}
    
    void operator()(const uchar* src, uchar* dst, int n) const
    {
        int i, j, dcn = dstcn;
        uchar alpha = ColorChannel<uchar>::max();
        float buf[3*BLOCK_SIZE];
        
        for( i = 0; i < n; i += BLOCK_SIZE, src += BLOCK_SIZE*3 )
        {
            int dn = std::min(n - i, (int)BLOCK_SIZE);
            
            for( j = 0; j < dn*3; j += 3 )
            {
                buf[j] = src[j]*(100.f/255.f);
                buf[j+1] = (float)(src[j+1]*1.388235294117647f - 134.f);
                buf[j+2] = (float)(src[j+2]*1.003921568627451f - 140.f);
            }
            cvt(buf, buf, dn);
            
            for( j = 0; j < dn*3; j += 3, dst += dcn )
            {
                dst[0] = saturate_cast<uchar>(buf[j]*255.f);
                dst[1] = saturate_cast<uchar>(buf[j+1]*255.f);
                dst[2] = saturate_cast<uchar>(buf[j+2]*255.f);
                if( dcn == 4 )
                    dst[3] = alpha;
            }
        }
    }
    
    int dstcn;
    Luv2RGB_f cvt;
};
1725

1726 1727
        
//////////////////////////// Bayer Pattern -> RGB conversion /////////////////////////////
1728

1729 1730
template<typename T>
class SIMDBayerStubInterpolator_
1731
{
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
public:
    int bayer2Gray(const T*, int, T*, int, int, int, int) const
    {
        return 0;
    }
    
    int bayer2RGB(const T*, int, T*, int, int) const
    {
        return 0;
    }
};    
    
#if CV_SSE2
class SIMDBayerInterpolator_8u
{
public:
    SIMDBayerInterpolator_8u()
    {
        use_simd = checkHardwareSupport(CV_CPU_SSE2);
    }
    
    int bayer2Gray(const uchar* bayer, int bayer_step, uchar* dst,
                   int width, int bcoeff, int gcoeff, int rcoeff) const
    {
        if( !use_simd )
            return 0;
        
        __m128i _b2y = _mm_set1_epi16((short)(rcoeff*2));
        __m128i _g2y = _mm_set1_epi16((short)(gcoeff*2));
        __m128i _r2y = _mm_set1_epi16((short)(bcoeff*2));
        const uchar* bayer_end = bayer + width;
        
        for( ; bayer <= bayer_end - 18; bayer += 14, dst += 14 )
        {
            __m128i r0 = _mm_loadu_si128((const __m128i*)bayer);
            __m128i r1 = _mm_loadu_si128((const __m128i*)(bayer+bayer_step));
            __m128i r2 = _mm_loadu_si128((const __m128i*)(bayer+bayer_step*2));
            
            __m128i b1 = _mm_add_epi16(_mm_srli_epi16(_mm_slli_epi16(r0, 8), 8),
                                       _mm_srli_epi16(_mm_slli_epi16(r2, 8), 8));
            __m128i b0 = _mm_add_epi16(b1, _mm_srli_si128(b1, 2));
            b1 = _mm_slli_epi16(_mm_srli_si128(b1, 2), 1);
            
            __m128i g0 = _mm_add_epi16(_mm_srli_epi16(r0, 8), _mm_srli_epi16(r2, 8));
            __m128i g1 = _mm_srli_epi16(_mm_slli_epi16(r1, 8), 8);
            g0 = _mm_add_epi16(g0, _mm_add_epi16(g1, _mm_srli_si128(g1, 2)));
            g1 = _mm_slli_epi16(_mm_srli_si128(g1, 2), 2);
            
            r0 = _mm_srli_epi16(r1, 8);
            r1 = _mm_slli_epi16(_mm_add_epi16(r0, _mm_srli_si128(r0, 2)), 1);
            r0 = _mm_slli_epi16(r0, 2);
            
            g0 = _mm_add_epi16(_mm_mulhi_epi16(b0, _b2y), _mm_mulhi_epi16(g0, _g2y));
            g1 = _mm_add_epi16(_mm_mulhi_epi16(b1, _b2y), _mm_mulhi_epi16(g1, _g2y));
            g0 = _mm_add_epi16(g0, _mm_mulhi_epi16(r0, _r2y));
            g1 = _mm_add_epi16(g1, _mm_mulhi_epi16(r1, _r2y));
            g0 = _mm_srli_epi16(g0, 1);
            g1 = _mm_srli_epi16(g1, 1);
            g0 = _mm_packus_epi16(g0, g0);
            g1 = _mm_packus_epi16(g1, g1);
            g0 = _mm_unpacklo_epi8(g0, g1);
            _mm_storeu_si128((__m128i*)dst, g0);
        }
        
        return (int)(bayer - (bayer_end - width));
    }
    
    int bayer2RGB(const uchar* bayer, int bayer_step, uchar* dst, int width, int blue) const
    {
        if( !use_simd )
            return 0;
        /*
         B G B G | B G B G | B G B G | B G B G
         G R G R | G R G R | G R G R | G R G R
         B G B G | B G B G | B G B G | B G B G
         */
        __m128i delta1 = _mm_set1_epi16(1), delta2 = _mm_set1_epi16(2);
        __m128i mask = _mm_set1_epi16(blue < 0 ? -1 : 0), z = _mm_setzero_si128();
        __m128i masklo = _mm_set1_epi16(0x00ff);
        const uchar* bayer_end = bayer + width;
        
        for( ; bayer <= bayer_end - 18; bayer += 14, dst += 42 )
        {
            __m128i r0 = _mm_loadu_si128((const __m128i*)bayer);
            __m128i r1 = _mm_loadu_si128((const __m128i*)(bayer+bayer_step));
            __m128i r2 = _mm_loadu_si128((const __m128i*)(bayer+bayer_step*2));
            
            __m128i b1 = _mm_add_epi16(_mm_and_si128(r0, masklo), _mm_and_si128(r2, masklo));
            __m128i b0 = _mm_add_epi16(b1, _mm_srli_si128(b1, 2));
            b1 = _mm_srli_si128(b1, 2);
            b1 = _mm_srli_epi16(_mm_add_epi16(b1, delta1), 1);
            b0 = _mm_srli_epi16(_mm_add_epi16(b0, delta2), 2);
            b0 = _mm_packus_epi16(b0, b1);
            
            __m128i g0 = _mm_add_epi16(_mm_srli_epi16(r0, 8), _mm_srli_epi16(r2, 8));
            __m128i g1 = _mm_and_si128(r1, masklo);
            g0 = _mm_add_epi16(g0, _mm_add_epi16(g1, _mm_srli_si128(g1, 2)));
            g1 = _mm_srli_si128(g1, 2);
            g0 = _mm_srli_epi16(_mm_add_epi16(g0, delta2), 2);
            g0 = _mm_packus_epi16(g0, g1);
            
            r0 = _mm_srli_epi16(r1, 8);
            r1 = _mm_add_epi16(r0, _mm_srli_si128(r0, 2));
            r1 = _mm_srli_epi16(_mm_add_epi16(r1, delta1), 1);
            r0 = _mm_packus_epi16(r0, r1);
            
            b1 = _mm_and_si128(_mm_xor_si128(b0, r0), mask);
            b0 = _mm_xor_si128(b0, b1);
            r0 = _mm_xor_si128(r0, b1);
            
            // b1 g1 b1 g1 ...
            b1 = _mm_unpackhi_epi8(b0, g0);
            // b0 g0 b2 g2 b4 g4 ....
            b0 = _mm_unpacklo_epi8(b0, g0);
            
            // r1 0 r3 0 ...
            r1 = _mm_unpackhi_epi8(r0, z);
            // r0 0 r2 0 r4 0 ...
            r0 = _mm_unpacklo_epi8(r0, z);
            
            // 0 b0 g0 r0 0 b2 g2 r2 0 ...
            g0 = _mm_slli_si128(_mm_unpacklo_epi16(b0, r0), 1);
            // 0 b8 g8 r8 0 b10 g10 r10 0 ...
            g1 = _mm_slli_si128(_mm_unpackhi_epi16(b0, r0), 1);
            
            // b1 g1 r1 0 b3 g3 r3 ....
            r0 = _mm_unpacklo_epi16(b1, r1);
            // b9 g9 r9 0 ...
            r1 = _mm_unpackhi_epi16(b1, r1);
            
            b0 = _mm_srli_si128(_mm_unpacklo_epi32(g0, r0), 1);
            b1 = _mm_srli_si128(_mm_unpackhi_epi32(g0, r0), 1);
            
            _mm_storel_epi64((__m128i*)(dst-1+0), b0);
            _mm_storel_epi64((__m128i*)(dst-1+6*1), _mm_srli_si128(b0, 8));
            _mm_storel_epi64((__m128i*)(dst-1+6*2), b1);
            _mm_storel_epi64((__m128i*)(dst-1+6*3), _mm_srli_si128(b1, 8));
            
            g0 = _mm_srli_si128(_mm_unpacklo_epi32(g1, r1), 1);
            g1 = _mm_srli_si128(_mm_unpackhi_epi32(g1, r1), 1);
            
            _mm_storel_epi64((__m128i*)(dst-1+6*4), g0);
            _mm_storel_epi64((__m128i*)(dst-1+6*5), _mm_srli_si128(g0, 8));
            
            _mm_storel_epi64((__m128i*)(dst-1+6*6), g1);
        }
        
        return (int)(bayer - (bayer_end - width));
    }
    
    bool use_simd;
};
#else
typedef SIMDBayerStubInterpolator_<uchar> SIMDBayerInterpolator_8u;
#endif
    
template<typename T, class SIMDInterpolator>
static void Bayer2Gray_( const Mat& srcmat, Mat& dstmat, int code )
{
    SIMDInterpolator vecOp;
1892 1893 1894 1895 1896
    const int R2Y = 4899;
    const int G2Y = 9617;
    const int B2Y = 1868;
    const int SHIFT = 14;
    
1897 1898 1899 1900
    const T* bayer0 = (const T*)srcmat.data;
    int bayer_step = (int)(srcmat.step/sizeof(T));
    T* dst0 = (T*)dstmat.data;
    int dst_step = (int)(dstmat.step/sizeof(T));
1901 1902
    Size size = srcmat.size();
    int bcoeff = B2Y, rcoeff = R2Y;
1903 1904
    int start_with_green = code == CV_BayerGB2GRAY || code == CV_BayerGR2GRAY;
    bool brow = true;
1905
    
1906
    if( code != CV_BayerBG2GRAY && code != CV_BayerGB2GRAY )
1907
    {
1908
        brow = false;
1909 1910 1911 1912 1913 1914 1915 1916 1917
        std::swap(bcoeff, rcoeff);
    }
    
    dst0 += dst_step + 1;
    size.height -= 2;
    size.width -= 2;
    
    for( ; size.height-- > 0; bayer0 += bayer_step, dst0 += dst_step )
    {
1918 1919 1920 1921
        unsigned t0, t1, t2;
        const T* bayer = bayer0;
        T* dst = dst0;
        const T* bayer_end = bayer + size.width;
1922 1923
        
        if( size.width <= 0 )
1924 1925
        {
            dst[-1] = dst[size.width] = 0;
1926
            continue;
1927
        }
1928 1929 1930 1931 1932 1933 1934
        
        if( start_with_green )
        {
            t0 = (bayer[1] + bayer[bayer_step*2+1])*rcoeff;
            t1 = (bayer[bayer_step] + bayer[bayer_step+2])*bcoeff;
            t2 = bayer[bayer_step+1]*(2*G2Y);
            
1935
            dst[0] = (T)CV_DESCALE(t0 + t1 + t2, SHIFT+1);
1936 1937 1938 1939
            bayer++;
            dst++;
        }
        
1940 1941 1942
        int delta = vecOp.bayer2Gray(bayer, bayer_step, dst, size.width, bcoeff, G2Y, rcoeff);
        bayer += delta;
        dst += delta;
1943 1944 1945 1946 1947 1948
        
        for( ; bayer <= bayer_end - 2; bayer += 2, dst += 2 )
        {
            t0 = (bayer[0] + bayer[2] + bayer[bayer_step*2] + bayer[bayer_step*2+2])*rcoeff;
            t1 = (bayer[1] + bayer[bayer_step] + bayer[bayer_step+2] + bayer[bayer_step*2+1])*G2Y;
            t2 = bayer[bayer_step+1]*(4*bcoeff);
1949
            dst[0] = (T)CV_DESCALE(t0 + t1 + t2, SHIFT+2);
1950 1951 1952 1953
            
            t0 = (bayer[2] + bayer[bayer_step*2+2])*rcoeff;
            t1 = (bayer[bayer_step+1] + bayer[bayer_step+3])*bcoeff;
            t2 = bayer[bayer_step+2]*(2*G2Y);
1954
            dst[1] = (T)CV_DESCALE(t0 + t1 + t2, SHIFT+1);
1955 1956 1957 1958 1959 1960 1961
        }
        
        if( bayer < bayer_end )
        {
            t0 = (bayer[0] + bayer[2] + bayer[bayer_step*2] + bayer[bayer_step*2+2])*rcoeff;
            t1 = (bayer[1] + bayer[bayer_step] + bayer[bayer_step+2] + bayer[bayer_step*2+1])*G2Y;
            t2 = bayer[bayer_step+1]*(4*bcoeff);
1962
            dst[0] = (T)CV_DESCALE(t0 + t1 + t2, SHIFT+2);
1963 1964 1965 1966
            bayer++;
            dst++;
        }
        
1967 1968 1969
        dst0[-1] = dst0[0];
        dst0[size.width] = dst0[size.width-1];
        
1970 1971 1972 1973
        brow = !brow;
        std::swap(bcoeff, rcoeff);
        start_with_green = !start_with_green;
    }
1974 1975
    
    size = dstmat.size();
1976
    dst0 = (T*)dstmat.data;
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
    if( size.height > 2 )
        for( int i = 0; i < size.width; i++ )
        {
            dst0[i] = dst0[i + dst_step];
            dst0[i + (size.height-1)*dst_step] = dst0[i + (size.height-2)*dst_step];
        }
    else
        for( int i = 0; i < size.width; i++ )
        {
            dst0[i] = dst0[i + (size.height-1)*dst_step] = 0;
        }
1988 1989
}

1990 1991
template<typename T, class SIMDInterpolator>    
static void Bayer2RGB_( const Mat& srcmat, Mat& dstmat, int code )
1992
{
1993 1994 1995 1996 1997
    SIMDInterpolator vecOp;
    const T* bayer0 = (const T*)srcmat.data;
    int bayer_step = (int)(srcmat.step/sizeof(T));
    T* dst0 = (T*)dstmat.data;
    int dst_step = (int)(dstmat.step/sizeof(T));
1998
    Size size = srcmat.size();
1999
    int blue = code == CV_BayerBG2BGR || code == CV_BayerGB2BGR ? -1 : 1;
2000
    int start_with_green = code == CV_BayerGB2BGR || code == CV_BayerGR2BGR;
2001
    
2002
    dst0 += dst_step + 3 + 1;
2003 2004
    size.height -= 2;
    size.width -= 2;
2005
        
2006 2007
    for( ; size.height-- > 0; bayer0 += bayer_step, dst0 += dst_step )
    {
2008
        int t0, t1;
2009 2010 2011
        const T* bayer = bayer0;
        T* dst = dst0;
        const T* bayer_end = bayer + size.width;
2012
        
2013
        if( size.width <= 0 )
2014 2015 2016
        {
            dst[-4] = dst[-3] = dst[-2] = dst[size.width*3-1] =
            dst[size.width*3] = dst[size.width*3+1] = 0;
2017
            continue;
2018
        }
2019
        
2020 2021
        if( start_with_green )
        {
2022 2023
            t0 = (bayer[1] + bayer[bayer_step*2+1] + 1) >> 1;
            t1 = (bayer[bayer_step] + bayer[bayer_step+2] + 1) >> 1;
2024
            dst[-blue] = (T)t0;
2025
            dst[0] = bayer[bayer_step+1];
2026
            dst[blue] = (T)t1;
2027 2028 2029
            bayer++;
            dst += 3;
        }
2030
        
2031 2032 2033
        int delta = vecOp.bayer2RGB(bayer, bayer_step, dst, size.width, blue);
        bayer += delta;
        dst += delta*3;
2034
                
2035
        if( blue > 0 )
2036
        {
2037 2038 2039 2040 2041 2042
            for( ; bayer <= bayer_end - 2; bayer += 2, dst += 6 )
            {
                t0 = (bayer[0] + bayer[2] + bayer[bayer_step*2] +
                      bayer[bayer_step*2+2] + 2) >> 2;
                t1 = (bayer[1] + bayer[bayer_step] +
                      bayer[bayer_step+2] + bayer[bayer_step*2+1]+2) >> 2;
2043 2044
                dst[-1] = (T)t0;
                dst[0] = (T)t1;
2045 2046 2047 2048
                dst[1] = bayer[bayer_step+1];
                
                t0 = (bayer[2] + bayer[bayer_step*2+2] + 1) >> 1;
                t1 = (bayer[bayer_step+1] + bayer[bayer_step+3] + 1) >> 1;
2049
                dst[2] = (T)t0;
2050
                dst[3] = bayer[bayer_step+2];
2051
                dst[4] = (T)t1;
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
            }
        }
        else
        {
            for( ; bayer <= bayer_end - 2; bayer += 2, dst += 6 )
            {
                t0 = (bayer[0] + bayer[2] + bayer[bayer_step*2] +
                      bayer[bayer_step*2+2] + 2) >> 2;
                t1 = (bayer[1] + bayer[bayer_step] +
                      bayer[bayer_step+2] + bayer[bayer_step*2+1]+2) >> 2;
2062 2063
                dst[1] = (T)t0;
                dst[0] = (T)t1;
2064 2065 2066 2067
                dst[-1] = bayer[bayer_step+1];
                
                t0 = (bayer[2] + bayer[bayer_step*2+2] + 1) >> 1;
                t1 = (bayer[bayer_step+1] + bayer[bayer_step+3] + 1) >> 1;
2068
                dst[4] = (T)t0;
2069
                dst[3] = bayer[bayer_step+2];
2070
                dst[2] = (T)t1;
2071
            }
2072
        }
2073
        
2074 2075
        if( bayer < bayer_end )
        {
2076 2077 2078 2079
            t0 = (bayer[0] + bayer[2] + bayer[bayer_step*2] +
                  bayer[bayer_step*2+2] + 2) >> 2;
            t1 = (bayer[1] + bayer[bayer_step] +
                  bayer[bayer_step+2] + bayer[bayer_step*2+1]+2) >> 2;
2080 2081
            dst[-blue] = (T)t0;
            dst[0] = (T)t1;
2082
            dst[blue] = bayer[bayer_step+1];
2083 2084 2085
            bayer++;
            dst += 3;
        }
2086
        
2087 2088 2089 2090 2091 2092 2093 2094
        dst0[-4] = dst0[-1];
        dst0[-3] = dst0[0];
        dst0[-2] = dst0[1];
        dst0[size.width*3-1] = dst0[size.width*3-4];
        dst0[size.width*3] = dst0[size.width*3-3];
        dst0[size.width*3+1] = dst0[size.width*3-2];
        
        blue = -blue;
2095 2096
        start_with_green = !start_with_green;
    }
2097
    
2098
    size = dstmat.size();
2099
    dst0 = (T*)dstmat.data;
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
    if( size.height > 2 )
        for( int i = 0; i < size.width*3; i++ )
        {
            dst0[i] = dst0[i + dst_step];
            dst0[i + (size.height-1)*dst_step] = dst0[i + (size.height-2)*dst_step];
        }
    else
        for( int i = 0; i < size.width*3; i++ )
        {
            dst0[i] = dst0[i + (size.height-1)*dst_step] = 0;
        }
}

2113 2114 2115 2116
    
/////////////////// Demosaicing using Variable Number of Gradients ///////////////////////
    
static void Bayer2RGB_VNG_8u( const Mat& srcmat, Mat& dstmat, int code )
2117
{
2118 2119 2120 2121 2122 2123
    const uchar* bayer = srcmat.data;
    int bstep = (int)srcmat.step;
    uchar* dst = dstmat.data;
    int dststep = (int)dstmat.step;
    Size size = srcmat.size();
    
2124 2125 2126 2127
    int blueIdx = code == CV_BayerBG2BGR_VNG || code == CV_BayerGB2BGR_VNG ? 0 : 2;
    bool greenCell0 = code != CV_BayerBG2BGR_VNG && code != CV_BayerRG2BGR_VNG;
    
    // for too small images use the simple interpolation algorithm
2128
    if( MIN(size.width, size.height) < 8 )
2129
    {
2130
        Bayer2RGB_<uchar, SIMDBayerInterpolator_8u>( srcmat, dstmat, code );
2131 2132
        return;
    }
2133 2134
    
    const int brows = 3, bcn = 7;
2135 2136
    int N = size.width, N2 = N*2, N3 = N*3, N4 = N*4, N5 = N*5, N6 = N*6, N7 = N*7;  
    int i, bufstep = N7*bcn;
2137 2138 2139 2140 2141
    cv::AutoBuffer<ushort> _buf(bufstep*brows);
    ushort* buf = (ushort*)_buf;
    
    bayer += bstep*2;
    
2142 2143 2144 2145
#if CV_SSE2
    bool haveSSE = cv::checkHardwareSupport(CV_CPU_SSE2);
    #define _mm_absdiff_epu16(a,b) _mm_adds_epu16(_mm_subs_epu16(a, b), _mm_subs_epu16(b, a))
#endif
2146
    
2147
    for( int y = 2; y < size.height - 4; y++ )
2148
    {
2149
        uchar* dstrow = dst + dststep*y + 6;
2150 2151 2152 2153
        const uchar* srow;
        
        for( int dy = (y == 2 ? -1 : 1); dy <= 1; dy++ )
        {
2154 2155
            ushort* brow = buf + ((y + dy - 1)%brows)*bufstep + 1;
            srow = bayer + (y+dy)*bstep + 1;
2156 2157
            
            for( i = 0; i < bcn; i++ )
2158
                brow[N*i-1] = brow[(N-2) + N*i] = 0;
2159
            
2160
            i = 1;
2161 2162
            
#if CV_SSE2
2163
            if( haveSSE )
2164
            {
2165 2166
                __m128i z = _mm_setzero_si128();
                for( ; i <= N-9; i += 8, srow += 8, brow += 8 )
2167
                {
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
                    __m128i s1, s2, s3, s4, s6, s7, s8, s9;
                    
                    s1 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow-1-bstep)),z);
                    s2 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow-bstep)),z);
                    s3 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow+1-bstep)),z);
                    
                    s4 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow-1)),z);
                    s6 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow+1)),z);
                    
                    s7 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow-1+bstep)),z);
                    s8 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow+bstep)),z);
                    s9 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow+1+bstep)),z);
                    
                    __m128i b0, b1, b2, b3, b4, b5, b6;
                    
                    b0 = _mm_adds_epu16(_mm_slli_epi16(_mm_absdiff_epu16(s2,s8),1),
                                        _mm_adds_epu16(_mm_absdiff_epu16(s1, s7),
                                                       _mm_absdiff_epu16(s3, s9)));
                    b1 = _mm_adds_epu16(_mm_slli_epi16(_mm_absdiff_epu16(s4,s6),1),
                                        _mm_adds_epu16(_mm_absdiff_epu16(s1, s3),
                                                       _mm_absdiff_epu16(s7, s9)));
                    b2 = _mm_slli_epi16(_mm_absdiff_epu16(s3,s7),1);
                    b3 = _mm_slli_epi16(_mm_absdiff_epu16(s1,s9),1);
                    
                    _mm_storeu_si128((__m128i*)brow, b0);
                    _mm_storeu_si128((__m128i*)(brow + N), b1);
                    _mm_storeu_si128((__m128i*)(brow + N2), b2);
                    _mm_storeu_si128((__m128i*)(brow + N3), b3);
                    
                    b4 = _mm_adds_epu16(b2,_mm_adds_epu16(_mm_absdiff_epu16(s2, s4),
                                                          _mm_absdiff_epu16(s6, s8)));
                    b5 = _mm_adds_epu16(b3,_mm_adds_epu16(_mm_absdiff_epu16(s2, s6),
                                                          _mm_absdiff_epu16(s4, s8)));
                    b6 = _mm_adds_epu16(_mm_adds_epu16(s2, s4), _mm_adds_epu16(s6, s8));
                    b6 = _mm_srli_epi16(b6, 1);
                    
                    _mm_storeu_si128((__m128i*)(brow + N4), b4);
                    _mm_storeu_si128((__m128i*)(brow + N5), b5);
                    _mm_storeu_si128((__m128i*)(brow + N6), b6);
2207 2208
                }
            }
2209 2210
#endif
            
2211 2212
            for( ; i < N-1; i++, srow++, brow++ )
            {
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
                brow[0] = (ushort)(std::abs(srow[-1-bstep] - srow[-1+bstep]) +
                                   std::abs(srow[-bstep] - srow[+bstep])*2 +
                                   std::abs(srow[1-bstep] - srow[1+bstep]));
                brow[N] = (ushort)(std::abs(srow[-1-bstep] - srow[1-bstep]) +
                                   std::abs(srow[-1] - srow[1])*2 +
                                   std::abs(srow[-1+bstep] - srow[1+bstep]));
                brow[N2] = (ushort)(std::abs(srow[+1-bstep] - srow[-1+bstep])*2);
                brow[N3] = (ushort)(std::abs(srow[-1-bstep] - srow[1+bstep])*2);
                brow[N4] = (ushort)(brow[N2] + std::abs(srow[-bstep] - srow[-1]) +
                                    std::abs(srow[+bstep] - srow[1]));
                brow[N5] = (ushort)(brow[N3] + std::abs(srow[-bstep] - srow[1]) +
                                    std::abs(srow[+bstep] - srow[-1]));
2225 2226
                brow[N6] = (ushort)((srow[-bstep] + srow[-1] + srow[1] + srow[+bstep])>>1);
            }
2227 2228
        }
        
2229 2230 2231 2232 2233
        const ushort* brow0 = buf + ((y - 2) % brows)*bufstep + 2;
        const ushort* brow1 = buf + ((y - 1) % brows)*bufstep + 2;
        const ushort* brow2 = buf + (y % brows)*bufstep + 2;
        static const float scale[] = { 0.f, 0.5f, 0.25f, 0.1666666666667f, 0.125f, 0.1f, 0.08333333333f, 0.0714286f, 0.0625f };
        srow = bayer + y*bstep + 2;
2234 2235
        bool greenCell = greenCell0;
        
2236
        i = 2;
2237
#if CV_SSE2
2238
        int limit = !haveSSE ? N-2 : greenCell ? std::min(3, N-2) : 2;
2239
#else
2240
        int limit = N - 2;
2241
#endif
2242
        
2243
        do
2244
        {
2245
            for( ; i < limit; i++, srow++, brow0++, brow1++, brow2++, dstrow += 3 )
2246
            {
2247 2248 2249 2250 2251 2252 2253
                int gradN = brow0[0] + brow1[0];
                int gradS = brow1[0] + brow2[0];
                int gradW = brow1[N-1] + brow1[N];
                int gradE = brow1[N] + brow1[N+1];
                int minGrad = std::min(std::min(std::min(gradN, gradS), gradW), gradE);
                int maxGrad = std::max(std::max(std::max(gradN, gradS), gradW), gradE);
                int R, G, B;
2254
                
2255
                if( !greenCell )
2256
                {
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
                    int gradNE = brow0[N4+1] + brow1[N4];
                    int gradSW = brow1[N4] + brow2[N4-1];
                    int gradNW = brow0[N5-1] + brow1[N5];
                    int gradSE = brow1[N5] + brow2[N5+1];
                    
                    minGrad = std::min(std::min(std::min(std::min(minGrad, gradNE), gradSW), gradNW), gradSE);
                    maxGrad = std::max(std::max(std::max(std::max(maxGrad, gradNE), gradSW), gradNW), gradSE);
                    int T = minGrad + maxGrad/2;
                    
                    int Rs = 0, Gs = 0, Bs = 0, ng = 0;
                    if( gradN < T )
                    {
                        Rs += srow[-bstep*2] + srow[0];
                        Gs += srow[-bstep]*2;
                        Bs += srow[-bstep-1] + srow[-bstep+1];
                        ng++;
                    }
                    if( gradS < T )
                    {
                        Rs += srow[bstep*2] + srow[0];
                        Gs += srow[bstep]*2;
                        Bs += srow[bstep-1] + srow[bstep+1];
                        ng++;
                    }
                    if( gradW < T )
                    {
                        Rs += srow[-2] + srow[0];
                        Gs += srow[-1]*2;
                        Bs += srow[-bstep-1] + srow[bstep-1];
                        ng++;
                    }
                    if( gradE < T )
                    {
                        Rs += srow[2] + srow[0];
                        Gs += srow[1]*2;
                        Bs += srow[-bstep+1] + srow[bstep+1];
                        ng++;
                    }
                    if( gradNE < T )
                    {
                        Rs += srow[-bstep*2+2] + srow[0];
                        Gs += brow0[N6+1];
                        Bs += srow[-bstep+1]*2;
                        ng++;
                    }
                    if( gradSW < T )
                    {
                        Rs += srow[bstep*2-2] + srow[0];
                        Gs += brow2[N6-1];
                        Bs += srow[bstep-1]*2;
                        ng++;
                    }
                    if( gradNW < T )
                    {
                        Rs += srow[-bstep*2-2] + srow[0];
                        Gs += brow0[N6-1];
                        Bs += srow[-bstep+1]*2;
                        ng++;
                    }
                    if( gradSE < T )
                    {
                        Rs += srow[bstep*2+2] + srow[0];
                        Gs += brow2[N6+1];
                        Bs += srow[-bstep+1]*2;
                        ng++;
                    }
                    R = srow[0];
                    G = R + cvRound((Gs - Rs)*scale[ng]);
                    B = R + cvRound((Bs - Rs)*scale[ng]); 
2326
                }
2327
                else
2328
                {
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
                    int gradNE = brow0[N2] + brow0[N2+1] + brow1[N2] + brow1[N2+1];
                    int gradSW = brow1[N2] + brow1[N2-1] + brow2[N2] + brow2[N2-1];
                    int gradNW = brow0[N3] + brow0[N3-1] + brow1[N3] + brow1[N3-1];
                    int gradSE = brow1[N3] + brow1[N3+1] + brow2[N3] + brow2[N3+1];
                    
                    minGrad = std::min(std::min(std::min(std::min(minGrad, gradNE), gradSW), gradNW), gradSE);
                    maxGrad = std::max(std::max(std::max(std::max(maxGrad, gradNE), gradSW), gradNW), gradSE);
                    int T = minGrad + maxGrad/2;
                    
                    int Rs = 0, Gs = 0, Bs = 0, ng = 0;
                    if( gradN < T )
                    {
                        Rs += srow[-bstep*2-1] + srow[-bstep*2+1];
                        Gs += srow[-bstep*2] + srow[0];
                        Bs += srow[-bstep]*2;
                        ng++;
                    }
                    if( gradS < T )
                    {
                        Rs += srow[bstep*2-1] + srow[bstep*2+1];
                        Gs += srow[bstep*2] + srow[0];
                        Bs += srow[bstep]*2;
                        ng++;
                    }
                    if( gradW < T )
                    {
                        Rs += srow[-1]*2;
                        Gs += srow[-2] + srow[0];
                        Bs += srow[-bstep-2]+srow[bstep-2];
                        ng++;
                    }
                    if( gradE < T )
                    {
                        Rs += srow[1]*2;
                        Gs += srow[2] + srow[0];
                        Bs += srow[-bstep+2]+srow[bstep+2];
                        ng++;
                    }
                    if( gradNE < T )
                    {
                        Rs += srow[-bstep*2+1] + srow[1];
                        Gs += srow[-bstep+1]*2;
                        Bs += srow[-bstep] + srow[-bstep+2];
                        ng++;
                    }
                    if( gradSW < T )
                    {
                        Rs += srow[bstep*2-1] + srow[-1];
                        Gs += srow[bstep-1]*2;
                        Bs += srow[bstep] + srow[bstep-2];
                        ng++;
                    }
                    if( gradNW < T )
                    {
                        Rs += srow[-bstep*2-1] + srow[-1];
                        Gs += srow[-bstep-1]*2;
                        Bs += srow[-bstep-2]+srow[-bstep];
                        ng++;
                    }
                    if( gradSE < T )
                    {
                        Rs += srow[bstep*2+1] + srow[1];
                        Gs += srow[bstep+1]*2;
                        Bs += srow[bstep+2]+srow[bstep];
                        ng++;
                    }
                    G = srow[0];
                    R = G + cvRound((Rs - Gs)*scale[ng]);
                    B = G + cvRound((Bs - Gs)*scale[ng]);
2398
                }
2399 2400 2401 2402
                dstrow[blueIdx] = CV_CAST_8U(B);
                dstrow[1] = CV_CAST_8U(G);
                dstrow[blueIdx^2] = CV_CAST_8U(R);
                greenCell = !greenCell;
2403
            }
2404

2405
#if CV_SSE2
2406 2407 2408
            if( !haveSSE )
                break;
            
2409 2410 2411 2412
            __m128i emask    = _mm_set1_epi32(0x0000ffff),
                    omask    = _mm_set1_epi32(0xffff0000),
                    z        = _mm_setzero_si128();
            __m128 _0_5      = _mm_set1_ps(0.5f);
2413
            
2414 2415 2416 2417
            #define _mm_merge_epi16(a, b) _mm_or_si128(_mm_and_si128(a, emask), _mm_and_si128(b, omask)) //(aA_aA_aA_aA) * (bB_bB_bB_bB) => (bA_bA_bA_bA)
            #define _mm_cvtloepi16_ps(a)  _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(a,a), 16))   //(1,2,3,4,5,6,7,8) => (1f,2f,3f,4f)
            #define _mm_cvthiepi16_ps(a)  _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpackhi_epi16(a,a), 16))   //(1,2,3,4,5,6,7,8) => (5f,6f,7f,8f)
            #define _mm_loadl_u8_s16(ptr, offset) _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)((ptr) + (offset))), z) //load 8 uchars to 8 shorts
2418
            
2419 2420
            // process 8 pixels at once
            for( ; i <= N - 10; i += 8, srow += 8, brow0 += 8, brow1 += 8, brow2 += 8 )
2421
            {
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
                //int gradN = brow0[0] + brow1[0];
                __m128i gradN = _mm_adds_epi16(_mm_loadu_si128((__m128i*)brow0), _mm_loadu_si128((__m128i*)brow1));

                //int gradS = brow1[0] + brow2[0];
                __m128i gradS = _mm_adds_epi16(_mm_loadu_si128((__m128i*)brow1), _mm_loadu_si128((__m128i*)brow2));

                //int gradW = brow1[N-1] + brow1[N];
                __m128i gradW = _mm_adds_epi16(_mm_loadu_si128((__m128i*)(brow1+N-1)), _mm_loadu_si128((__m128i*)(brow1+N)));

                //int gradE = brow1[N+1] + brow1[N];
                __m128i gradE = _mm_adds_epi16(_mm_loadu_si128((__m128i*)(brow1+N+1)), _mm_loadu_si128((__m128i*)(brow1+N)));
2433
                
2434 2435 2436 2437
                //int minGrad = std::min(std::min(std::min(gradN, gradS), gradW), gradE);
                //int maxGrad = std::max(std::max(std::max(gradN, gradS), gradW), gradE);
                __m128i minGrad = _mm_min_epi16(_mm_min_epi16(gradN, gradS), _mm_min_epi16(gradW, gradE));
                __m128i maxGrad = _mm_max_epi16(_mm_max_epi16(gradN, gradS), _mm_max_epi16(gradW, gradE));
2438
                
2439 2440
                __m128i grad0, grad1;
                
2441 2442 2443 2444 2445 2446
                //int gradNE = brow0[N4+1] + brow1[N4];
                //int gradNE = brow0[N2] + brow0[N2+1] + brow1[N2] + brow1[N2+1];
                grad0 = _mm_adds_epi16(_mm_loadu_si128((__m128i*)(brow0+N4+1)), _mm_loadu_si128((__m128i*)(brow1+N4)));
                grad1 = _mm_adds_epi16( _mm_adds_epi16(_mm_loadu_si128((__m128i*)(brow0+N2)), _mm_loadu_si128((__m128i*)(brow0+N2+1))),
                                        _mm_adds_epi16(_mm_loadu_si128((__m128i*)(brow1+N2)), _mm_loadu_si128((__m128i*)(brow1+N2+1))));
                __m128i gradNE = _mm_merge_epi16(grad0, grad1);
2447
                
2448 2449 2450 2451 2452 2453
                //int gradSW = brow1[N4] + brow2[N4-1];
                //int gradSW = brow1[N2] + brow1[N2-1] + brow2[N2] + brow2[N2-1];
                grad0 = _mm_adds_epi16(_mm_loadu_si128((__m128i*)(brow2+N4-1)), _mm_loadu_si128((__m128i*)(brow1+N4)));
                grad1 = _mm_adds_epi16(_mm_adds_epi16(_mm_loadu_si128((__m128i*)(brow2+N2)), _mm_loadu_si128((__m128i*)(brow2+N2-1))),
                                       _mm_adds_epi16(_mm_loadu_si128((__m128i*)(brow1+N2)), _mm_loadu_si128((__m128i*)(brow1+N2-1))));
                __m128i gradSW = _mm_merge_epi16(grad0, grad1);
2454 2455 2456
                
                minGrad = _mm_min_epi16(_mm_min_epi16(minGrad, gradNE), gradSW);
                maxGrad = _mm_max_epi16(_mm_max_epi16(maxGrad, gradNE), gradSW);
2457 2458 2459 2460 2461 2462 2463

                //int gradNW = brow0[N5-1] + brow1[N5];
                //int gradNW = brow0[N3] + brow0[N3-1] + brow1[N3] + brow1[N3-1];
                grad0 = _mm_adds_epi16(_mm_loadu_si128((__m128i*)(brow0+N5-1)), _mm_loadu_si128((__m128i*)(brow1+N5)));
                grad1 = _mm_adds_epi16(_mm_adds_epi16(_mm_loadu_si128((__m128i*)(brow0+N3)), _mm_loadu_si128((__m128i*)(brow0+N3-1))),
                                       _mm_adds_epi16(_mm_loadu_si128((__m128i*)(brow1+N3)), _mm_loadu_si128((__m128i*)(brow1+N3-1))));
                __m128i gradNW = _mm_merge_epi16(grad0, grad1);
2464
                
2465 2466 2467 2468 2469 2470
                //int gradSE = brow1[N5] + brow2[N5+1];
                //int gradSE = brow1[N3] + brow1[N3+1] + brow2[N3] + brow2[N3+1];
                grad0 = _mm_adds_epi16(_mm_loadu_si128((__m128i*)(brow2+N5+1)), _mm_loadu_si128((__m128i*)(brow1+N5)));
                grad1 = _mm_adds_epi16(_mm_adds_epi16(_mm_loadu_si128((__m128i*)(brow2+N3)), _mm_loadu_si128((__m128i*)(brow2+N3+1))),
                                       _mm_adds_epi16(_mm_loadu_si128((__m128i*)(brow1+N3)), _mm_loadu_si128((__m128i*)(brow1+N3+1))));
                __m128i gradSE = _mm_merge_epi16(grad0, grad1);
2471 2472 2473 2474
                
                minGrad = _mm_min_epi16(_mm_min_epi16(minGrad, gradNW), gradSE);
                maxGrad = _mm_max_epi16(_mm_max_epi16(maxGrad, gradNW), gradSE);
                
2475 2476 2477 2478
                //int T = minGrad + maxGrad/2;
                __m128i T = _mm_adds_epi16(_mm_srli_epi16(maxGrad, 1), minGrad);

                __m128i RGs = z, GRs = z, Bs = z, ng = z;
2479
                
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
                __m128i x0  = _mm_loadl_u8_s16(srow, +0          );
                __m128i x1  = _mm_loadl_u8_s16(srow, -1 - bstep  );
                __m128i x2  = _mm_loadl_u8_s16(srow, -1 - bstep*2);
                __m128i x3  = _mm_loadl_u8_s16(srow,    - bstep  );
                __m128i x4  = _mm_loadl_u8_s16(srow, +1 - bstep*2);
                __m128i x5  = _mm_loadl_u8_s16(srow, +1 - bstep  );
                __m128i x6  = _mm_loadl_u8_s16(srow, +2 - bstep  );
                __m128i x7  = _mm_loadl_u8_s16(srow, +1          );
                __m128i x8  = _mm_loadl_u8_s16(srow, +2 + bstep  );
                __m128i x9  = _mm_loadl_u8_s16(srow, +1 + bstep  );
                __m128i x10 = _mm_loadl_u8_s16(srow, +1 + bstep*2);
                __m128i x11 = _mm_loadl_u8_s16(srow,    + bstep  );
                __m128i x12 = _mm_loadl_u8_s16(srow, -1 + bstep*2);
                __m128i x13 = _mm_loadl_u8_s16(srow, -1 + bstep  );
                __m128i x14 = _mm_loadl_u8_s16(srow, -2 + bstep  );
                __m128i x15 = _mm_loadl_u8_s16(srow, -1          );
                __m128i x16 = _mm_loadl_u8_s16(srow, -2 - bstep  );

                __m128i t0, t1, mask;
2499
                
2500 2501 2502
                // gradN ***********************************************
                mask = _mm_cmpgt_epi16(T, gradN); // mask = T>gradN
                ng = _mm_sub_epi16(ng, mask);     // ng += (T>gradN)
2503
                
2504 2505
                t0 = _mm_slli_epi16(x3, 1);                                 // srow[-bstep]*2
                t1 = _mm_adds_epi16(_mm_loadl_u8_s16(srow, -bstep*2), x0);  // srow[-bstep*2] + srow[0]
2506
                
2507 2508 2509 2510 2511 2512
                // RGs += (srow[-bstep*2] + srow[0]) * (T>gradN)
                RGs = _mm_adds_epi16(RGs, _mm_and_si128(t1, mask));
                // GRs += {srow[-bstep]*2; (srow[-bstep*2-1] + srow[-bstep*2+1])} * (T>gradN)
                GRs = _mm_adds_epi16(GRs, _mm_and_si128(_mm_merge_epi16(t0, _mm_adds_epi16(x2,x4)), mask));
                // Bs  += {(srow[-bstep-1]+srow[-bstep+1]); srow[-bstep]*2 } * (T>gradN)
                Bs  = _mm_adds_epi16(Bs, _mm_and_si128(_mm_merge_epi16(_mm_adds_epi16(x1,x5), t0), mask));
2513
                
2514 2515 2516 2517 2518 2519
                // gradNE **********************************************
                mask = _mm_cmpgt_epi16(T, gradNE); // mask = T>gradNE
                ng = _mm_sub_epi16(ng, mask);      // ng += (T>gradNE)

                t0 = _mm_slli_epi16(x5, 1);                                    // srow[-bstep+1]*2
                t1 = _mm_adds_epi16(_mm_loadl_u8_s16(srow, -bstep*2+2), x0);   // srow[-bstep*2+2] + srow[0]
2520
                
2521 2522 2523 2524 2525 2526
                // RGs += {(srow[-bstep*2+2] + srow[0]); srow[-bstep+1]*2} * (T>gradNE)
                RGs = _mm_adds_epi16(RGs, _mm_and_si128(_mm_merge_epi16(t1, t0), mask));
                // GRs += {brow0[N6+1]; (srow[-bstep*2+1] + srow[1])} * (T>gradNE)
                GRs = _mm_adds_epi16(GRs, _mm_and_si128(_mm_merge_epi16(_mm_loadu_si128((__m128i*)(brow0+N6+1)), _mm_adds_epi16(x4,x7)), mask));
                // Bs  += {srow[-bstep+1]*2; (srow[-bstep] + srow[-bstep+2])}  * (T>gradNE)
                Bs  = _mm_adds_epi16(Bs, _mm_and_si128(_mm_merge_epi16(t0,_mm_adds_epi16(x3,x6)), mask));
2527
                
2528 2529 2530
                // gradE ***********************************************
                mask = _mm_cmpgt_epi16(T, gradE);  // mask = T>gradE
                ng = _mm_sub_epi16(ng, mask);      // ng += (T>gradE)
2531
                
2532 2533 2534 2535 2536 2537 2538 2539 2540
                t0 = _mm_slli_epi16(x7, 1);                         // srow[1]*2
                t1 = _mm_adds_epi16(_mm_loadl_u8_s16(srow, 2), x0); // srow[2] + srow[0]

                // RGs += (srow[2] + srow[0]) * (T>gradE)
                RGs = _mm_adds_epi16(RGs, _mm_and_si128(t1, mask));
                // GRs += (srow[1]*2) * (T>gradE)
                GRs = _mm_adds_epi16(GRs, _mm_and_si128(t0, mask));
                // Bs  += {(srow[-bstep+1]+srow[bstep+1]); (srow[-bstep+2]+srow[bstep+2])} * (T>gradE)
                Bs  = _mm_adds_epi16(Bs, _mm_and_si128(_mm_merge_epi16(_mm_adds_epi16(x5,x9), _mm_adds_epi16(x6,x8)), mask));
2541
                
2542 2543 2544
                // gradSE **********************************************
                mask = _mm_cmpgt_epi16(T, gradSE);  // mask = T>gradSE
                ng = _mm_sub_epi16(ng, mask);       // ng += (T>gradSE)
2545
                
2546 2547 2548 2549 2550 2551 2552 2553 2554
                t0 = _mm_slli_epi16(x9, 1);                                 // srow[bstep+1]*2
                t1 = _mm_adds_epi16(_mm_loadl_u8_s16(srow, bstep*2+2), x0); // srow[bstep*2+2] + srow[0]

                // RGs += {(srow[bstep*2+2] + srow[0]); srow[bstep+1]*2} * (T>gradSE)
                RGs = _mm_adds_epi16(RGs, _mm_and_si128(_mm_merge_epi16(t1, t0), mask));
                // GRs += {brow2[N6+1]; (srow[1]+srow[bstep*2+1])} * (T>gradSE)
                GRs = _mm_adds_epi16(GRs, _mm_and_si128(_mm_merge_epi16(_mm_loadu_si128((__m128i*)(brow2+N6+1)), _mm_adds_epi16(x7,x10)), mask));
                // Bs  += {srow[-bstep+1]*2; (srow[bstep+2]+srow[bstep])} * (T>gradSE)
                Bs  = _mm_adds_epi16(Bs, _mm_and_si128(_mm_merge_epi16(_mm_slli_epi16(x5, 1), _mm_adds_epi16(x8,x11)), mask));
2555
                
2556 2557 2558
                // gradS ***********************************************
                mask = _mm_cmpgt_epi16(T, gradS);  // mask = T>gradS
                ng = _mm_sub_epi16(ng, mask);      // ng += (T>gradS)
2559
                
2560 2561 2562 2563 2564 2565 2566 2567 2568
                t0 = _mm_slli_epi16(x11, 1);                             // srow[bstep]*2
                t1 = _mm_adds_epi16(_mm_loadl_u8_s16(srow,bstep*2), x0); // srow[bstep*2]+srow[0]

                // RGs += (srow[bstep*2]+srow[0]) * (T>gradS)
                RGs = _mm_adds_epi16(RGs, _mm_and_si128(t1, mask));
                // GRs += {srow[bstep]*2; (srow[bstep*2+1]+srow[bstep*2-1])} * (T>gradS)
                GRs = _mm_adds_epi16(GRs, _mm_and_si128(_mm_merge_epi16(t0, _mm_adds_epi16(x10,x12)), mask));
                // Bs  += {(srow[bstep+1]+srow[bstep-1]); srow[bstep]*2} * (T>gradS)
                Bs  = _mm_adds_epi16(Bs, _mm_and_si128(_mm_merge_epi16(_mm_adds_epi16(x9,x13), t0), mask));
2569
                
2570 2571 2572
                // gradSW **********************************************
                mask = _mm_cmpgt_epi16(T, gradSW);  // mask = T>gradSW
                ng = _mm_sub_epi16(ng, mask);       // ng += (T>gradSW)
2573
                
2574 2575 2576 2577 2578 2579 2580 2581 2582
                t0 = _mm_slli_epi16(x13, 1);                                // srow[bstep-1]*2
                t1 = _mm_adds_epi16(_mm_loadl_u8_s16(srow, bstep*2-2), x0); // srow[bstep*2-2]+srow[0]

                // RGs += {(srow[bstep*2-2]+srow[0]); srow[bstep-1]*2} * (T>gradSW)
                RGs = _mm_adds_epi16(RGs, _mm_and_si128(_mm_merge_epi16(t1, t0), mask));
                // GRs += {brow2[N6-1]; (srow[bstep*2-1]+srow[-1])} * (T>gradSW)
                GRs = _mm_adds_epi16(GRs, _mm_and_si128(_mm_merge_epi16(_mm_loadu_si128((__m128i*)(brow2+N6-1)), _mm_adds_epi16(x12,x15)), mask));
                // Bs  += {srow[bstep-1]*2; (srow[bstep]+srow[bstep-2])} * (T>gradSW)
                Bs  = _mm_adds_epi16(Bs, _mm_and_si128(_mm_merge_epi16(t0,_mm_adds_epi16(x11,x14)), mask));
2583
                
2584 2585 2586
                // gradW ***********************************************
                mask = _mm_cmpgt_epi16(T, gradW);  // mask = T>gradW
                ng = _mm_sub_epi16(ng, mask);      // ng += (T>gradW)
2587
                
2588 2589 2590 2591 2592 2593 2594 2595 2596
                t0 = _mm_slli_epi16(x15, 1);                         // srow[-1]*2
                t1 = _mm_adds_epi16(_mm_loadl_u8_s16(srow, -2), x0); // srow[-2]+srow[0]

                // RGs += (srow[-2]+srow[0]) * (T>gradW)
                RGs = _mm_adds_epi16(RGs, _mm_and_si128(t1, mask));
                // GRs += (srow[-1]*2) * (T>gradW)
                GRs = _mm_adds_epi16(GRs, _mm_and_si128(t0, mask));
                // Bs  += {(srow[-bstep-1]+srow[bstep-1]); (srow[bstep-2]+srow[-bstep-2])} * (T>gradW)
                Bs  = _mm_adds_epi16(Bs, _mm_and_si128(_mm_merge_epi16(_mm_adds_epi16(x1,x13), _mm_adds_epi16(x14,x16)), mask));
2597
                
2598 2599 2600
                // gradNW **********************************************
                mask = _mm_cmpgt_epi16(T, gradNW);  // mask = T>gradNW
                ng = _mm_sub_epi16(ng, mask);       // ng += (T>gradNW)
2601
                
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
                t0 = _mm_slli_epi16(x1, 1);                                 // srow[-bstep-1]*2
                t1 = _mm_adds_epi16(_mm_loadl_u8_s16(srow,-bstep*2-2), x0); // srow[-bstep*2-2]+srow[0]

                // RGs += {(srow[-bstep*2-2]+srow[0]); srow[-bstep-1]*2} * (T>gradNW)
                RGs = _mm_adds_epi16(RGs, _mm_and_si128(_mm_merge_epi16(t1, t0), mask));
                // GRs += {brow0[N6-1]; (srow[-bstep*2-1]+srow[-1])} * (T>gradNW)
                GRs = _mm_adds_epi16(GRs, _mm_and_si128(_mm_merge_epi16(_mm_loadu_si128((__m128i*)(brow0+N6-1)), _mm_adds_epi16(x2,x15)), mask));
                // Bs  += {srow[-bstep-1]*2; (srow[-bstep]+srow[-bstep-2])} * (T>gradNW)
                Bs  = _mm_adds_epi16(Bs, _mm_and_si128(_mm_merge_epi16(_mm_slli_epi16(x5, 1),_mm_adds_epi16(x3,x16)), mask));

2612 2613 2614 2615 2616 2617 2618 2619 2620
                __m128 ngf0, ngf1;
                ngf0 = _mm_div_ps(_0_5, _mm_cvtloepi16_ps(ng));
                ngf1 = _mm_div_ps(_0_5, _mm_cvthiepi16_ps(ng));
                
                // now interpolate r, g & b
                t0 = _mm_sub_epi16(GRs, RGs);
                t1 = _mm_sub_epi16(Bs, RGs);
                
                t0 = _mm_add_epi16(x0, _mm_packs_epi32(
2621 2622
                                                       _mm_cvtps_epi32(_mm_mul_ps(_mm_cvtloepi16_ps(t0), ngf0)),
                                                       _mm_cvtps_epi32(_mm_mul_ps(_mm_cvthiepi16_ps(t0), ngf1))));
2623 2624
                
                t1 = _mm_add_epi16(x0, _mm_packs_epi32(
2625 2626
                                                       _mm_cvtps_epi32(_mm_mul_ps(_mm_cvtloepi16_ps(t1), ngf0)),
                                                       _mm_cvtps_epi32(_mm_mul_ps(_mm_cvthiepi16_ps(t1), ngf1))));
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
                
                x1 = _mm_merge_epi16(x0, t0);
                x2 = _mm_merge_epi16(t0, x0);
                
                uchar R[8], G[8], B[8];
                
                _mm_storel_epi64(blueIdx ? (__m128i*)B : (__m128i*)R, _mm_packus_epi16(x1, z));
                _mm_storel_epi64((__m128i*)G, _mm_packus_epi16(x2, z));
                _mm_storel_epi64(blueIdx ? (__m128i*)R : (__m128i*)B, _mm_packus_epi16(t1, z));
                
                for( int j = 0; j < 8; j++, dstrow += 3 )
2638
                {
2639
                    dstrow[0] = B[j]; dstrow[1] = G[j]; dstrow[2] = R[j];
2640 2641
                }
            }
2642
#endif
2643 2644 2645 2646 2647 2648 2649 2650 2651
            
            limit = N - 2;
        }
        while( i < N - 2 );
        
        for( i = 0; i < 6; i++ )
        {
            dst[dststep*y + 5 - i] = dst[dststep*y + 8 - i];
            dst[dststep*y + (N - 2)*3 + i] = dst[dststep*y + (N - 3)*3 + i];
2652
        }
2653
        
2654 2655 2656 2657
        greenCell0 = !greenCell0;
        blueIdx ^= 2;
    }
    
2658 2659 2660 2661 2662 2663 2664 2665
    for( i = 0; i < size.width*3; i++ )
    {
        dst[i] = dst[i + dststep] = dst[i + dststep*2];
        dst[i + dststep*(size.height-4)] =
        dst[i + dststep*(size.height-3)] =
        dst[i + dststep*(size.height-2)] =
        dst[i + dststep*(size.height-1)] = dst[i + dststep*(size.height-5)];
    }
2666 2667
}

2668
///////////////////////////////////// YUV420 -> RGB /////////////////////////////////////
2669

2670 2671
template<int bIdx, int uIdx>
struct YUV4202RGB888Invoker
2672
{
2673
    Mat* dst;
2674
    const uchar* my1, *muv;
2675
    int width, stride;
2676

2677 2678
    YUV4202RGB888Invoker(Mat* _dst, int _stride, const uchar* _y1, const uchar* _uv)
        : dst(_dst), my1(_y1), muv(_uv), width(_dst->cols), stride(_stride) {}
2679 2680 2681

    void operator()(const BlockedRange& range) const
    {
2682 2683 2684
        int rangeBegin = range.begin() * 2;
        int rangeEnd = range.end() * 2;

2685
        //R = 1.164(Y - 16) + 1.596(V - 128)
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
        //G = 1.164(Y - 16) - 0.813(V - 128) - 0.391(U - 128)
        //B = 1.164(Y - 16)                  + 2.018(U - 128)

        //R = (1220542(Y - 16) + 1673527(V - 128)                  + (1 << 19)) >> 20
        //G = (1220542(Y - 16) - 852492(V - 128) - 409993(U - 128) + (1 << 19)) >> 20
        //B = (1220542(Y - 16)                  + 2116026(U - 128) + (1 << 19)) >> 20

        const int cY = 1220542;
        const int cUB = 2116026;
        const int cUG = -409993;
        const int cVG = -852492;
        const int cVR = 1673527;
        const int YUV420_SHIFT = 20;
2699

2700
        const uchar* y1 = my1 + rangeBegin * stride, *uv = muv + rangeBegin * stride / 2;
2701

2702 2703 2704 2705 2706 2707
#ifdef HAVE_TEGRA_OPTIMIZATION
        if(tegra::cvtYUV4202RGB(bIdx, uIdx, 3, y1, uv, stride, dst->ptr<uchar>(rangeBegin), dst->step, rangeEnd - rangeBegin, dst->cols))
            return;
#endif

        for (int j = rangeBegin; j < rangeEnd; j += 2, y1 += stride * 2, uv += stride)
2708
        {
2709
            uchar* row1 = dst->ptr<uchar>(j);
2710 2711
            uchar* row2 = dst->ptr<uchar>(j + 1);
            const uchar* y2 = y1 + stride;
2712

2713
            for (int i = 0; i < width; i += 2, row1 += 6, row2 += 6)
2714
            {
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
                int u = int(uv[i + 0 + uIdx]) - 128;
                int v = int(uv[i + 1 - uIdx]) - 128;

                int ruv = (1 << (YUV420_SHIFT - 1)) + cVR * v;
                int guv = (1 << (YUV420_SHIFT - 1)) + cVG * v + cUG * u;
                int buv = (1 << (YUV420_SHIFT - 1)) + cUB * u;

                int y00 = std::max(0, int(y1[i]) - 16) * cY;
                row1[2-bIdx] = saturate_cast<uchar>((y00 + ruv) >> YUV420_SHIFT);
                row1[1]      = saturate_cast<uchar>((y00 + guv) >> YUV420_SHIFT);
                row1[bIdx]   = saturate_cast<uchar>((y00 + buv) >> YUV420_SHIFT);

                int y01 = std::max(0, int(y1[i + 1]) - 16) * cY;
                row1[5-bIdx] = saturate_cast<uchar>((y01 + ruv) >> YUV420_SHIFT);
                row1[4]      = saturate_cast<uchar>((y01 + guv) >> YUV420_SHIFT);
                row1[3+bIdx] = saturate_cast<uchar>((y01 + buv) >> YUV420_SHIFT);

                int y10 = std::max(0, int(y2[i]) - 16) * cY;
                row2[2-bIdx] = saturate_cast<uchar>((y10 + ruv) >> YUV420_SHIFT);
                row2[1]      = saturate_cast<uchar>((y10 + guv) >> YUV420_SHIFT);
                row2[bIdx]   = saturate_cast<uchar>((y10 + buv) >> YUV420_SHIFT);

                int y11 = std::max(0, int(y2[i + 1]) - 16) * cY;
                row2[5-bIdx] = saturate_cast<uchar>((y11 + ruv) >> YUV420_SHIFT);
                row2[4]      = saturate_cast<uchar>((y11 + guv) >> YUV420_SHIFT);
                row2[3+bIdx] = saturate_cast<uchar>((y11 + buv) >> YUV420_SHIFT);
2741 2742 2743 2744 2745
            }
        }
    }
};

2746 2747
template<int bIdx, int uIdx>
struct YUV4202RGBA8888Invoker
2748
{
2749
    Mat* dst;
2750
    const uchar* my1, *muv;
2751
    int width, stride;
2752

2753 2754
    YUV4202RGBA8888Invoker(Mat* _dst, int _stride, const uchar* _y1, const uchar* _uv)
        : dst(_dst), my1(_y1), muv(_uv), width(_dst->cols), stride(_stride) {}
2755 2756 2757

    void operator()(const BlockedRange& range) const
    {
2758 2759 2760
        int rangeBegin = range.begin() * 2;
        int rangeEnd = range.end() * 2;

2761
        //R = 1.164(Y - 16) + 1.596(V - 128)
2762 2763 2764 2765 2766 2767
        //G = 1.164(Y - 16) - 0.813(V - 128) - 0.391(U - 128)
        //B = 1.164(Y - 16)                  + 2.018(U - 128)

        //R = (1220542(Y - 16) + 1673527(V - 128)                  + (1 << 19)) >> 20
        //G = (1220542(Y - 16) - 852492(V - 128) - 409993(U - 128) + (1 << 19)) >> 20
        //B = (1220542(Y - 16)                  + 2116026(U - 128) + (1 << 19)) >> 20
2768

2769 2770 2771 2772 2773 2774
        const int cY = 1220542;
        const int cUB = 2116026;
        const int cUG = -409993;
        const int cVG = -852492;
        const int cVR = 1673527;
        const int YUV420_SHIFT = 20;
2775

2776 2777 2778 2779 2780 2781 2782 2783
        const uchar* y1 = my1 + rangeBegin * stride, *uv = muv + rangeBegin * stride / 2;

#ifdef HAVE_TEGRA_OPTIMIZATION
        if(tegra::cvtYUV4202RGB(bIdx, uIdx, 4, y1, uv, stride, dst->ptr<uchar>(rangeBegin), dst->step, rangeEnd - rangeBegin, dst->cols))
            return;
#endif

        for (int j = rangeBegin; j < rangeEnd; j += 2, y1 += stride * 2, uv += stride)
2784
        {
2785
            uchar* row1 = dst->ptr<uchar>(j);
2786 2787
            uchar* row2 = dst->ptr<uchar>(j + 1);
            const uchar* y2 = y1 + stride;
2788

2789
            for (int i = 0; i < width; i += 2, row1 += 8, row2 += 8)
2790
            {
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
                int u = int(uv[i + 0 + uIdx]) - 128;
                int v = int(uv[i + 1 - uIdx]) - 128;

                int ruv = (1 << (YUV420_SHIFT - 1)) + cVR * v;
                int guv = (1 << (YUV420_SHIFT - 1)) + cVG * v + cUG * u;
                int buv = (1 << (YUV420_SHIFT - 1)) + cUB * u;

                int y00 = std::max(0, int(y1[i]) - 16) * cY;
                row1[2-bIdx] = saturate_cast<uchar>((y00 + ruv) >> YUV420_SHIFT);
                row1[1]      = saturate_cast<uchar>((y00 + guv) >> YUV420_SHIFT);
                row1[bIdx]   = saturate_cast<uchar>((y00 + buv) >> YUV420_SHIFT);
                row1[3]      = uchar(0xff);

                int y01 = std::max(0, int(y1[i + 1]) - 16) * cY;
                row1[6-bIdx] = saturate_cast<uchar>((y01 + ruv) >> YUV420_SHIFT);
                row1[5]      = saturate_cast<uchar>((y01 + guv) >> YUV420_SHIFT);
                row1[4+bIdx] = saturate_cast<uchar>((y01 + buv) >> YUV420_SHIFT);
                row1[7]      = uchar(0xff);

                int y10 = std::max(0, int(y2[i]) - 16) * cY;
                row2[2-bIdx] = saturate_cast<uchar>((y10 + ruv) >> YUV420_SHIFT);
                row2[1]      = saturate_cast<uchar>((y10 + guv) >> YUV420_SHIFT);
                row2[bIdx]   = saturate_cast<uchar>((y10 + buv) >> YUV420_SHIFT);
                row2[3]      = uchar(0xff);

                int y11 = std::max(0, int(y2[i + 1]) - 16) * cY;
                row2[6-bIdx] = saturate_cast<uchar>((y11 + ruv) >> YUV420_SHIFT);
                row2[5]      = saturate_cast<uchar>((y11 + guv) >> YUV420_SHIFT);
                row2[4+bIdx] = saturate_cast<uchar>((y11 + buv) >> YUV420_SHIFT);
                row2[7]      = uchar(0xff);
2821 2822 2823 2824 2825
            }
        }
    }
};

2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
#define MIN_SIZE_FOR_PARALLEL_YUV420_CONVERSION (320*240)
template<int bIdx, int uIdx>
inline void cvtYUV4202RGB(Mat& _dst, int _stride, const uchar* _y1, const uchar* _uv)
{
    YUV4202RGB888Invoker<bIdx, uIdx> converter(&_dst, _stride, _y1,  _uv);
#ifdef HAVE_TBB
    if (_dst.total() >= MIN_SIZE_FOR_PARALLEL_YUV420_CONVERSION)
        parallel_for(BlockedRange(0, _dst.rows/2), converter);
    else
#endif
        converter(BlockedRange(0, _dst.rows/2));
}

template<int bIdx, int uIdx>
inline void cvtYUV4202RGBA(Mat& _dst, int _stride, const uchar* _y1, const uchar* _uv)
{
    YUV4202RGBA8888Invoker<bIdx, uIdx> converter(&_dst, _stride, _y1,  _uv);
#ifdef HAVE_TBB
    if (_dst.total() >= MIN_SIZE_FOR_PARALLEL_YUV420_CONVERSION)
        parallel_for(BlockedRange(0, _dst.rows/2), converter);
    else
#endif
        converter(BlockedRange(0, _dst.rows/2));
}

2851
}//namespace cv
2852

2853
//////////////////////////////////////////////////////////////////////////////////////////
2854
//                                   The main function                                  //
2855
//////////////////////////////////////////////////////////////////////////////////////////
2856

2857
void cv::cvtColor( InputArray _src, OutputArray _dst, int code, int dcn )
2858
{
2859
    Mat src = _src.getMat(), dst;
2860 2861 2862 2863
    Size sz = src.size();
    int scn = src.channels(), depth = src.depth(), bidx;
    
    CV_Assert( depth == CV_8U || depth == CV_16U || depth == CV_32F );
2864
    
2865 2866
    switch( code )
    {
2867 2868 2869 2870 2871 2872
        case CV_BGR2BGRA: case CV_RGB2BGRA: case CV_BGRA2BGR:
        case CV_RGBA2BGR: case CV_RGB2BGR: case CV_BGRA2RGBA:
            CV_Assert( scn == 3 || scn == 4 );
            dcn = code == CV_BGR2BGRA || code == CV_RGB2BGRA || code == CV_BGRA2RGBA ? 4 : 3;
            bidx = code == CV_BGR2BGRA || code == CV_BGRA2BGR ? 0 : 2;
            
2873 2874 2875
            _dst.create( sz, CV_MAKETYPE(depth, dcn));
            dst = _dst.getMat();
            
2876
            if( depth == CV_8U )
2877 2878 2879 2880 2881 2882
            {
#ifdef HAVE_TEGRA_OPTIMIZATION
                if(!tegra::cvtBGR2RGB(src, dst, bidx))
#endif
                    CvtColorLoop(src, dst, RGB2RGB<uchar>(scn, dcn, bidx));
            }
2883 2884 2885 2886 2887 2888 2889 2890 2891
            else if( depth == CV_16U )
                CvtColorLoop(src, dst, RGB2RGB<ushort>(scn, dcn, bidx));
            else
                CvtColorLoop(src, dst, RGB2RGB<float>(scn, dcn, bidx));
            break;
            
        case CV_BGR2BGR565: case CV_BGR2BGR555: case CV_RGB2BGR565: case CV_RGB2BGR555:
        case CV_BGRA2BGR565: case CV_BGRA2BGR555: case CV_RGBA2BGR565: case CV_RGBA2BGR555:
            CV_Assert( (scn == 3 || scn == 4) && depth == CV_8U );
2892 2893
            _dst.create(sz, CV_8UC2);
            dst = _dst.getMat();
2894 2895 2896 2897 2898 2899

#ifdef HAVE_TEGRA_OPTIMIZATION
            if(code == CV_BGR2BGR565 || code == CV_BGRA2BGR565 || code == CV_RGB2BGR565  || code == CV_RGBA2BGR565)
                if(tegra::cvtRGB2RGB565(src, dst, code == CV_RGB2BGR565 || code == CV_RGBA2BGR565 ? 0 : 2))
                    break;
#endif
2900
        
2901 2902 2903 2904 2905 2906 2907
            CvtColorLoop(src, dst, RGB2RGB5x5(scn,
                      code == CV_BGR2BGR565 || code == CV_BGR2BGR555 ||
                      code == CV_BGRA2BGR565 || code == CV_BGRA2BGR555 ? 0 : 2,
                      code == CV_BGR2BGR565 || code == CV_RGB2BGR565 ||
                      code == CV_BGRA2BGR565 || code == CV_RGBA2BGR565 ? 6 : 5 // green bits
                                              ));
            break;
2908
        
2909 2910
        case CV_BGR5652BGR: case CV_BGR5552BGR: case CV_BGR5652RGB: case CV_BGR5552RGB:
        case CV_BGR5652BGRA: case CV_BGR5552BGRA: case CV_BGR5652RGBA: case CV_BGR5552RGBA:
2911
            if(dcn <= 0) dcn = (code==CV_BGR5652BGRA || code==CV_BGR5552BGRA || code==CV_BGR5652RGBA || code==CV_BGR5552RGBA) ? 4 : 3;
2912
            CV_Assert( (dcn == 3 || dcn == 4) && scn == 2 && depth == CV_8U );
2913 2914
            _dst.create(sz, CV_MAKETYPE(depth, dcn));
            dst = _dst.getMat();
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
            
            CvtColorLoop(src, dst, RGB5x52RGB(dcn,
                      code == CV_BGR5652BGR || code == CV_BGR5552BGR ||
                      code == CV_BGR5652BGRA || code == CV_BGR5552BGRA ? 0 : 2, // blue idx
                      code == CV_BGR5652BGR || code == CV_BGR5652RGB ||
                      code == CV_BGR5652BGRA || code == CV_BGR5652RGBA ? 6 : 5 // green bits
                      ));
            break;
                    
        case CV_BGR2GRAY: case CV_BGRA2GRAY: case CV_RGB2GRAY: case CV_RGBA2GRAY:
            CV_Assert( scn == 3 || scn == 4 );
2926 2927 2928
            _dst.create(sz, CV_MAKETYPE(depth, 1));
            dst = _dst.getMat();
            
2929 2930 2931
            bidx = code == CV_BGR2GRAY || code == CV_BGRA2GRAY ? 0 : 2;
            
            if( depth == CV_8U )
2932 2933
            {
#ifdef HAVE_TEGRA_OPTIMIZATION
A
Andrey Kamaev 已提交
2934
                if(!tegra::cvtRGB2Gray(src, dst, bidx))
2935
#endif
2936
                CvtColorLoop(src, dst, RGB2Gray<uchar>(scn, bidx, 0));
2937
            }
2938 2939 2940 2941 2942
            else if( depth == CV_16U )
                CvtColorLoop(src, dst, RGB2Gray<ushort>(scn, bidx, 0));
            else
                CvtColorLoop(src, dst, RGB2Gray<float>(scn, bidx, 0));
            break;
2943
        
2944 2945
        case CV_BGR5652GRAY: case CV_BGR5552GRAY:
            CV_Assert( scn == 2 && depth == CV_8U );
2946 2947 2948
            _dst.create(sz, CV_8UC1);
            dst = _dst.getMat();
            
2949 2950
            CvtColorLoop(src, dst, RGB5x52Gray(code == CV_BGR5652GRAY ? 6 : 5));
            break;
2951
        
2952
        case CV_GRAY2BGR: case CV_GRAY2BGRA:
2953
            if( dcn <= 0 ) dcn = (code==CV_GRAY2BGRA) ? 4 : 3;
2954
            CV_Assert( scn == 1 && (dcn == 3 || dcn == 4));
2955 2956
            _dst.create(sz, CV_MAKETYPE(depth, dcn));
            dst = _dst.getMat();
2957 2958
            
            if( depth == CV_8U )
2959 2960
            {
#ifdef HAVE_TEGRA_OPTIMIZATION
A
Andrey Kamaev 已提交
2961
                if(!tegra::cvtGray2RGB(src, dst))
2962
#endif
2963
                CvtColorLoop(src, dst, Gray2RGB<uchar>(dcn));
2964
            }
2965 2966 2967 2968 2969 2970 2971 2972
            else if( depth == CV_16U )
                CvtColorLoop(src, dst, Gray2RGB<ushort>(dcn));
            else
                CvtColorLoop(src, dst, Gray2RGB<float>(dcn));
            break;
            
        case CV_GRAY2BGR565: case CV_GRAY2BGR555:
            CV_Assert( scn == 1 && depth == CV_8U );
2973 2974
            _dst.create(sz, CV_8UC2);
            dst = _dst.getMat();
2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
            
            CvtColorLoop(src, dst, Gray2RGB5x5(code == CV_GRAY2BGR565 ? 6 : 5));
            break;
            
        case CV_BGR2YCrCb: case CV_RGB2YCrCb:
        case CV_BGR2YUV: case CV_RGB2YUV:
            {
            CV_Assert( scn == 3 || scn == 4 );
            bidx = code == CV_BGR2YCrCb || code == CV_RGB2YUV ? 0 : 2;
            static const float yuv_f[] = { 0.114f, 0.587f, 0.299f, 0.492f, 0.877f };
            static const int yuv_i[] = { B2Y, G2Y, R2Y, 8061, 14369 };
            const float* coeffs_f = code == CV_BGR2YCrCb || code == CV_RGB2YCrCb ? 0 : yuv_f;
            const int* coeffs_i = code == CV_BGR2YCrCb || code == CV_RGB2YCrCb ? 0 : yuv_i;
                
2989 2990
            _dst.create(sz, CV_MAKETYPE(depth, 3));
            dst = _dst.getMat();
2991 2992
            
            if( depth == CV_8U )
2993 2994
            {
#ifdef HAVE_TEGRA_OPTIMIZATION
A
Andrey Kamaev 已提交
2995
                if((code == CV_RGB2YCrCb || code == CV_BGR2YCrCb) && tegra::cvtRGB2YCrCb(src, dst, bidx))
2996 2997
                    break;
#endif
2998
                CvtColorLoop(src, dst, RGB2YCrCb_i<uchar>(scn, bidx, coeffs_i));
2999
            }
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
            else if( depth == CV_16U )
                CvtColorLoop(src, dst, RGB2YCrCb_i<ushort>(scn, bidx, coeffs_i));
            else
                CvtColorLoop(src, dst, RGB2YCrCb_f<float>(scn, bidx, coeffs_f));
            }
            break;
            
        case CV_YCrCb2BGR: case CV_YCrCb2RGB:
        case CV_YUV2BGR: case CV_YUV2RGB:
            {
            if( dcn <= 0 ) dcn = 3;
            CV_Assert( scn == 3 && (dcn == 3 || dcn == 4) );
            bidx = code == CV_YCrCb2BGR || code == CV_YUV2RGB ? 0 : 2;
            static const float yuv_f[] = { 2.032f, -0.395f, -0.581f, 1.140f };
            static const int yuv_i[] = { 33292, -6472, -9519, 18678 }; 
            const float* coeffs_f = code == CV_YCrCb2BGR || code == CV_YCrCb2RGB ? 0 : yuv_f;
            const int* coeffs_i = code == CV_YCrCb2BGR || code == CV_YCrCb2RGB ? 0 : yuv_i;
            
3018 3019
            _dst.create(sz, CV_MAKETYPE(depth, dcn));
            dst = _dst.getMat();
3020 3021 3022 3023 3024 3025 3026 3027 3028
            
            if( depth == CV_8U )
                CvtColorLoop(src, dst, YCrCb2RGB_i<uchar>(dcn, bidx, coeffs_i));
            else if( depth == CV_16U )
                CvtColorLoop(src, dst, YCrCb2RGB_i<ushort>(dcn, bidx, coeffs_i));
            else
                CvtColorLoop(src, dst, YCrCb2RGB_f<float>(dcn, bidx, coeffs_f));
            }
            break;
3029
        
3030 3031 3032 3033
        case CV_BGR2XYZ: case CV_RGB2XYZ:
            CV_Assert( scn == 3 || scn == 4 );
            bidx = code == CV_BGR2XYZ ? 0 : 2;
            
3034 3035
            _dst.create(sz, CV_MAKETYPE(depth, 3));
            dst = _dst.getMat();
3036 3037 3038 3039 3040 3041 3042 3043
            
            if( depth == CV_8U )
                CvtColorLoop(src, dst, RGB2XYZ_i<uchar>(scn, bidx, 0));
            else if( depth == CV_16U )
                CvtColorLoop(src, dst, RGB2XYZ_i<ushort>(scn, bidx, 0));
            else
                CvtColorLoop(src, dst, RGB2XYZ_f<float>(scn, bidx, 0));
            break;
3044
        
3045 3046 3047 3048 3049
        case CV_XYZ2BGR: case CV_XYZ2RGB:
            if( dcn <= 0 ) dcn = 3;
            CV_Assert( scn == 3 && (dcn == 3 || dcn == 4) );
            bidx = code == CV_XYZ2BGR ? 0 : 2;
            
3050 3051
            _dst.create(sz, CV_MAKETYPE(depth, dcn));
            dst = _dst.getMat();
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
            
            if( depth == CV_8U )
                CvtColorLoop(src, dst, XYZ2RGB_i<uchar>(dcn, bidx, 0));
            else if( depth == CV_16U )
                CvtColorLoop(src, dst, XYZ2RGB_i<ushort>(dcn, bidx, 0));
            else
                CvtColorLoop(src, dst, XYZ2RGB_f<float>(dcn, bidx, 0));
            break;
            
        case CV_BGR2HSV: case CV_RGB2HSV: case CV_BGR2HSV_FULL: case CV_RGB2HSV_FULL:
        case CV_BGR2HLS: case CV_RGB2HLS: case CV_BGR2HLS_FULL: case CV_RGB2HLS_FULL:
            {
            CV_Assert( (scn == 3 || scn == 4) && (depth == CV_8U || depth == CV_32F) );
            bidx = code == CV_BGR2HSV || code == CV_BGR2HLS ||
                code == CV_BGR2HSV_FULL || code == CV_BGR2HLS_FULL ? 0 : 2;
            int hrange = depth == CV_32F ? 360 : code == CV_BGR2HSV || code == CV_RGB2HSV ||
3068
                code == CV_BGR2HLS || code == CV_RGB2HLS ? 180 : 256;
3069
            
3070 3071 3072
            _dst.create(sz, CV_MAKETYPE(depth, 3));
            dst = _dst.getMat();
                
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
            if( code == CV_BGR2HSV || code == CV_RGB2HSV ||
                code == CV_BGR2HSV_FULL || code == CV_RGB2HSV_FULL )
            {
                if( depth == CV_8U )
                    CvtColorLoop(src, dst, RGB2HSV_b(scn, bidx, hrange));
                else
                    CvtColorLoop(src, dst, RGB2HSV_f(scn, bidx, (float)hrange));
            }
            else
            {
                if( depth == CV_8U )
                    CvtColorLoop(src, dst, RGB2HLS_b(scn, bidx, hrange));
                else
                    CvtColorLoop(src, dst, RGB2HLS_f(scn, bidx, (float)hrange));
            }
            }
            break;
3090
        
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
        case CV_HSV2BGR: case CV_HSV2RGB: case CV_HSV2BGR_FULL: case CV_HSV2RGB_FULL:
        case CV_HLS2BGR: case CV_HLS2RGB: case CV_HLS2BGR_FULL: case CV_HLS2RGB_FULL:
            {
            if( dcn <= 0 ) dcn = 3;
            CV_Assert( scn == 3 && (dcn == 3 || dcn == 4) && (depth == CV_8U || depth == CV_32F) );
            bidx = code == CV_HSV2BGR || code == CV_HLS2BGR ||
                code == CV_HSV2BGR_FULL || code == CV_HLS2BGR_FULL ? 0 : 2;
            int hrange = depth == CV_32F ? 360 : code == CV_HSV2BGR || code == CV_HSV2RGB ||
                code == CV_HLS2BGR || code == CV_HLS2RGB ? 180 : 255;
            
3101 3102 3103
            _dst.create(sz, CV_MAKETYPE(depth, dcn));
            dst = _dst.getMat();
                
3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
            if( code == CV_HSV2BGR || code == CV_HSV2RGB ||
                code == CV_HSV2BGR_FULL || code == CV_HSV2RGB_FULL )
            {
                if( depth == CV_8U )
                    CvtColorLoop(src, dst, HSV2RGB_b(dcn, bidx, hrange));
                else
                    CvtColorLoop(src, dst, HSV2RGB_f(dcn, bidx, (float)hrange));
            }
            else
            {
                if( depth == CV_8U )
                    CvtColorLoop(src, dst, HLS2RGB_b(dcn, bidx, hrange));
                else
                    CvtColorLoop(src, dst, HLS2RGB_f(dcn, bidx, (float)hrange));
            }
            }
            break;
            
        case CV_BGR2Lab: case CV_RGB2Lab: case CV_LBGR2Lab: case CV_LRGB2Lab:
        case CV_BGR2Luv: case CV_RGB2Luv: case CV_LBGR2Luv: case CV_LRGB2Luv:
            {
            CV_Assert( (scn == 3 || scn == 4) && (depth == CV_8U || depth == CV_32F) );
            bidx = code == CV_BGR2Lab || code == CV_BGR2Luv ||
                   code == CV_LBGR2Lab || code == CV_LBGR2Luv ? 0 : 2;
            bool srgb = code == CV_BGR2Lab || code == CV_RGB2Lab ||
                        code == CV_BGR2Luv || code == CV_RGB2Luv;
            
3131 3132 3133
            _dst.create(sz, CV_MAKETYPE(depth, 3));
            dst = _dst.getMat();
                
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
            if( code == CV_BGR2Lab || code == CV_RGB2Lab ||
                code == CV_LBGR2Lab || code == CV_LRGB2Lab )
            {
                if( depth == CV_8U )
                    CvtColorLoop(src, dst, RGB2Lab_b(scn, bidx, 0, 0, srgb));
                else
                    CvtColorLoop(src, dst, RGB2Lab_f(scn, bidx, 0, 0, srgb));
            }
            else
            {
                if( depth == CV_8U )
                    CvtColorLoop(src, dst, RGB2Luv_b(scn, bidx, 0, 0, srgb));
                else
                    CvtColorLoop(src, dst, RGB2Luv_f(scn, bidx, 0, 0, srgb));
            }
            }
            break;
3151
        
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
        case CV_Lab2BGR: case CV_Lab2RGB: case CV_Lab2LBGR: case CV_Lab2LRGB:
        case CV_Luv2BGR: case CV_Luv2RGB: case CV_Luv2LBGR: case CV_Luv2LRGB:
            {
            if( dcn <= 0 ) dcn = 3;
            CV_Assert( scn == 3 && (dcn == 3 || dcn == 4) && (depth == CV_8U || depth == CV_32F) );
            bidx = code == CV_Lab2BGR || code == CV_Luv2BGR ||
                   code == CV_Lab2LBGR || code == CV_Luv2LBGR ? 0 : 2;
            bool srgb = code == CV_Lab2BGR || code == CV_Lab2RGB ||
                    code == CV_Luv2BGR || code == CV_Luv2RGB;
            
3162 3163 3164
            _dst.create(sz, CV_MAKETYPE(depth, dcn));
            dst = _dst.getMat();
                
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
            if( code == CV_Lab2BGR || code == CV_Lab2RGB ||
                code == CV_Lab2LBGR || code == CV_Lab2LRGB )
            {
                if( depth == CV_8U )
                    CvtColorLoop(src, dst, Lab2RGB_b(dcn, bidx, 0, 0, srgb));
                else
                    CvtColorLoop(src, dst, Lab2RGB_f(dcn, bidx, 0, 0, srgb));
            }
            else
            {
                if( depth == CV_8U )
                    CvtColorLoop(src, dst, Luv2RGB_b(dcn, bidx, 0, 0, srgb));
                else
                    CvtColorLoop(src, dst, Luv2RGB_f(dcn, bidx, 0, 0, srgb));
            }
            }
            break;
3182
        
3183
        case CV_BayerBG2GRAY: case CV_BayerGB2GRAY: case CV_BayerRG2GRAY: case CV_BayerGR2GRAY:
3184
            if(dcn <= 0) dcn = 1;
3185
            CV_Assert( scn == 1 && dcn == 1 );
3186 3187 3188 3189
            
            _dst.create(sz, depth);
            dst = _dst.getMat();
            
3190 3191 3192 3193 3194 3195 3196
            if( depth == CV_8U )
                Bayer2Gray_<uchar, SIMDBayerInterpolator_8u>(src, dst, code);
            else if( depth == CV_16U )
                Bayer2Gray_<ushort, SIMDBayerStubInterpolator_<ushort> >(src, dst, code);
            else
                CV_Error(CV_StsUnsupportedFormat, "Bayer->Gray demosaicing only supports 8u and 16u types");
            break;
3197 3198 3199
            
        case CV_BayerBG2BGR: case CV_BayerGB2BGR: case CV_BayerRG2BGR: case CV_BayerGR2BGR:
        case CV_BayerBG2BGR_VNG: case CV_BayerGB2BGR_VNG: case CV_BayerRG2BGR_VNG: case CV_BayerGR2BGR_VNG:
3200
            if(dcn <= 0) dcn = 3;
3201
            CV_Assert( scn == 1 && dcn == 3 );
3202 3203 3204
            
            _dst.create(sz, CV_MAKETYPE(depth, dcn));
            dst = _dst.getMat();
3205 3206 3207
            
            if( code == CV_BayerBG2BGR || code == CV_BayerGB2BGR ||
                code == CV_BayerRG2BGR || code == CV_BayerGR2BGR )
3208 3209 3210 3211 3212 3213 3214 3215
            {
                if( depth == CV_8U )
                    Bayer2RGB_<uchar, SIMDBayerInterpolator_8u>(src, dst, code);
                else if( depth == CV_16U )
                    Bayer2RGB_<ushort, SIMDBayerStubInterpolator_<ushort> >(src, dst, code);
                else
                    CV_Error(CV_StsUnsupportedFormat, "Bayer->RGB demosaicing only supports 8u and 16u types");
            }
3216
            else
3217 3218
            {
                CV_Assert( depth == CV_8U );
3219
                Bayer2RGB_VNG_8u(src, dst, code);
3220
            }
3221
            break;
3222 3223
        case CV_YUV420sp2BGR:  case CV_YUV420sp2RGB:  case CV_YUV2BGR_NV12:  case CV_YUV2RGB_NV12:
        case CV_YUV420sp2BGRA: case CV_YUV420sp2RGBA: case CV_YUV2BGRA_NV12: case CV_YUV2RGBA_NV12:
3224
            {
3225
                if (dcn <= 0) dcn = (code==CV_YUV420sp2BGRA || code==CV_YUV420sp2RGBA || code==CV_YUV2BGRA_NV12 || code==CV_YUV2RGBA_NV12) ? 4 : 3;
3226
                CV_Assert( dcn == 3 || dcn == 4 );
3227
                CV_Assert( sz.width % 2 == 0 && sz.height % 3 == 0 && depth == CV_8U );
3228 3229

                Size dstSz(sz.width, sz.height * 2 / 3);
3230
                _dst.create(dstSz, CV_MAKETYPE(depth, dcn));
3231 3232 3233 3234
                dst = _dst.getMat();

                const uchar* y = src.ptr();
                const uchar* uv = y + dstSz.area();
3235
                int srcstep = (int)src.step;
3236

3237
                // http://www.fourcc.org/yuv.php#NV21 == yuv420sp -> a plane of 8 bit Y samples followed by an interleaved V/U plane containing 8 bit 2x2 subsampled chroma samples
3238
                // http://www.fourcc.org/yuv.php#NV12 == yvu420sp -> a plane of 8 bit Y samples followed by an interleaved U/V plane containing 8 bit 2x2 subsampled colour difference samples
3239
                if (CV_YUV420sp2RGB == code || COLOR_YUV420sp2RGBA == code)
3240
                {
3241
                    if (dcn == 3)
3242
                        cvtYUV4202RGB<2, 1>(dst, srcstep, y, uv);
3243
                    else
3244
                        cvtYUV4202RGBA<2, 1>(dst, srcstep, y, uv);
3245 3246 3247 3248
                }
                else if (CV_YUV420sp2BGR == code || CV_YUV420sp2BGRA == code)
                {
                    if (dcn == 3)
3249
                        cvtYUV4202RGB<0, 1>(dst, srcstep, y, uv);
3250
                    else
3251
                        cvtYUV4202RGBA<0, 1>(dst, srcstep, y, uv);
3252
                }
3253
                else if (CV_YUV2RGB_NV12 == code || CV_YUV2RGBA_NV12 == code)
3254 3255
                {
                    if (dcn == 3)
3256
                        cvtYUV4202RGB<2, 0>(dst, srcstep, y, uv);
3257
                    else
3258
                        cvtYUV4202RGBA<2, 0>(dst, srcstep, y, uv);
3259
                }
3260
                else //if (CV_YUV2BGR_NV12 == code || CV_YUV2BGRA_NV12 == code)
3261 3262
                {
                    if (dcn == 3)
3263
                        cvtYUV4202RGB<0, 0>(dst, srcstep, y, uv);
3264
                    else
3265
                        cvtYUV4202RGBA<0, 0>(dst, srcstep, y, uv);
3266 3267 3268
                }
            }
            break;
3269 3270
        default:
            CV_Error( CV_StsBadFlag, "Unknown/unsupported color conversion code" );
3271 3272
    }
}
3273 3274 3275
    
CV_IMPL void
cvCvtColor( const CvArr* srcarr, CvArr* dstarr, int code )
3276
{
3277 3278
    cv::Mat src = cv::cvarrToMat(srcarr), dst0 = cv::cvarrToMat(dstarr), dst = dst0;
    CV_Assert( src.depth() == dst.depth() );
3279
    
3280 3281
    cv::cvtColor(src, dst, code, dst.channels());
    CV_Assert( dst.data == dst0.data );
3282 3283
}

3284

3285
/* End of file. */