qrcode.cpp 126.2 KB
Newer Older
N
Nesterov Alexander 已提交
1 2 3 4 5 6 7 8 9
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.

#include "precomp.hpp"
#include "opencv2/objdetect.hpp"
A
Alexander Nesterov 已提交
10 11 12 13 14
#include "opencv2/calib3d.hpp"

#ifdef HAVE_QUIRC
#include "quirc.h"
#endif
N
Nesterov Alexander 已提交
15 16 17 18

#include <limits>
#include <cmath>
#include <iostream>
A
Alexander Nesterov 已提交
19
#include <queue>
20
#include <limits>
21
#include <map>
N
Nesterov Alexander 已提交
22 23 24

namespace cv
{
25 26
using std::vector;

27 28 29 30 31 32 33 34 35 36
static bool checkQRInputImage(InputArray img, Mat& gray)
{
    CV_Assert(!img.empty());
    CV_CheckDepthEQ(img.depth(), CV_8U, "");

    if (img.cols() <= 20 || img.rows() <= 20)
    {
        return false;  // image data is not enough for providing reliable results
    }
    int incn = img.channels();
T
Tomoaki Teshima 已提交
37
    CV_Check(incn, incn == 1 || incn == 3 || incn == 4, "");
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
    if (incn == 3 || incn == 4)
    {
        cvtColor(img, gray, COLOR_BGR2GRAY);
    }
    else
    {
        gray = img.getMat();
    }
    return true;
}

static void updatePointsResult(OutputArray points_, const vector<Point2f>& points)
{
    if (points_.needed())
    {
        int N = int(points.size() / 4);
        if (N > 0)
        {
            Mat m_p(N, 4, CV_32FC2, (void*)&points[0]);
            int points_type = points_.fixedType() ? points_.type() : CV_32FC2;
            m_p.reshape(2, points_.rows()).convertTo(points_, points_type);  // Mat layout: N x 4 x 2cn
        }
        else
        {
            points_.release();
        }
    }
}

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
static Point2f intersectionLines(Point2f a1, Point2f a2, Point2f b1, Point2f b2)
{
    const float divisor = (a1.x - a2.x) * (b1.y - b2.y) - (a1.y - a2.y) * (b1.x - b2.x);
    const float eps = 0.001f;
    if (abs(divisor) < eps)
        return a2;
    Point2f result_square_angle(
                              ((a1.x * a2.y  -  a1.y * a2.x) * (b1.x - b2.x) -
                               (b1.x * b2.y  -  b1.y * b2.x) * (a1.x - a2.x)) /
                               divisor,
                              ((a1.x * a2.y  -  a1.y * a2.x) * (b1.y - b2.y) -
                               (b1.x * b2.y  -  b1.y * b2.x) * (a1.y - a2.y)) /
                               divisor
                              );
    return result_square_angle;
}

//      / | b
//     /  |
//    /   |
//  a/    | c

static inline double getCosVectors(Point2f a, Point2f b, Point2f c)
{
    return ((a - b).x * (c - b).x + (a - b).y * (c - b).y) / (norm(a - b) * norm(c - b));
}
93

94 95 96 97 98 99 100
static bool arePointsNearest(Point2f a, Point2f b, float delta = 0.0)
{
    if ((abs(a.x - b.x) < delta) && (abs(a.y - b.y) < delta))
        return true;
    else
        return false;
}
101

102
class QRDetect
N
Nesterov Alexander 已提交
103
{
104
public:
105
    void init(const Mat& src, double eps_vertical_ = 0.2, double eps_horizontal_ = 0.1);
N
Nesterov Alexander 已提交
106
    bool localization();
107
    bool computeTransformationPoints();
N
Nesterov Alexander 已提交
108 109
    Mat getBinBarcode() { return bin_barcode; }
    Mat getStraightBarcode() { return straight_barcode; }
110 111
    vector<Point2f> getTransformationPoints() { return transformation_points; }
protected:
112 113
    vector<Vec3d> searchHorizontalLines();
    vector<Point2f> separateVerticalLines(const vector<Vec3d> &list_lines);
114
    vector<Point2f> extractVerticalLines(const vector<Vec3d> &list_lines, double eps);
115 116
    void fixationPoints(vector<Point2f> &local_point);
    vector<Point2f> getQuadrilateral(vector<Point2f> angle_list);
117
    bool testByPassRoute(vector<Point2f> hull, int start, int finish);
118

119
    Mat barcode, bin_barcode, resized_barcode, resized_bin_barcode, straight_barcode;
120
    vector<Point2f> localization_points, transformation_points;
121
    double eps_vertical, eps_horizontal, coeff_expansion;
122
    enum resize_direction { ZOOMING, SHRINKING, UNCHANGED } purpose;
N
Nesterov Alexander 已提交
123 124
};

125

126
void QRDetect::init(const Mat& src, double eps_vertical_, double eps_horizontal_)
N
Nesterov Alexander 已提交
127
{
A
Alexander Nesterov 已提交
128
    CV_TRACE_FUNCTION();
129
    CV_Assert(!src.empty());
130
    barcode = src.clone();
131
    const double min_side = std::min(src.size().width, src.size().height);
132 133
    if (min_side < 512.0)
    {
134
        purpose = ZOOMING;
135
        coeff_expansion = 512.0 / min_side;
136 137
        const int width  = cvRound(src.size().width  * coeff_expansion);
        const int height = cvRound(src.size().height  * coeff_expansion);
138
        Size new_size(width, height);
139
        resize(src, barcode, new_size, 0, 0, INTER_LINEAR);
140
    }
141 142 143 144 145 146 147 148 149
    else if (min_side > 512.0)
    {
        purpose = SHRINKING;
        coeff_expansion = min_side / 512.0;
        const int width  = cvRound(src.size().width  / coeff_expansion);
        const int height = cvRound(src.size().height  / coeff_expansion);
        Size new_size(width, height);
        resize(src, resized_barcode, new_size, 0, 0, INTER_AREA);
    }
150 151
    else
    {
152
        purpose = UNCHANGED;
153 154
        coeff_expansion = 1.0;
    }
155

N
Nesterov Alexander 已提交
156 157
    eps_vertical   = eps_vertical_;
    eps_horizontal = eps_horizontal_;
A
Alexander Nesterov 已提交
158

159 160 161 162 163 164 165 166 167
    if (!barcode.empty())
        adaptiveThreshold(barcode, bin_barcode, 255, ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY, 83, 2);
    else
        bin_barcode.release();

    if (!resized_barcode.empty())
        adaptiveThreshold(resized_barcode, resized_bin_barcode, 255, ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY, 83, 2);
    else
        resized_bin_barcode.release();
N
Nesterov Alexander 已提交
168 169
}

170
vector<Vec3d> QRDetect::searchHorizontalLines()
N
Nesterov Alexander 已提交
171
{
A
Alexander Nesterov 已提交
172
    CV_TRACE_FUNCTION();
173
    vector<Vec3d> result;
174 175 176 177
    const int height_bin_barcode = bin_barcode.rows;
    const int width_bin_barcode  = bin_barcode.cols;
    const size_t test_lines_size = 5;
    double test_lines[test_lines_size];
A
Alexander Nesterov 已提交
178
    vector<size_t> pixels_position;
179 180

    for (int y = 0; y < height_bin_barcode; y++)
N
Nesterov Alexander 已提交
181
    {
A
Alexander Nesterov 已提交
182
        pixels_position.clear();
183
        const uint8_t *bin_barcode_row = bin_barcode.ptr<uint8_t>(y);
N
Nesterov Alexander 已提交
184

185 186 187
        int pos = 0;
        for (; pos < width_bin_barcode; pos++) { if (bin_barcode_row[pos] == 0) break; }
        if (pos == width_bin_barcode) { continue; }
N
Nesterov Alexander 已提交
188

A
Alexander Nesterov 已提交
189 190 191
        pixels_position.push_back(pos);
        pixels_position.push_back(pos);
        pixels_position.push_back(pos);
N
Nesterov Alexander 已提交
192

193 194 195 196
        uint8_t future_pixel = 255;
        for (int x = pos; x < width_bin_barcode; x++)
        {
            if (bin_barcode_row[x] == future_pixel)
N
Nesterov Alexander 已提交
197
            {
198
                future_pixel = static_cast<uint8_t>(~future_pixel);
A
Alexander Nesterov 已提交
199
                pixels_position.push_back(x);
N
Nesterov Alexander 已提交
200
            }
201
        }
A
Alexander Nesterov 已提交
202 203
        pixels_position.push_back(width_bin_barcode - 1);
        for (size_t i = 2; i < pixels_position.size() - 4; i+=2)
204 205 206 207 208 209
        {
            test_lines[0] = static_cast<double>(pixels_position[i - 1] - pixels_position[i - 2]);
            test_lines[1] = static_cast<double>(pixels_position[i    ] - pixels_position[i - 1]);
            test_lines[2] = static_cast<double>(pixels_position[i + 1] - pixels_position[i    ]);
            test_lines[3] = static_cast<double>(pixels_position[i + 2] - pixels_position[i + 1]);
            test_lines[4] = static_cast<double>(pixels_position[i + 3] - pixels_position[i + 2]);
N
Nesterov Alexander 已提交
210

211
            double length = 0.0, weight = 0.0;  // TODO avoid 'double' calculations
N
Nesterov Alexander 已提交
212

213
            for (size_t j = 0; j < test_lines_size; j++) { length += test_lines[j]; }
N
Nesterov Alexander 已提交
214

215 216 217
            if (length == 0) { continue; }
            for (size_t j = 0; j < test_lines_size; j++)
            {
A
Alexander Nesterov 已提交
218 219
                if (j != 2) { weight += fabs((test_lines[j] / length) - 1.0/7.0); }
                else        { weight += fabs((test_lines[j] / length) - 3.0/7.0); }
220
            }
N
Nesterov Alexander 已提交
221

222 223 224 225 226 227 228
            if (weight < eps_vertical)
            {
                Vec3d line;
                line[0] = static_cast<double>(pixels_position[i - 2]);
                line[1] = y;
                line[2] = length;
                result.push_back(line);
N
Nesterov Alexander 已提交
229 230 231 232 233 234
            }
        }
    }
    return result;
}

235
vector<Point2f> QRDetect::separateVerticalLines(const vector<Vec3d> &list_lines)
N
Nesterov Alexander 已提交
236
{
A
Alexander Nesterov 已提交
237
    CV_TRACE_FUNCTION();
238

239
    for (int coeff_epsilon = 1; coeff_epsilon < 10; coeff_epsilon++)
N
Nesterov Alexander 已提交
240
    {
241 242
        vector<Point2f> point2f_result = extractVerticalLines(list_lines, eps_horizontal * coeff_epsilon);
        if (!point2f_result.empty())
243
        {
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
            vector<Point2f> centers;
            Mat labels;
            double compactness = kmeans(
                    point2f_result, 3, labels,
                    TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1),
                    3, KMEANS_PP_CENTERS, centers);
            if (compactness == 0)
                continue;
            if (compactness > 0)
            {
                return point2f_result;
            }
        }
    }
    return vector<Point2f>();  // nothing
}

vector<Point2f> QRDetect::extractVerticalLines(const vector<Vec3d> &list_lines, double eps)
{
    CV_TRACE_FUNCTION();
    vector<Vec3d> result;
    vector<double> test_lines; test_lines.reserve(6);

    for (size_t pnt = 0; pnt < list_lines.size(); pnt++)
    {
        const int x = cvRound(list_lines[pnt][0] + list_lines[pnt][2] * 0.5);
        const int y = cvRound(list_lines[pnt][1]);
N
Nesterov Alexander 已提交
271

272
        // --------------- Search vertical up-lines --------------- //
N
Nesterov Alexander 已提交
273

274 275
        test_lines.clear();
        uint8_t future_pixel_up = 255;
276

277 278 279 280 281 282
        int temp_length_up = 0;
        for (int j = y; j < bin_barcode.rows - 1; j++)
        {
            uint8_t next_pixel = bin_barcode.ptr<uint8_t>(j + 1)[x];
            temp_length_up++;
            if (next_pixel == future_pixel_up)
N
Nesterov Alexander 已提交
283
            {
284 285 286 287 288
                future_pixel_up = static_cast<uint8_t>(~future_pixel_up);
                test_lines.push_back(temp_length_up);
                temp_length_up = 0;
                if (test_lines.size() == 3)
                    break;
N
Nesterov Alexander 已提交
289
            }
290
        }
N
Nesterov Alexander 已提交
291

292
        // --------------- Search vertical down-lines --------------- //
N
Nesterov Alexander 已提交
293

294 295 296 297 298 299 300
        int temp_length_down = 0;
        uint8_t future_pixel_down = 255;
        for (int j = y; j >= 1; j--)
        {
            uint8_t next_pixel = bin_barcode.ptr<uint8_t>(j - 1)[x];
            temp_length_down++;
            if (next_pixel == future_pixel_down)
N
Nesterov Alexander 已提交
301
            {
302 303 304 305 306
                future_pixel_down = static_cast<uint8_t>(~future_pixel_down);
                test_lines.push_back(temp_length_down);
                temp_length_down = 0;
                if (test_lines.size() == 6)
                    break;
N
Nesterov Alexander 已提交
307
            }
308
        }
N
Nesterov Alexander 已提交
309

310
        // --------------- Compute vertical lines --------------- //
N
Nesterov Alexander 已提交
311

312 313 314
        if (test_lines.size() == 6)
        {
            double length = 0.0, weight = 0.0;  // TODO avoid 'double' calculations
N
Nesterov Alexander 已提交
315

316 317
            for (size_t i = 0; i < test_lines.size(); i++)
                length += test_lines[i];
N
Nesterov Alexander 已提交
318

319 320 321 322
            CV_Assert(length > 0);
            for (size_t i = 0; i < test_lines.size(); i++)
            {
                if (i % 3 != 0)
323
                {
324
                    weight += fabs((test_lines[i] / length) - 1.0/ 7.0);
325
                }
326
                else
327
                {
328
                    weight += fabs((test_lines[i] / length) - 3.0/14.0);
329
                }
330
            }
331 332

            if (weight < eps)
333
            {
334
                result.push_back(list_lines[pnt]);
335
            }
336 337
        }
    }
N
Nesterov Alexander 已提交
338

339 340 341 342 343 344 345 346
    vector<Point2f> point2f_result;
    if (result.size() > 2)
    {
        for (size_t i = 0; i < result.size(); i++)
        {
            point2f_result.push_back(
                  Point2f(static_cast<float>(result[i][0] + result[i][2] * 0.5),
                          static_cast<float>(result[i][1])));
347
        }
N
Nesterov Alexander 已提交
348
    }
349
    return point2f_result;
N
Nesterov Alexander 已提交
350 351
}

352
void QRDetect::fixationPoints(vector<Point2f> &local_point)
N
Nesterov Alexander 已提交
353
{
A
Alexander Nesterov 已提交
354
    CV_TRACE_FUNCTION();
N
Nesterov Alexander 已提交
355 356 357 358 359 360
    double cos_angles[3], norm_triangl[3];

    norm_triangl[0] = norm(local_point[1] - local_point[2]);
    norm_triangl[1] = norm(local_point[0] - local_point[2]);
    norm_triangl[2] = norm(local_point[1] - local_point[0]);

361 362 363 364 365 366 367 368 369 370 371 372 373
    cos_angles[0] = (norm_triangl[1] * norm_triangl[1] + norm_triangl[2] * norm_triangl[2]
                  -  norm_triangl[0] * norm_triangl[0]) / (2 * norm_triangl[1] * norm_triangl[2]);
    cos_angles[1] = (norm_triangl[0] * norm_triangl[0] + norm_triangl[2] * norm_triangl[2]
                  -  norm_triangl[1] * norm_triangl[1]) / (2 * norm_triangl[0] * norm_triangl[2]);
    cos_angles[2] = (norm_triangl[0] * norm_triangl[0] + norm_triangl[1] * norm_triangl[1]
                  -  norm_triangl[2] * norm_triangl[2]) / (2 * norm_triangl[0] * norm_triangl[1]);

    const double angle_barrier = 0.85;
    if (fabs(cos_angles[0]) > angle_barrier || fabs(cos_angles[1]) > angle_barrier || fabs(cos_angles[2]) > angle_barrier)
    {
        local_point.clear();
        return;
    }
374 375

    size_t i_min_cos =
376 377
       (cos_angles[0] < cos_angles[1] && cos_angles[0] < cos_angles[2]) ? 0 :
       (cos_angles[1] < cos_angles[0] && cos_angles[1] < cos_angles[2]) ? 1 : 2;
378

379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
    size_t index_max = 0;
    double max_area = std::numeric_limits<double>::min();
    for (size_t i = 0; i < local_point.size(); i++)
    {
        const size_t current_index = i % 3;
        const size_t left_index  = (i + 1) % 3;
        const size_t right_index = (i + 2) % 3;

        const Point2f current_point(local_point[current_index]),
            left_point(local_point[left_index]), right_point(local_point[right_index]),
            central_point(intersectionLines(current_point,
                              Point2f(static_cast<float>((local_point[left_index].x + local_point[right_index].x) * 0.5),
                                      static_cast<float>((local_point[left_index].y + local_point[right_index].y) * 0.5)),
                              Point2f(0, static_cast<float>(bin_barcode.rows - 1)),
                              Point2f(static_cast<float>(bin_barcode.cols - 1),
                                      static_cast<float>(bin_barcode.rows - 1))));

        vector<Point2f> list_area_pnt;
        list_area_pnt.push_back(current_point);

        vector<LineIterator> list_line_iter;
        list_line_iter.push_back(LineIterator(bin_barcode, current_point, left_point));
        list_line_iter.push_back(LineIterator(bin_barcode, current_point, central_point));
        list_line_iter.push_back(LineIterator(bin_barcode, current_point, right_point));
403

404 405
        for (size_t k = 0; k < list_line_iter.size(); k++)
        {
406
            LineIterator& li = list_line_iter[k];
407
            uint8_t future_pixel = 255, count_index = 0;
408
            for(int j = 0; j < li.count; j++, ++li)
409
            {
410 411 412 413 414 415 416 417
                const Point p = li.pos();
                if (p.x >= bin_barcode.cols ||
                    p.y >= bin_barcode.rows)
                {
                    break;
                }

                const uint8_t value = bin_barcode.at<uint8_t>(p);
418 419
                if (value == future_pixel)
                {
420
                    future_pixel = static_cast<uint8_t>(~future_pixel);
421 422 423
                    count_index++;
                    if (count_index == 3)
                    {
424
                        list_area_pnt.push_back(p);
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
                        break;
                    }
                }
            }
        }

        const double temp_check_area = contourArea(list_area_pnt);
        if (temp_check_area > max_area)
        {
            index_max = current_index;
            max_area = temp_check_area;
        }

    }
    if (index_max == i_min_cos) { std::swap(local_point[0], local_point[index_max]); }
    else { local_point.clear(); return; }

    const Point2f rpt = local_point[0], bpt = local_point[1], gpt = local_point[2];
443 444
    Matx22f m(rpt.x - bpt.x, rpt.y - bpt.y, gpt.x - rpt.x, gpt.y - rpt.y);
    if( determinant(m) > 0 )
N
Nesterov Alexander 已提交
445
    {
446
        std::swap(local_point[1], local_point[2]);
N
Nesterov Alexander 已提交
447 448 449
    }
}

450
bool QRDetect::localization()
N
Nesterov Alexander 已提交
451
{
A
Alexander Nesterov 已提交
452
    CV_TRACE_FUNCTION();
453
    Point2f begin, end;
454
    vector<Vec3d> list_lines_x = searchHorizontalLines();
455
    if( list_lines_x.empty() ) { return false; }
456
    vector<Point2f> list_lines_y = separateVerticalLines(list_lines_x);
457
    if( list_lines_y.empty() ) { return false; }
458 459 460 461

    vector<Point2f> centers;
    Mat labels;
    kmeans(list_lines_y, 3, labels,
462
           TermCriteria( TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1),
463 464 465
           3, KMEANS_PP_CENTERS, localization_points);

    fixationPoints(localization_points);
N
Nesterov Alexander 已提交
466

467 468
    bool suare_flag = false, local_points_flag = false;
    double triangle_sides[3];
A
bug fix  
APrigarina 已提交
469 470 471 472 473 474
    double triangle_perim, square_area, img_square_area;
    if (localization_points.size() == 3)
    {
        triangle_sides[0] = norm(localization_points[0] - localization_points[1]);
        triangle_sides[1] = norm(localization_points[1] - localization_points[2]);
        triangle_sides[2] = norm(localization_points[2] - localization_points[0]);
475

A
bug fix  
APrigarina 已提交
476
        triangle_perim = (triangle_sides[0] + triangle_sides[1] + triangle_sides[2]) / 2;
477

A
bug fix  
APrigarina 已提交
478 479 480 481
        square_area = sqrt((triangle_perim * (triangle_perim - triangle_sides[0])
                                           * (triangle_perim - triangle_sides[1])
                                           * (triangle_perim - triangle_sides[2]))) * 2;
        img_square_area = bin_barcode.cols * bin_barcode.rows;
482

A
bug fix  
APrigarina 已提交
483 484 485 486
        if (square_area > (img_square_area * 0.2))
        {
            suare_flag = true;
        }
487
    }
A
bug fix  
APrigarina 已提交
488
    else
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
    {
        local_points_flag = true;
    }
    if ((suare_flag || local_points_flag) && purpose == SHRINKING)
    {
        localization_points.clear();
        bin_barcode = resized_bin_barcode.clone();
        list_lines_x = searchHorizontalLines();
        if( list_lines_x.empty() ) { return false; }
        list_lines_y = separateVerticalLines(list_lines_x);
        if( list_lines_y.empty() ) { return false; }

        kmeans(list_lines_y, 3, labels,
               TermCriteria( TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1),
               3, KMEANS_PP_CENTERS, localization_points);

        fixationPoints(localization_points);
        if (localization_points.size() != 3) { return false; }

        const int width  = cvRound(bin_barcode.size().width  * coeff_expansion);
        const int height = cvRound(bin_barcode.size().height * coeff_expansion);
        Size new_size(width, height);
        Mat intermediate;
        resize(bin_barcode, intermediate, new_size, 0, 0, INTER_LINEAR);
        bin_barcode = intermediate.clone();
        for (size_t i = 0; i < localization_points.size(); i++)
        {
            localization_points[i] *= coeff_expansion;
        }
    }
    if (purpose == ZOOMING)
N
Nesterov Alexander 已提交
520
    {
521 522
        const int width  = cvRound(bin_barcode.size().width  / coeff_expansion);
        const int height = cvRound(bin_barcode.size().height / coeff_expansion);
523
        Size new_size(width, height);
524
        Mat intermediate;
525
        resize(bin_barcode, intermediate, new_size, 0, 0, INTER_LINEAR);
526 527 528 529 530
        bin_barcode = intermediate.clone();
        for (size_t i = 0; i < localization_points.size(); i++)
        {
            localization_points[i] /= coeff_expansion;
        }
N
Nesterov Alexander 已提交
531 532
    }

533 534 535 536 537 538 539 540 541 542
    for (size_t i = 0; i < localization_points.size(); i++)
    {
        for (size_t j = i + 1; j < localization_points.size(); j++)
        {
            if (norm(localization_points[i] - localization_points[j]) < 10)
            {
                return false;
            }
        }
    }
N
Nesterov Alexander 已提交
543
    return true;
544

N
Nesterov Alexander 已提交
545 546
}

547
bool QRDetect::computeTransformationPoints()
N
Nesterov Alexander 已提交
548
{
A
Alexander Nesterov 已提交
549
    CV_TRACE_FUNCTION();
550
    if (localization_points.size() != 3) { return false; }
N
Nesterov Alexander 已提交
551

552 553 554
    vector<Point> locations, non_zero_elem[3], newHull;
    vector<Point2f> new_non_zero_elem[3];
    for (size_t i = 0; i < 3; i++)
N
Nesterov Alexander 已提交
555
    {
556 557
        Mat mask = Mat::zeros(bin_barcode.rows + 2, bin_barcode.cols + 2, CV_8UC1);
        uint8_t next_pixel, future_pixel = 255;
558
        int count_test_lines = 0, index = cvRound(localization_points[i].x);
559
        for (; index < bin_barcode.cols - 1; index++)
N
Nesterov Alexander 已提交
560
        {
A
Alexander Nesterov 已提交
561
            next_pixel = bin_barcode.ptr<uint8_t>(cvRound(localization_points[i].y))[index + 1];
562
            if (next_pixel == future_pixel)
N
Nesterov Alexander 已提交
563
            {
564
                future_pixel = static_cast<uint8_t>(~future_pixel);
565 566
                count_test_lines++;
                if (count_test_lines == 2)
N
Nesterov Alexander 已提交
567
                {
568
                    floodFill(bin_barcode, mask,
569
                              Point(index + 1, cvRound(localization_points[i].y)), 255,
570 571
                              0, Scalar(), Scalar(), FLOODFILL_MASK_ONLY);
                    break;
N
Nesterov Alexander 已提交
572 573 574
                }
            }
        }
575 576 577 578
        Mat mask_roi = mask(Range(1, bin_barcode.rows - 1), Range(1, bin_barcode.cols - 1));
        findNonZero(mask_roi, non_zero_elem[i]);
        newHull.insert(newHull.end(), non_zero_elem[i].begin(), non_zero_elem[i].end());
    }
S
Suleyman TURKMEN 已提交
579
    convexHull(newHull, locations);
580 581 582
    for (size_t i = 0; i < locations.size(); i++)
    {
        for (size_t j = 0; j < 3; j++)
N
Nesterov Alexander 已提交
583
        {
584 585 586 587 588 589 590
            for (size_t k = 0; k < non_zero_elem[j].size(); k++)
            {
                if (locations[i] == non_zero_elem[j][k])
                {
                    new_non_zero_elem[j].push_back(locations[i]);
                }
            }
N
Nesterov Alexander 已提交
591 592 593
        }
    }

594 595 596
    double pentagon_diag_norm = -1;
    Point2f down_left_edge_point, up_right_edge_point, up_left_edge_point;
    for (size_t i = 0; i < new_non_zero_elem[1].size(); i++)
N
Nesterov Alexander 已提交
597
    {
598
        for (size_t j = 0; j < new_non_zero_elem[2].size(); j++)
N
Nesterov Alexander 已提交
599
        {
600 601 602 603 604 605 606
            double temp_norm = norm(new_non_zero_elem[1][i] - new_non_zero_elem[2][j]);
            if (temp_norm > pentagon_diag_norm)
            {
                down_left_edge_point = new_non_zero_elem[1][i];
                up_right_edge_point  = new_non_zero_elem[2][j];
                pentagon_diag_norm = temp_norm;
            }
N
Nesterov Alexander 已提交
607 608
        }
    }
A
Alexander Nesterov 已提交
609

610
    if (down_left_edge_point == Point2f(0, 0) ||
A
Alexander Nesterov 已提交
611 612
        up_right_edge_point  == Point2f(0, 0) ||
        new_non_zero_elem[0].size() == 0) { return false; }
N
Nesterov Alexander 已提交
613

614 615
    double max_area = -1;
    up_left_edge_point = new_non_zero_elem[0][0];
A
Alexander Nesterov 已提交
616

617 618
    for (size_t i = 0; i < new_non_zero_elem[0].size(); i++)
    {
A
Alexander Nesterov 已提交
619 620 621 622 623
        vector<Point2f> list_edge_points;
        list_edge_points.push_back(new_non_zero_elem[0][i]);
        list_edge_points.push_back(down_left_edge_point);
        list_edge_points.push_back(up_right_edge_point);

A
Alexander Nesterov 已提交
624
        double temp_area = fabs(contourArea(list_edge_points));
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
        if (max_area < temp_area)
        {
            up_left_edge_point = new_non_zero_elem[0][i];
            max_area = temp_area;
        }
    }

    Point2f down_max_delta_point, up_max_delta_point;
    double norm_down_max_delta = -1, norm_up_max_delta = -1;
    for (size_t i = 0; i < new_non_zero_elem[1].size(); i++)
    {
        double temp_norm_delta = norm(up_left_edge_point - new_non_zero_elem[1][i])
                               + norm(down_left_edge_point - new_non_zero_elem[1][i]);
        if (norm_down_max_delta < temp_norm_delta)
        {
            down_max_delta_point = new_non_zero_elem[1][i];
            norm_down_max_delta = temp_norm_delta;
        }
    }

A
Alexander Nesterov 已提交
645

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
    for (size_t i = 0; i < new_non_zero_elem[2].size(); i++)
    {
        double temp_norm_delta = norm(up_left_edge_point - new_non_zero_elem[2][i])
                               + norm(up_right_edge_point - new_non_zero_elem[2][i]);
        if (norm_up_max_delta < temp_norm_delta)
        {
            up_max_delta_point = new_non_zero_elem[2][i];
            norm_up_max_delta = temp_norm_delta;
        }
    }

    transformation_points.push_back(down_left_edge_point);
    transformation_points.push_back(up_left_edge_point);
    transformation_points.push_back(up_right_edge_point);
    transformation_points.push_back(
        intersectionLines(down_left_edge_point, down_max_delta_point,
                          up_right_edge_point, up_max_delta_point));
    vector<Point2f> quadrilateral = getQuadrilateral(transformation_points);
    transformation_points = quadrilateral;

666 667 668 669 670 671 672
    int width = bin_barcode.size().width;
    int height = bin_barcode.size().height;
    for (size_t i = 0; i < transformation_points.size(); i++)
    {
        if ((cvRound(transformation_points[i].x) > width) ||
            (cvRound(transformation_points[i].y) > height)) { return false; }
    }
673
    return true;
N
Nesterov Alexander 已提交
674 675
}

676
// test function (if true then ------> else <------ )
677
bool QRDetect::testByPassRoute(vector<Point2f> hull, int start, int finish)
678
{
A
Alexander Nesterov 已提交
679
    CV_TRACE_FUNCTION();
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
    int index_hull = start, next_index_hull, hull_size = (int)hull.size();
    double test_length[2] = { 0.0, 0.0 };
    do
    {
        next_index_hull = index_hull + 1;
        if (next_index_hull == hull_size) { next_index_hull = 0; }
        test_length[0] += norm(hull[index_hull] - hull[next_index_hull]);
        index_hull = next_index_hull;
    }
    while(index_hull != finish);

    index_hull = start;
    do
    {
        next_index_hull = index_hull - 1;
        if (next_index_hull == -1) { next_index_hull = hull_size - 1; }
        test_length[1] += norm(hull[index_hull] - hull[next_index_hull]);
        index_hull = next_index_hull;
    }
    while(index_hull != finish);

    if (test_length[0] < test_length[1]) { return true; } else { return false; }
}

704
vector<Point2f> QRDetect::getQuadrilateral(vector<Point2f> angle_list)
N
Nesterov Alexander 已提交
705
{
A
Alexander Nesterov 已提交
706
    CV_TRACE_FUNCTION();
N
Nesterov Alexander 已提交
707 708
    size_t angle_size = angle_list.size();
    uint8_t value, mask_value;
709 710
    Mat mask = Mat::zeros(bin_barcode.rows + 2, bin_barcode.cols + 2, CV_8UC1);
    Mat fill_bin_barcode = bin_barcode.clone();
N
Nesterov Alexander 已提交
711 712 713 714 715 716
    for (size_t i = 0; i < angle_size; i++)
    {
        LineIterator line_iter(bin_barcode, angle_list[ i      % angle_size],
                                            angle_list[(i + 1) % angle_size]);
        for(int j = 0; j < line_iter.count; j++, ++line_iter)
        {
717 718 719
            Point p = line_iter.pos();
            value = bin_barcode.at<uint8_t>(p);
            mask_value = mask.at<uint8_t>(p + Point(1, 1));
N
Nesterov Alexander 已提交
720 721
            if (value == 0 && mask_value == 0)
            {
722
                floodFill(fill_bin_barcode, mask, p, 255,
723
                          0, Scalar(), Scalar(), FLOODFILL_MASK_ONLY);
N
Nesterov Alexander 已提交
724 725 726
            }
        }
    }
727 728
    vector<Point> locations;
    Mat mask_roi = mask(Range(1, bin_barcode.rows - 1), Range(1, bin_barcode.cols - 1));
N
Nesterov Alexander 已提交
729

A
Alexander Nesterov 已提交
730
    findNonZero(mask_roi, locations);
N
Nesterov Alexander 已提交
731 732 733

    for (size_t i = 0; i < angle_list.size(); i++)
    {
734 735
        int x = cvRound(angle_list[i].x);
        int y = cvRound(angle_list[i].y);
736
        locations.push_back(Point(x, y));
N
Nesterov Alexander 已提交
737 738
    }

739
    vector<Point> integer_hull;
S
Suleyman TURKMEN 已提交
740
    convexHull(locations, integer_hull);
741 742 743
    int hull_size = (int)integer_hull.size();
    vector<Point2f> hull(hull_size);
    for (int i = 0; i < hull_size; i++)
N
Nesterov Alexander 已提交
744
    {
745 746
        float x = saturate_cast<float>(integer_hull[i].x);
        float y = saturate_cast<float>(integer_hull[i].y);
747
        hull[i] = Point2f(x, y);
N
Nesterov Alexander 已提交
748 749
    }

A
Alexander Nesterov 已提交
750
    const double experimental_area = fabs(contourArea(hull));
751

752 753
    vector<Point2f> result_hull_point(angle_size);
    double min_norm;
N
Nesterov Alexander 已提交
754 755 756 757
    for (size_t i = 0; i < angle_size; i++)
    {
        min_norm = std::numeric_limits<double>::max();
        Point closest_pnt;
758
        for (int j = 0; j < hull_size; j++)
N
Nesterov Alexander 已提交
759
        {
760 761
            double temp_norm = norm(hull[j] - angle_list[i]);
            if (min_norm > temp_norm)
N
Nesterov Alexander 已提交
762
            {
763 764
                min_norm = temp_norm;
                closest_pnt = hull[j];
N
Nesterov Alexander 已提交
765 766 767 768 769
            }
        }
        result_hull_point[i] = closest_pnt;
    }

770
    int start_line[2] = { 0, 0 }, finish_line[2] = { 0, 0 }, unstable_pnt = 0;
N
Nesterov Alexander 已提交
771 772
    for (int i = 0; i < hull_size; i++)
    {
773 774 775 776
        if (result_hull_point[2] == hull[i]) { start_line[0] = i; }
        if (result_hull_point[1] == hull[i]) { finish_line[0] = start_line[1] = i; }
        if (result_hull_point[0] == hull[i]) { finish_line[1] = i; }
        if (result_hull_point[3] == hull[i]) { unstable_pnt = i; }
N
Nesterov Alexander 已提交
777 778
    }

779
    int index_hull, extra_index_hull, next_index_hull, extra_next_index_hull;
N
Nesterov Alexander 已提交
780 781
    Point result_side_begin[4], result_side_end[4];

782
    bool bypass_orientation = testByPassRoute(hull, start_line[0], finish_line[0]);
783

N
Nesterov Alexander 已提交
784 785 786 787
    min_norm = std::numeric_limits<double>::max();
    index_hull = start_line[0];
    do
    {
788
        if (bypass_orientation) { next_index_hull = index_hull + 1; }
N
Nesterov Alexander 已提交
789 790 791 792 793
        else { next_index_hull = index_hull - 1; }

        if (next_index_hull == hull_size) { next_index_hull = 0; }
        if (next_index_hull == -1) { next_index_hull = hull_size - 1; }

794 795
        Point angle_closest_pnt =  norm(hull[index_hull] - angle_list[1]) >
        norm(hull[index_hull] - angle_list[2]) ? angle_list[2] : angle_list[1];
N
Nesterov Alexander 已提交
796 797

        Point intrsc_line_hull =
798 799 800
        intersectionLines(hull[index_hull], hull[next_index_hull],
                          angle_list[1], angle_list[2]);
        double temp_norm = getCosVectors(hull[index_hull], intrsc_line_hull, angle_closest_pnt);
N
Nesterov Alexander 已提交
801
        if (min_norm > temp_norm &&
802
            norm(hull[index_hull] - hull[next_index_hull]) >
A
Alexander Nesterov 已提交
803
            norm(angle_list[1] - angle_list[2]) * 0.1)
N
Nesterov Alexander 已提交
804 805
        {
            min_norm = temp_norm;
806 807
            result_side_begin[0] = hull[index_hull];
            result_side_end[0]   = hull[next_index_hull];
N
Nesterov Alexander 已提交
808 809 810 811 812 813 814 815 816
        }


        index_hull = next_index_hull;
    }
    while(index_hull != finish_line[0]);

    if (min_norm == std::numeric_limits<double>::max())
    {
817 818
        result_side_begin[0] = angle_list[1];
        result_side_end[0]   = angle_list[2];
N
Nesterov Alexander 已提交
819 820 821 822
    }

    min_norm = std::numeric_limits<double>::max();
    index_hull = start_line[1];
823
    bypass_orientation = testByPassRoute(hull, start_line[1], finish_line[1]);
N
Nesterov Alexander 已提交
824 825
    do
    {
826
        if (bypass_orientation) { next_index_hull = index_hull + 1; }
N
Nesterov Alexander 已提交
827 828 829 830 831
        else { next_index_hull = index_hull - 1; }

        if (next_index_hull == hull_size) { next_index_hull = 0; }
        if (next_index_hull == -1) { next_index_hull = hull_size - 1; }

832 833
        Point angle_closest_pnt =  norm(hull[index_hull] - angle_list[0]) >
        norm(hull[index_hull] - angle_list[1]) ? angle_list[1] : angle_list[0];
N
Nesterov Alexander 已提交
834 835

        Point intrsc_line_hull =
836 837 838
        intersectionLines(hull[index_hull], hull[next_index_hull],
                          angle_list[0], angle_list[1]);
        double temp_norm = getCosVectors(hull[index_hull], intrsc_line_hull, angle_closest_pnt);
N
Nesterov Alexander 已提交
839
        if (min_norm > temp_norm &&
840
            norm(hull[index_hull] - hull[next_index_hull]) >
A
Alexander Nesterov 已提交
841
            norm(angle_list[0] - angle_list[1]) * 0.05)
N
Nesterov Alexander 已提交
842 843
        {
            min_norm = temp_norm;
844 845
            result_side_begin[1] = hull[index_hull];
            result_side_end[1]   = hull[next_index_hull];
N
Nesterov Alexander 已提交
846 847 848 849 850 851 852 853
        }

        index_hull = next_index_hull;
    }
    while(index_hull != finish_line[1]);

    if (min_norm == std::numeric_limits<double>::max())
    {
854 855
        result_side_begin[1] = angle_list[0];
        result_side_end[1]   = angle_list[1];
N
Nesterov Alexander 已提交
856 857
    }

858 859
    bypass_orientation = testByPassRoute(hull, start_line[0], unstable_pnt);
    const bool extra_bypass_orientation = testByPassRoute(hull, finish_line[1], unstable_pnt);
N
Nesterov Alexander 已提交
860

861
    vector<Point2f> result_angle_list(4), test_result_angle_list(4);
862
    double min_diff_area = std::numeric_limits<double>::max();
N
Nesterov Alexander 已提交
863
    index_hull = start_line[0];
864
    const double standart_norm = std::max(
865 866
        norm(result_side_begin[0] - result_side_end[0]),
        norm(result_side_begin[1] - result_side_end[1]));
N
Nesterov Alexander 已提交
867 868
    do
    {
869
        if (bypass_orientation) { next_index_hull = index_hull + 1; }
N
Nesterov Alexander 已提交
870 871 872 873 874
        else { next_index_hull = index_hull - 1; }

        if (next_index_hull == hull_size) { next_index_hull = 0; }
        if (next_index_hull == -1) { next_index_hull = hull_size - 1; }

A
Alexander Nesterov 已提交
875
        if (norm(hull[index_hull] - hull[next_index_hull]) < standart_norm * 0.1)
876 877
        { index_hull = next_index_hull; continue; }

N
Nesterov Alexander 已提交
878 879 880
        extra_index_hull = finish_line[1];
        do
        {
881
            if (extra_bypass_orientation) { extra_next_index_hull = extra_index_hull + 1; }
N
Nesterov Alexander 已提交
882 883 884 885 886
            else { extra_next_index_hull = extra_index_hull - 1; }

            if (extra_next_index_hull == hull_size) { extra_next_index_hull = 0; }
            if (extra_next_index_hull == -1) { extra_next_index_hull = hull_size - 1; }

A
Alexander Nesterov 已提交
887
            if (norm(hull[extra_index_hull] - hull[extra_next_index_hull]) < standart_norm * 0.1)
888 889
            { extra_index_hull = extra_next_index_hull; continue; }

N
Nesterov Alexander 已提交
890
            test_result_angle_list[0]
891 892
            = intersectionLines(result_side_begin[0], result_side_end[0],
                                result_side_begin[1], result_side_end[1]);
N
Nesterov Alexander 已提交
893
            test_result_angle_list[1]
894 895
            = intersectionLines(result_side_begin[1], result_side_end[1],
                                hull[extra_index_hull], hull[extra_next_index_hull]);
N
Nesterov Alexander 已提交
896
            test_result_angle_list[2]
897 898
            = intersectionLines(hull[extra_index_hull], hull[extra_next_index_hull],
                                hull[index_hull], hull[next_index_hull]);
N
Nesterov Alexander 已提交
899
            test_result_angle_list[3]
900 901 902
            = intersectionLines(hull[index_hull], hull[next_index_hull],
                                result_side_begin[0], result_side_end[0]);

903 904
            const double test_diff_area
                = fabs(fabs(contourArea(test_result_angle_list)) - experimental_area);
905
            if (min_diff_area > test_diff_area)
N
Nesterov Alexander 已提交
906
            {
907
                min_diff_area = test_diff_area;
N
Nesterov Alexander 已提交
908 909 910 911 912 913 914 915 916 917 918 919 920
                for (size_t i = 0; i < test_result_angle_list.size(); i++)
                {
                    result_angle_list[i] = test_result_angle_list[i];
                }
            }

            extra_index_hull = extra_next_index_hull;
        }
        while(extra_index_hull != unstable_pnt);

        index_hull = next_index_hull;
    }
    while(index_hull != unstable_pnt);
A
Alexander Nesterov 已提交
921

922
    // check label points
A
Alexander Nesterov 已提交
923 924 925 926
    if (norm(result_angle_list[0] - angle_list[1]) > 2) { result_angle_list[0] = angle_list[1]; }
    if (norm(result_angle_list[1] - angle_list[0]) > 2) { result_angle_list[1] = angle_list[0]; }
    if (norm(result_angle_list[3] - angle_list[2]) > 2) { result_angle_list[3] = angle_list[2]; }

927 928 929 930 931 932
    // check calculation point
    if (norm(result_angle_list[2] - angle_list[3]) >
       (norm(result_angle_list[0] - result_angle_list[1]) +
        norm(result_angle_list[0] - result_angle_list[3])) * 0.5 )
    { result_angle_list[2] = angle_list[3]; }

N
Nesterov Alexander 已提交
933 934 935
    return result_angle_list;
}

936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
struct QRCodeDetector::Impl
{
public:
    Impl() { epsX = 0.2; epsY = 0.1; }
    ~Impl() {}

    double epsX, epsY;
};

QRCodeDetector::QRCodeDetector() : p(new Impl) {}
QRCodeDetector::~QRCodeDetector() {}

void QRCodeDetector::setEpsX(double epsX) { p->epsX = epsX; }
void QRCodeDetector::setEpsY(double epsY) { p->epsY = epsY; }

bool QRCodeDetector::detect(InputArray in, OutputArray points) const
{
953 954 955
    Mat inarr;
    if (!checkQRInputImage(in, inarr))
        return false;
956

957 958 959 960 961
    QRDetect qrdet;
    qrdet.init(inarr, p->epsX, p->epsY);
    if (!qrdet.localization()) { return false; }
    if (!qrdet.computeTransformationPoints()) { return false; }
    vector<Point2f> pnts2f = qrdet.getTransformationPoints();
962
    updatePointsResult(points, pnts2f);
N
Nesterov Alexander 已提交
963 964 965
    return true;
}

966
bool detectQRCode(InputArray in, vector<Point> &points, double eps_x, double eps_y)
967 968 969 970 971 972 973 974
{
    QRCodeDetector qrdetector;
    qrdetector.setEpsX(eps_x);
    qrdetector.setEpsY(eps_y);

    return qrdetector.detect(in, points);
}

A
Alexander Nesterov 已提交
975 976 977 978 979 980 981 982
class QRDecode
{
public:
    void init(const Mat &src, const vector<Point2f> &points);
    Mat getIntermediateBarcode() { return intermediate; }
    Mat getStraightBarcode() { return straight; }
    size_t getVersion() { return version; }
    std::string getDecodeInformation() { return result_info; }
983 984
    bool straightDecodingProcess();
    bool curvedDecodingProcess();
A
Alexander Nesterov 已提交
985 986 987 988 989
protected:
    bool updatePerspective();
    bool versionDefinition();
    bool samplingForVersion();
    bool decodingProcess();
990 991 992 993 994 995
    inline double pointPosition(Point2f a, Point2f b , Point2f c);
    float distancePointToLine(Point2f a, Point2f b , Point2f c);
    void getPointsInsideQRCode(const vector<Point2f> &angle_list);
    bool computeClosestPoints(const vector<Point> &result_integer_hull);
    bool computeSidesPoints(const vector<Point> &result_integer_hull);
    vector<Point> getPointsNearUnstablePoint(const vector<Point> &side, int start, int end, int step);
A
APrigarina 已提交
996
    bool findAndAddStablePoint();
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
    bool findIndexesCurvedSides();
    bool findIncompleteIndexesCurvedSides();
    Mat getPatternsMask();
    Point findClosestZeroPoint(Point2f original_point);
    bool findPatternsContours(vector<vector<Point> > &patterns_contours);
    bool findPatternsVerticesPoints(vector<vector<Point> > &patterns_vertices_points);
    bool findTempPatternsAddingPoints(vector<std::pair<int, vector<Point> > > &temp_patterns_add_points);
    bool computePatternsAddingPoints(std::map<int, vector<Point> > &patterns_add_points);
    bool addPointsToSides();
    void completeAndSortSides();
    vector<vector<float> > computeSpline(const vector<int> &x_arr, const vector<int> &y_arr);
    bool createSpline(vector<vector<Point2f> > &spline_lines);
    bool divideIntoEvenSegments(vector<vector<Point2f> > &segments_points);
    bool straightenQRCodeInParts();
    bool preparingCurvedQRCodes();

    const static int NUM_SIDES = 2;
    Mat original, bin_barcode, no_border_intermediate, intermediate, straight, curved_to_straight, test_image;
A
Alexander Nesterov 已提交
1015
    vector<Point2f> original_points;
1016 1017 1018 1019 1020 1021 1022
    vector<Point2f> original_curved_points;
    vector<Point> qrcode_locations;
    vector<std::pair<size_t, Point> > closest_points;
    vector<vector<Point> > sides_points;
    std::pair<size_t, Point> unstable_pair;
    vector<int> curved_indexes, curved_incomplete_indexes;
    std::map<int, vector<Point> > complete_curved_sides;
A
Alexander Nesterov 已提交
1023 1024 1025
    std::string result_info;
    uint8_t version, version_size;
    float test_perspective_size;
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
    struct sortPairAsc
    {
        bool operator()(const std::pair<size_t, double> &a,
                        const std::pair<size_t, double> &b) const
        {
            return a.second < b.second;
        }
    };
    struct sortPairDesc
    {
        bool operator()(const std::pair<size_t, double> &a,
                        const std::pair<size_t, double> &b) const
        {
            return a.second > b.second;
        }
    };
    struct sortPointsByX
    {
        bool operator()(const Point &a, const Point &b) const
        {
            return a.x < b.x;
        }
    };
    struct sortPointsByY
    {
        bool operator()(const Point &a, const Point &b) const
        {
            return a.y < b.y;
        }
    };
A
Alexander Nesterov 已提交
1056 1057 1058 1059
};

void QRDecode::init(const Mat &src, const vector<Point2f> &points)
{
A
Alexander Nesterov 已提交
1060
    CV_TRACE_FUNCTION();
1061
    vector<Point2f> bbox = points;
1062
    original = src.clone();
1063 1064
    test_image = src.clone();
    adaptiveThreshold(original, bin_barcode, 255, ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY, 83, 2);
1065 1066
    intermediate = Mat::zeros(original.size(), CV_8UC1);
    original_points = bbox;
A
Alexander Nesterov 已提交
1067 1068 1069 1070 1071 1072
    version = 0;
    version_size = 0;
    test_perspective_size = 251;
    result_info = "";
}

1073
inline double QRDecode::pointPosition(Point2f a, Point2f b , Point2f c)
A
Alexander Nesterov 已提交
1074
{
1075
    return (a.x - b.x) * (c.y - b.y) - (c.x - b.x) * (a.y - b.y);
A
Alexander Nesterov 已提交
1076 1077
}

1078
float QRDecode::distancePointToLine(Point2f a, Point2f b , Point2f c)
1079
{
1080 1081 1082 1083 1084 1085 1086
    float A, B, C, result;
    A = c.y - b.y;
    B = c.x - b.x;
    C = c.x * b.y - b.x * c.y;
    float dist = sqrt(A*A + B*B);
    if (dist == 0) return 0;
    result = abs((A * a.x - B * a.y + C)) / dist;
1087

1088
    return result;
1089 1090
}

1091
void QRDecode::getPointsInsideQRCode(const vector<Point2f> &angle_list)
A
Alexander Nesterov 已提交
1092
{
A
Alexander Nesterov 已提交
1093
    CV_TRACE_FUNCTION();
1094 1095 1096
    size_t angle_size = angle_list.size();
    Mat contour_mask = Mat::zeros(bin_barcode.size(), CV_8UC1);
    for (size_t i = 0; i < angle_size; i++)
A
Alexander Nesterov 已提交
1097
    {
1098 1099 1100
        LineIterator line_iter(bin_barcode, angle_list[ i      % angle_size],
                                            angle_list[(i + 1) % angle_size]);
        for(int j = 0; j < line_iter.count; j++, ++line_iter)
1101
        {
1102 1103
            Point p = line_iter.pos();
            contour_mask.at<uint8_t>(p + Point(1, 1)) = 255;
1104
        }
A
Alexander Nesterov 已提交
1105
    }
1106 1107 1108
    Point2f center_point = intersectionLines(angle_list[0], angle_list[2],
                                             angle_list[1], angle_list[3]);
    floodFill(contour_mask, center_point, 255, 0, Scalar(), Scalar(), FLOODFILL_FIXED_RANGE);
A
Alexander Nesterov 已提交
1109

1110 1111
    vector<Point> locations;
    findNonZero(contour_mask, locations);
A
Alexander Nesterov 已提交
1112

1113 1114 1115 1116
    Mat fill_bin_barcode = bin_barcode.clone();
    Mat qrcode_mask = Mat::zeros(bin_barcode.rows + 2, bin_barcode.cols + 2, CV_8UC1);
    uint8_t value, mask_value;
    for(size_t i = 0; i < locations.size(); i++)
A
Alexander Nesterov 已提交
1117
    {
1118 1119 1120
        value = bin_barcode.at<uint8_t>(locations[i]);
        mask_value = qrcode_mask.at<uint8_t>(locations[i] + Point(1, 1));
        if (value == 0 && mask_value == 0)
A
Alexander Nesterov 已提交
1121
        {
1122 1123
            floodFill(fill_bin_barcode, qrcode_mask, locations[i], 255,
                      0, Scalar(), Scalar(), FLOODFILL_MASK_ONLY);
A
Alexander Nesterov 已提交
1124 1125
        }
    }
1126 1127 1128
    Mat qrcode_mask_roi = qrcode_mask(Range(1, qrcode_mask.rows - 1), Range(1, qrcode_mask.cols - 1));
    findNonZero(qrcode_mask_roi, qrcode_locations);
}
A
Alexander Nesterov 已提交
1129

1130 1131 1132 1133 1134 1135
bool QRDecode::computeClosestPoints(const vector<Point> &result_integer_hull)
{
    CV_TRACE_FUNCTION();
    double min_norm, max_norm = 0.0;
    size_t idx_min;
    for (size_t i = 0; i < original_points.size(); i++)
A
Alexander Nesterov 已提交
1136
    {
1137 1138 1139 1140
        min_norm = std::numeric_limits<double>::max();

        Point closest_pnt;
        for (size_t j = 0; j < result_integer_hull.size(); j++)
A
Alexander Nesterov 已提交
1141
        {
1142 1143 1144 1145 1146 1147 1148 1149
            Point integer_original_point = original_points[i];
            double temp_norm = norm(integer_original_point - result_integer_hull[j]);
            if (temp_norm < min_norm)
            {
                min_norm = temp_norm;
                closest_pnt = result_integer_hull[j];
                idx_min = j;
            }
A
Alexander Nesterov 已提交
1150
        }
1151 1152 1153 1154 1155 1156
        if (min_norm > max_norm)
        {
            max_norm = min_norm;
            unstable_pair = std::pair<size_t,Point>(i, closest_pnt);
        }
        closest_points.push_back(std::pair<size_t,Point>(idx_min, closest_pnt));
A
Alexander Nesterov 已提交
1157 1158
    }

1159
    if (closest_points.size() != 4)
A
Alexander Nesterov 已提交
1160
    {
1161
        return false;
A
Alexander Nesterov 已提交
1162
    }
1163

A
Alexander Nesterov 已提交
1164 1165 1166
    return true;
}

1167
bool QRDecode::computeSidesPoints(const vector<Point> &result_integer_hull)
A
Alexander Nesterov 已提交
1168
{
1169 1170
    size_t num_closest_points = closest_points.size();
    vector<Point> points;
A
Alexander Nesterov 已提交
1171

1172
    for(size_t i = 0; i < num_closest_points; i++)
A
Alexander Nesterov 已提交
1173
    {
1174 1175 1176 1177
        points.clear();
        size_t start = closest_points[i].first,
               end   = closest_points[(i + 1) % num_closest_points].first;
        if (start < end)
A
Alexander Nesterov 已提交
1178
        {
1179 1180 1181
            points.insert(points.end(),
                          result_integer_hull.begin() + start,
                          result_integer_hull.begin() + end + 1);
A
Alexander Nesterov 已提交
1182
        }
1183
        else
A
Alexander Nesterov 已提交
1184
        {
1185 1186 1187 1188 1189 1190
            points.insert(points.end(),
                          result_integer_hull.begin() + start,
                          result_integer_hull.end());
            points.insert(points.end(),
                          result_integer_hull.begin(),
                          result_integer_hull.begin() + end + 1);
A
Alexander Nesterov 已提交
1191
        }
1192 1193
        if (abs(result_integer_hull[start].x - result_integer_hull[end].x) >
            abs(result_integer_hull[start].y - result_integer_hull[end].y))
A
Alexander Nesterov 已提交
1194
        {
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
            if (points.front().x > points.back().x)
            {
                reverse(points.begin(), points.end());
            }
        }
        else
        {
            if (points.front().y > points.back().y)
            {
                reverse(points.begin(), points.end());
            }
        }
        if (points.empty())
        {
            return false;
A
Alexander Nesterov 已提交
1210
        }
1211
        sides_points.push_back(points);
A
Alexander Nesterov 已提交
1212 1213 1214 1215 1216
    }

    return true;
}

1217
vector<Point> QRDecode::getPointsNearUnstablePoint(const vector<Point> &side, int start, int end, int step)
A
Alexander Nesterov 已提交
1218
{
1219 1220
    vector<Point> points;
    Point p1, p2, p3;
A
Alexander Nesterov 已提交
1221

1222 1223 1224
    double max_neighbour_angle = 1.0;
    int index_max_angle = start + step;
    bool enough_points = true;
A
Alexander Nesterov 已提交
1225

1226
    if(side.size() < 3)
A
Alexander Nesterov 已提交
1227
    {
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
        points.insert(points.end(), side.begin(), side.end());
        return points;
    }
    const double cos_angle_threshold = -0.97;
    for (int i = start + step; i != end; i+= step)
    {
        p1 = side[i + step];
        if (norm(p1 - side[i])        < 5) { continue; }
        p2 = side[i];
        if (norm(p2 - side[i - step]) < 5) { continue; }
        p3 = side[i - step];

        double neighbour_angle = getCosVectors(p1, p2, p3);
        neighbour_angle = floor(neighbour_angle*1000)/1000;

        if ((neighbour_angle <= max_neighbour_angle) && (neighbour_angle < cos_angle_threshold))
A
Alexander Nesterov 已提交
1244
        {
1245 1246 1247 1248 1249 1250 1251
            max_neighbour_angle = neighbour_angle;
            index_max_angle = i;
        }
        else if (i == end - step)
        {
            enough_points = false;
            index_max_angle = i;
A
Alexander Nesterov 已提交
1252 1253 1254
        }
    }

1255 1256 1257 1258 1259
    if (enough_points)
    {
        p1 = side[index_max_angle + step];
        p2 = side[index_max_angle];
        p3 = side[index_max_angle - step];
A
Alexander Nesterov 已提交
1260

1261 1262 1263 1264 1265
        points.push_back(p1);
        points.push_back(p2);
        points.push_back(p3);
    }
    else
A
Alexander Nesterov 已提交
1266
    {
1267 1268 1269 1270 1271
        p1 = side[index_max_angle];
        p2 = side[index_max_angle - step];

        points.push_back(p1);
        points.push_back(p2);
A
Alexander Nesterov 已提交
1272 1273
    }

1274
    return points;
A
Alexander Nesterov 已提交
1275 1276
}

A
APrigarina 已提交
1277
bool QRDecode::findAndAddStablePoint()
A
Alexander Nesterov 已提交
1278
{
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
    size_t idx_unstable_point = unstable_pair.first;
    Point unstable_point = unstable_pair.second;

    vector<Point> current_side_points, next_side_points;
    Point a1, a2, b1, b2;
    int start_current, end_current, step_current, start_next, end_next, step_next;
    vector<Point>::iterator it_a, it_b;

    vector<Point> &current_side = sides_points[(idx_unstable_point + 3) % 4];
    vector<Point> &next_side    = sides_points[idx_unstable_point];

    if(current_side.size() < 2 || next_side.size() < 2)
    {
        return false;
    }

    if(arePointsNearest(unstable_point, current_side.front(), 3.0))
    {
        start_current = (int)current_side.size() - 1;
        end_current = 0;
        step_current = -1;
        it_a = current_side.begin();
    }
    else if(arePointsNearest(unstable_point, current_side.back(), 3.0))
    {
        start_current = 0;
        end_current = (int)current_side.size() - 1;
        step_current = 1;
        it_a = current_side.end() - 1;
    }
    else
    {
        return false;
    }
    if(arePointsNearest(unstable_point, next_side.front(), 3.0))
    {
        start_next = (int)next_side.size() - 1;
        end_next = 0;
        step_next = -1;
        it_b = next_side.begin();
    }
    else if(arePointsNearest(unstable_point, next_side.back(), 3.0))
    {
        start_next = 0;
        end_next = (int)next_side.size() - 1;
        step_next = 1;
        it_b = next_side.end() - 1;
    }
    else
    {
        return false;
    }
    current_side_points = getPointsNearUnstablePoint(current_side, start_current, end_current, step_current);
    next_side_points    = getPointsNearUnstablePoint(next_side, start_next, end_next, step_next);

    if (current_side_points.size() < 2 || next_side_points.size() < 2)
    {
        return false;
    }

    a1 = current_side_points[0];
    a2 = current_side_points[1];

    b1 = next_side_points[0];
    b2 = next_side_points[1];

    if(norm(a1 - b1) < 10 && next_side_points.size() > 2)
    {
        b1 = next_side_points[1];
        b2 = next_side_points[2];
    }

    Point stable_point = intersectionLines(a1, a2, b1, b2);

    const double max_side = std::max(bin_barcode.size().width, bin_barcode.size().height);
    if ((abs(stable_point.x) > max_side) || (abs(stable_point.y) > max_side))
    {
        return false;
    }

    while (*it_a != a1)
    {
        it_a = current_side.erase(it_a);
        if (it_a == current_side.end())
        {
            it_a -= step_current;
        }
        Point point_to_remove_from_current = *it_a;
        if (point_to_remove_from_current.x > max_side || point_to_remove_from_current.y > max_side)
        {
            break;
        }
    }
    while (*it_b != b1)
    {
        it_b = next_side.erase(it_b);
        if (it_b == next_side.end())
        {
            it_b -= step_next;
        }
        Point point_to_remove_from_next = *it_b;
        if (point_to_remove_from_next.x > max_side || point_to_remove_from_next.y > max_side)
        {
            break;
        }
    }

    bool add_stable_point = true;

A
APrigarina 已提交
1388
    for (size_t i = 0; i < original_points.size(); i++)
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
    {
        if(arePointsNearest(stable_point, original_points[i], 3.0))
        {
            add_stable_point = false;
            break;
        }
    }

    if(add_stable_point)
    {
        current_side.insert(it_a, stable_point);
        next_side.insert(it_b, stable_point);
        closest_points[unstable_pair.first].second = stable_point;
    }
    else
    {
        stable_point = original_points[unstable_pair.first];
        closest_points[unstable_pair.first].second = stable_point;
        current_side.insert(it_a, stable_point);
        next_side.insert(it_b, stable_point);
    }

    return true;
}

bool QRDecode::findIndexesCurvedSides()
{
    double max_dist_to_arc_side = 0.0;
    size_t num_closest_points = closest_points.size();
    int idx_curved_current = -1, idx_curved_opposite = -1;

    for (size_t i = 0; i < num_closest_points; i++)
    {
        double dist_to_arc = 0.0;

        Point arc_start = closest_points[i].second;
        Point arc_end   = closest_points[(i + 1) % num_closest_points].second;

        for (size_t j = 0; j < sides_points[i].size(); j++)
        {
            Point arc_point = sides_points[i][j];
            double dist = distancePointToLine(arc_point, arc_start, arc_end);
            dist_to_arc += dist;
        }
        dist_to_arc /= sides_points[i].size();

        if (dist_to_arc > max_dist_to_arc_side)
        {
            max_dist_to_arc_side = dist_to_arc;
            idx_curved_current = (int)i;
            idx_curved_opposite = (int)(i + 2) % num_closest_points;
        }
    }
    if (idx_curved_current == -1 || idx_curved_opposite == -1)
    {
        return false;
    }

    curved_indexes.push_back(idx_curved_current);
    curved_indexes.push_back(idx_curved_opposite);

    return true;
}

bool QRDecode::findIncompleteIndexesCurvedSides()
{
    int num_closest_points = (int)closest_points.size();

    for (int i = 0; i < NUM_SIDES; i++)
    {
        int idx_side = curved_indexes[i];
        int side_size = (int)sides_points[idx_side].size();

        double max_norm = norm(closest_points[idx_side].second -
                               closest_points[(idx_side + 1) % num_closest_points].second);
        double real_max_norm = 0;

        for (int j = 0; j < side_size - 1; j++)
        {
            double temp_norm = norm(sides_points[idx_side][j] -
                                    sides_points[idx_side][j + 1]);
            if (temp_norm > real_max_norm)
            {
                real_max_norm = temp_norm;
            }
        }
        if (real_max_norm > (0.5 * max_norm))
        {
            curved_incomplete_indexes.push_back(curved_indexes[i]);
        }

    }

    if (curved_incomplete_indexes.size() == 0)
    {
        return false;
    }
    return true;
}

Point QRDecode::findClosestZeroPoint(Point2f original_point)
{
    int orig_x = static_cast<int>(original_point.x);
    int orig_y = static_cast<int>(original_point.y);
    uint8_t value;
    Point zero_point;

    const int step = 2;
    for (int i = orig_x - step; i >= 0 && i <= orig_x + step; i++)
    {
        for (int j = orig_y - step; j >= 0 && j <= orig_y + step; j++)
        {
            Point p(i, j);
            value = bin_barcode.at<uint8_t>(p);
            if (value == 0) zero_point = p;
        }
    }

    return zero_point;
}

Mat QRDecode::getPatternsMask()
{
    Mat mask(bin_barcode.rows + 2, bin_barcode.cols + 2, CV_8UC1, Scalar(0));
    Mat patterns_mask(bin_barcode.rows + 2, bin_barcode.cols + 2, CV_8UC1, Scalar(0));
    Mat fill_bin_barcode = bin_barcode.clone();
    for (size_t i = 0; i < original_points.size(); i++)
    {
        if (i == 2) continue;
        Point p = findClosestZeroPoint(original_points[i]);
        floodFill(fill_bin_barcode, mask, p, 255,
                        0, Scalar(), Scalar(), FLOODFILL_MASK_ONLY);
        patterns_mask += mask;
    }
    Mat mask_roi = patterns_mask(Range(1, bin_barcode.rows - 1), Range(1, bin_barcode.cols - 1));

    return mask_roi;
}

bool QRDecode::findPatternsContours(vector<vector<Point> > &patterns_contours)
{
    Mat patterns_mask = getPatternsMask();
    findContours(patterns_mask, patterns_contours, RETR_EXTERNAL, CHAIN_APPROX_NONE, Point(0, 0));
    if (patterns_contours.size() != 3) {  return false; }
    return true;
}

bool QRDecode::findPatternsVerticesPoints(vector<vector<Point> > &patterns_vertices_points)
{
    vector<vector<Point> > patterns_contours;
    if(!findPatternsContours(patterns_contours))
    {
        return false;
    }
    const int num_vertices = 4;
    for(size_t i = 0; i < patterns_contours.size(); i++)
    {
        vector<Point> convexhull_contours, new_convexhull_contours;
        convexHull(patterns_contours[i], convexhull_contours);

        size_t number_pnts_in_hull = convexhull_contours.size();
        vector<std::pair<size_t, double> > cos_angles_in_hull;
        vector<size_t> min_angle_pnts_indexes;

        for(size_t j = 1; j < number_pnts_in_hull + 1; j++)
        {
            double cos_angle = getCosVectors(convexhull_contours[(j - 1) % number_pnts_in_hull],
                                             convexhull_contours[ j      % number_pnts_in_hull],
                                             convexhull_contours[(j + 1) % number_pnts_in_hull]);
            cos_angles_in_hull.push_back(std::pair<size_t, double>(j, cos_angle));
        }

        sort(cos_angles_in_hull.begin(), cos_angles_in_hull.end(), sortPairDesc());

        for (size_t j = 0; j < cos_angles_in_hull.size(); j++)
        {
            bool add_edge = true;
            for(size_t k = 0; k < min_angle_pnts_indexes.size(); k++)
            {
                if(norm(convexhull_contours[cos_angles_in_hull[j].first % number_pnts_in_hull] -
                        convexhull_contours[min_angle_pnts_indexes[k]   % number_pnts_in_hull]) < 3)
                {
                    add_edge = false;
                }
            }
            if (add_edge)
            {
                min_angle_pnts_indexes.push_back(cos_angles_in_hull[j].first % number_pnts_in_hull);
            }
            if ((int)min_angle_pnts_indexes.size() == num_vertices) { break; }
        }
        sort(min_angle_pnts_indexes.begin(), min_angle_pnts_indexes.end());

        vector<Point> contour_vertices_points;

        for (size_t k = 0; k < min_angle_pnts_indexes.size(); k++)
        {
            contour_vertices_points.push_back(convexhull_contours[min_angle_pnts_indexes[k]]);
        }
        patterns_vertices_points.push_back(contour_vertices_points);
    }
    if (patterns_vertices_points.size() != 3)
    {
        return false;
    }

    return true;
}

bool QRDecode::findTempPatternsAddingPoints(vector<std::pair<int, vector<Point> > > &temp_patterns_add_points)
{
    vector<vector<Point> >patterns_contours, patterns_vertices_points;
    if(!findPatternsVerticesPoints(patterns_vertices_points))
    {
        return false;
    }
    if(!findPatternsContours(patterns_contours))
    {
        return false;
    }

    for (size_t i = 0; i < curved_incomplete_indexes.size(); i++)
    {
        int idx_curved_side = curved_incomplete_indexes[i];
        Point close_transform_pnt_curr = original_points[idx_curved_side];
        Point close_transform_pnt_next = original_points[(idx_curved_side + 1) % 4];

        vector<size_t> patterns_indexes;

        for (size_t j = 0; j < patterns_vertices_points.size(); j++)
        {
            for (size_t k = 0; k < patterns_vertices_points[j].size(); k++)
            {
                if (norm(close_transform_pnt_curr - patterns_vertices_points[j][k]) < 5)
                {
                    patterns_indexes.push_back(j);
                    break;
                }
                if (norm(close_transform_pnt_next - patterns_vertices_points[j][k]) < 5)
                {
                    patterns_indexes.push_back(j);
                    break;
                }
            }
        }
        for (size_t j = 0; j < patterns_indexes.size(); j++)
        {
            vector<Point> vertices = patterns_vertices_points[patterns_indexes[j]];
            vector<std::pair<int, double> > vertices_dist_pair;
            vector<Point> points;
            for (size_t k = 0; k < vertices.size(); k++)
            {
                double dist_to_side = distancePointToLine(vertices[k], close_transform_pnt_curr,
                                                                       close_transform_pnt_next);
                vertices_dist_pair.push_back(std::pair<int, double>((int)k, dist_to_side));
            }
            if (vertices_dist_pair.size() == 0)
            {
                return false;
            }
            sort(vertices_dist_pair.begin(), vertices_dist_pair.end(), sortPairAsc());
            Point p1, p2;
            int index_p1_in_vertices = 0, index_p2_in_vertices = 0;
            for (int k = 4; k > 0; k--)
            {
                if((vertices_dist_pair[0].first == k % 4) && (vertices_dist_pair[1].first == (k - 1) % 4))
                {
                    index_p1_in_vertices = vertices_dist_pair[0].first;
                    index_p2_in_vertices = vertices_dist_pair[1].first;
                }
                else if((vertices_dist_pair[1].first == k % 4) && (vertices_dist_pair[0].first == (k - 1) % 4))
                {
                    index_p1_in_vertices = vertices_dist_pair[1].first;
                    index_p2_in_vertices = vertices_dist_pair[0].first;
                }
            }
            if (index_p1_in_vertices == index_p2_in_vertices) return false;

            p1 = vertices[index_p1_in_vertices];
            p2 = vertices[index_p2_in_vertices];

            size_t index_p1_in_contour = 0, index_p2_in_contour = 0;
            vector<Point> add_points = patterns_contours[patterns_indexes[j]];

            for(size_t k = 0; k < add_points.size(); k++)
            {
                if (add_points[k] == p1)
                {
                    index_p1_in_contour = k;
                }
                if (add_points[k] == p2)
                {
                    index_p2_in_contour = k;
                }
            }

            if (index_p1_in_contour > index_p2_in_contour)
            {
                for (size_t k = index_p1_in_contour; k < add_points.size(); k++)
                {
                    points.push_back(add_points[k]);
                }
                for (size_t k = 0; k <= index_p2_in_contour; k++)
                {
                    points.push_back(add_points[k]);
                }
            }
            else if (index_p1_in_contour < index_p2_in_contour)
            {
                for (size_t k = index_p1_in_contour; k <= index_p2_in_contour; k++)
                {
                    points.push_back(add_points[k]);
                }
            }
            else
            {
                return false;
            }
            if (abs(p1.x - p2.x) > abs(p1.y - p2.y))
            {
                sort(points.begin(), points.end(), sortPointsByX());
            }
            else
            {
                sort(points.begin(), points.end(), sortPointsByY());
            }

            temp_patterns_add_points.push_back(std::pair<int, vector<Point> >(idx_curved_side,points));
        }
    }

    return true;
}

bool QRDecode::computePatternsAddingPoints(std::map<int, vector<Point> > &patterns_add_points)
{
    vector<std::pair<int, vector<Point> > > temp_patterns_add_points;
    if(!findTempPatternsAddingPoints(temp_patterns_add_points))
    {
        return false;
    }

    const int num_points_in_pattern = 3;
    for(size_t i = 0; i < temp_patterns_add_points.size(); i++)
    {
        int idx_side = temp_patterns_add_points[i].first;
        int size = (int)temp_patterns_add_points[i].second.size();

        float step = static_cast<float>(size) / num_points_in_pattern;
        vector<Point> temp_points;
        for (int j = 0; j < num_points_in_pattern; j++)
        {
            float val = j * step;
            int idx = cvRound(val) >= size ? size - 1 : cvRound(val);
            temp_points.push_back(temp_patterns_add_points[i].second[idx]);
        }
        temp_points.push_back(temp_patterns_add_points[i].second.back());
        if(patterns_add_points.count(idx_side) == 1)
        {
            patterns_add_points[idx_side].insert(patterns_add_points[idx_side].end(),
                                                temp_points.begin(), temp_points.end());
        }
        patterns_add_points.insert(std::pair<int, vector<Point> >(idx_side, temp_points));

    }
    if (patterns_add_points.size() == 0)
    {
        return false;
    }

    return true;
}

bool QRDecode::addPointsToSides()
{
    if(!computePatternsAddingPoints(complete_curved_sides))
    {
        return false;
    }
    std::map<int, vector<Point> >::iterator it;
    double mean_step = 0.0;
    size_t num_points_at_side = 0;
    for (it = complete_curved_sides.begin(); it != complete_curved_sides.end(); ++it)
    {
        int count = -1;
        const size_t num_points_at_pattern = it->second.size();
        for(size_t j = 0; j < num_points_at_pattern - 1; j++, count++)
        {
            if (count == 3) continue;
            double temp_norm = norm(it->second[j] -
                                    it->second[j + 1]);
            mean_step += temp_norm;
        }
        num_points_at_side += num_points_at_pattern;
    }
    if (num_points_at_side == 0)
    {
        return false;
    }
    mean_step /= num_points_at_side;

    const size_t num_incomplete_sides = curved_incomplete_indexes.size();
    for (size_t i = 0; i < num_incomplete_sides; i++)
    {
        int idx = curved_incomplete_indexes[i];
        vector<int> sides_points_indexes;

        const int num_points_at_side_to_add = (int)sides_points[idx].size();
        for (int j = 0; j < num_points_at_side_to_add; j++)
        {
            bool not_too_close = true;
            const size_t num_points_at_side_exist = complete_curved_sides[idx].size();
            for (size_t k = 0; k < num_points_at_side_exist; k++)
            {
                double temp_norm = norm(sides_points[idx][j] - complete_curved_sides[idx][k]);
                if (temp_norm < mean_step)
                {
                    not_too_close = false;
                    break;
                }
            }
            if (not_too_close)
            {
                sides_points_indexes.push_back(j);
            }
        }

        for (size_t j = 0; j < sides_points_indexes.size(); j++)
        {
            bool not_equal = true;
            for (size_t k = 0; k < complete_curved_sides[idx].size(); k++)
            {
                if (sides_points[idx][sides_points_indexes[j]] ==
                    complete_curved_sides[idx][k])
                {
                    not_equal = false;
                }
            }
            if (not_equal)
            {
                complete_curved_sides[idx].push_back(sides_points[idx][sides_points_indexes[j]]);
            }
        }
    }

    return true;
}

void QRDecode::completeAndSortSides()
{
    if (complete_curved_sides.size() < 2)
    {
        for (int i = 0; i < NUM_SIDES; i++)
        {
            if(complete_curved_sides.count(curved_indexes[i]) == 0)
            {
                int idx_second_cur_side = curved_indexes[i];
                complete_curved_sides.insert(std::pair<int,vector<Point> >(idx_second_cur_side, sides_points[idx_second_cur_side]));
            }
        }
    }
    std::map<int,vector<Point> >::iterator it;
    for (it = complete_curved_sides.begin(); it != complete_curved_sides.end(); ++it)
    {
        Point p1 = it->second.front();
        Point p2 = it->second.back();
        if (abs(p1.x - p2.x) > abs(p1.y - p2.y))
        {
            sort(it->second.begin(), it->second.end(), sortPointsByX());
        }
        else
        {
            sort(it->second.begin(), it->second.end(), sortPointsByY());
        }
    }
}

vector<vector<float> > QRDecode::computeSpline(const vector<int> &x_arr, const vector<int> &y_arr)
{
    const int n = (int)x_arr.size();
    vector<float> a, b(n - 1), d(n - 1), h(n - 1), alpha(n - 1), c(n), l(n), mu(n), z(n);

    for (int i = 0; i < (int)y_arr.size(); i++)
    {
        a.push_back(static_cast<float>(x_arr[i]));
    }
    for (int i = 0; i < n - 1; i++)
    {
        h[i] = static_cast<float>(y_arr[i + 1] - y_arr[i]);
    }
    for (int i = 1; i < n - 1; i++)
    {
        alpha[i] = 3 / h[i] * (a[i + 1] - a[i]) - 3 / (h[i - 1]) * (a[i] - a[i - 1]);
    }
    l[0] = 1;
    mu[0] = 0;
    z[0] = 0;

    for (int i = 1; i < n - 1; i++)
    {
        l[i] = 2 * (y_arr[i + 1] - y_arr[i - 1]) - h[i - 1] * mu[i - 1];
        mu[i] = h[i] / l[i];
        z[i] = (alpha[i] - h[i - 1] * z[i - 1]) / l[i];
    }
    l[n - 1] = 1;
    z[n - 1] = 0;
    c[n - 1] = 0;

    for(int j = n - 2; j >= 0; j--)
    {
        c[j] = z[j] - mu[j] * c[j + 1];
        b[j] = (a[j + 1] - a[j]) / h[j] - (h[j] * (c[j + 1] + 2 * c[j])) / 3;
        d[j] = (c[j + 1] - c[j]) / (3 * h[j]);
    }

    vector<vector<float> > S(n - 1);
    for (int i = 0; i < n - 1; i++)
    {
        S[i].push_back(a[i]);
        S[i].push_back(b[i]);
        S[i].push_back(c[i]);
        S[i].push_back(d[i]);
    }

    return S;
}

bool QRDecode::createSpline(vector<vector<Point2f> > &spline_lines)
{
    int start, end;
    vector<vector<float> > S;

    for (int idx = 0; idx < NUM_SIDES; idx++)
    {
        int idx_curved_side = curved_indexes[idx];

        vector<Point> spline_points = complete_curved_sides.find(idx_curved_side)->second;
        vector<int> x_arr, y_arr;

        for (size_t j = 0; j < spline_points.size(); j++)
        {
            x_arr.push_back(cvRound(spline_points[j].x));
            y_arr.push_back(cvRound(spline_points[j].y));
        }

        bool horizontal_order = abs(x_arr.front() - x_arr.back()) > abs(y_arr.front() - y_arr.back());
        vector<int>& second_arr = horizontal_order ? x_arr : y_arr;
        vector<int>& first_arr  = horizontal_order ? y_arr : x_arr;

        S = computeSpline(first_arr, second_arr);

        int closest_point_first  = horizontal_order ? closest_points[idx_curved_side].second.x
                                                    : closest_points[idx_curved_side].second.y;
        int closest_point_second = horizontal_order ? closest_points[(idx_curved_side + 1) % 4].second.x
                                                    : closest_points[(idx_curved_side + 1) % 4].second.y;

        start = idx_curved_side;
        end = (idx_curved_side + 1) % 4;
        if(closest_point_first > closest_point_second)
        {
            start = (idx_curved_side + 1) % 4;
            end = idx_curved_side;
        }

        int closest_point_start = horizontal_order ? closest_points[start].second.x : closest_points[start].second.y;
        int closest_point_end   = horizontal_order ? closest_points[end].second.x   : closest_points[end].second.y;

        for (int index = closest_point_start; index <= closest_point_end; index++)
        {
            if (index == second_arr.front())
            {
                spline_lines[idx].push_back(closest_points[start].second);
            }
            for (size_t i = 0; i < second_arr.size() - 1; i++)
            {
                if ((index > second_arr[i]) && (index <= second_arr[i + 1]))
                {
                    float val = S[i][0] + S[i][1] * (index - second_arr[i]) + S[i][2] * (index - second_arr[i]) * (index - second_arr[i])
                                                                            + S[i][3] * (index - second_arr[i]) * (index - second_arr[i]) * (index - second_arr[i]);
                    spline_lines[idx].push_back(horizontal_order ? Point2f(static_cast<float>(index), val) : Point2f(val, static_cast<float>(index)));
                }
            }
        }
    }
    return true;
}

bool QRDecode::divideIntoEvenSegments(vector<vector<Point2f> > &segments_points)
{
    vector<vector<Point2f> > spline_lines(NUM_SIDES);
    if (!createSpline(spline_lines))
    {
        return false;
    }
    float mean_num_points_in_line = 0.0;
    for (int i = 0; i < NUM_SIDES; i++)
    {
        mean_num_points_in_line += spline_lines[i].size();
    }
    mean_num_points_in_line /= NUM_SIDES;
    const int min_num_points = 1, max_num_points = cvRound(mean_num_points_in_line / 2.0);
    float linear_threshold = 0.5f;
    for (int num = min_num_points; num < max_num_points; num++)
    {
        for (int i = 0; i < NUM_SIDES; i++)
        {
            segments_points[i].clear();

            int size = (int)spline_lines[i].size();
            float step = static_cast<float>(size) / num;
            for (int j = 0; j < num; j++)
            {
                float val = j * step;
                int idx = cvRound(val) >= size ? size - 1 : cvRound(val);
                segments_points[i].push_back(spline_lines[i][idx]);
            }
            segments_points[i].push_back(spline_lines[i].back());
        }
        float mean_of_two_sides = 0.0;
        for (int i = 0; i < NUM_SIDES; i++)
        {
            float mean_dist_in_segment = 0.0;
            for (size_t j = 0; j < segments_points[i].size() - 1; j++)
            {
                Point2f segment_start = segments_points[i][j];
                Point2f segment_end   = segments_points[i][j + 1];
                vector<Point2f>::iterator it_start, it_end, it;
                it_start = find(spline_lines[i].begin(), spline_lines[i].end(), segment_start);
                it_end   = find(spline_lines[i].begin(), spline_lines[i].end(), segment_end);
                float max_dist_to_line = 0.0;
                for (it = it_start; it != it_end; it++)
                {
                    float temp_dist = distancePointToLine(*it, segment_start, segment_end);
                    if (temp_dist > max_dist_to_line)
                    {
                        max_dist_to_line = temp_dist;
                    }
                }
                mean_dist_in_segment += max_dist_to_line;
            }
            mean_dist_in_segment /= segments_points[i].size();
            mean_of_two_sides    += mean_dist_in_segment;
        }
        mean_of_two_sides /= NUM_SIDES;
        if (mean_of_two_sides < linear_threshold)
        {
            break;
        }
    }

    return true;
}

bool QRDecode::straightenQRCodeInParts()
{
    vector<vector<Point2f> > segments_points(NUM_SIDES);
    if (!divideIntoEvenSegments(segments_points))
    {
        return false;
    }
    vector<Point2f> current_curved_side, opposite_curved_side;

    for (int i = 0; i < NUM_SIDES; i++)
    {
        Point2f temp_point_start = segments_points[i].front();
        Point2f temp_point_end   = segments_points[i].back();
        bool horizontal_order = (abs(temp_point_start.x - temp_point_end.x) >
                                 abs(temp_point_start.y - temp_point_end.y));
        float compare_point_current  = horizontal_order ? segments_points[i].front().y
                                                        : segments_points[(i + 1) % 2].front().x;
        float compare_point_opposite = horizontal_order ? segments_points[(i + 1) % 2].front().y
                                                        : segments_points[i].front().x;

        if (compare_point_current > compare_point_opposite)
        {
            current_curved_side  = segments_points[i];
            opposite_curved_side = segments_points[(i + 1) % 2];
        }
    }
    if (current_curved_side.size() != opposite_curved_side.size())
    {
        return false;
    }
    size_t number_pnts_to_cut = current_curved_side.size();
    if (number_pnts_to_cut == 0)
    {
        return false;
    }
    float perspective_curved_size = 251.0;
    const Size temporary_size(cvRound(perspective_curved_size), cvRound(perspective_curved_size));

    float dist = perspective_curved_size / (number_pnts_to_cut - 1);
    Mat perspective_result = Mat::zeros(temporary_size, CV_8UC1);
    vector<Point2f> curved_parts_points;

    float start_cut = 0.0;
    vector<Point2f> temp_closest_points(4);

    for (size_t i = 1; i < number_pnts_to_cut; i++)
    {
        curved_parts_points.clear();
        Mat test_mask = Mat::zeros(bin_barcode.size(), CV_8UC1);

        Point2f start_point = current_curved_side[i];
        Point2f prev_start_point = current_curved_side[i - 1];
        Point2f finish_point = opposite_curved_side[i];
        Point2f prev_finish_point = opposite_curved_side[i - 1];

        for (size_t j = 0; j < qrcode_locations.size(); j++)
        {
            if ((pointPosition(start_point, finish_point, qrcode_locations[j]) >= 0) &&
                (pointPosition(prev_start_point, prev_finish_point, qrcode_locations[j]) <= 0))
            {
                test_mask.at<uint8_t>(qrcode_locations[j]) = 255;
            }
        }

        vector<Point2f> perspective_points;

        perspective_points.push_back(Point2f(0.0, start_cut));
        perspective_points.push_back(Point2f(perspective_curved_size, start_cut));

        perspective_points.push_back(Point2f(perspective_curved_size, start_cut + dist));
        perspective_points.push_back(Point2f(0.0, start_cut+dist));

        perspective_points.push_back(Point2f(perspective_curved_size * 0.5f, start_cut + dist * 0.5f));

        if (i == 1)
        {
            for (size_t j = 0; j < closest_points.size(); j++)
            {
                if (arePointsNearest(closest_points[j].second, prev_start_point, 3.0))
                {
                    temp_closest_points[j] = perspective_points[0];
                }
                else if (arePointsNearest(closest_points[j].second, prev_finish_point, 3.0))
                {
                    temp_closest_points[j] = perspective_points[1];
                }
            }
        }
        if (i == number_pnts_to_cut - 1)
        {
            for (size_t j = 0; j < closest_points.size(); j++)
            {
                if (arePointsNearest(closest_points[j].second, finish_point, 3.0))
                {
                    temp_closest_points[j] = perspective_points[2];
                }
                else if (arePointsNearest(closest_points[j].second, start_point, 3.0))
                {
                    temp_closest_points[j] = perspective_points[3];
                }
            }
        }
        start_cut += dist;

        curved_parts_points.push_back(prev_start_point);
        curved_parts_points.push_back(prev_finish_point);
        curved_parts_points.push_back(finish_point);
        curved_parts_points.push_back(start_point);

        Point2f center_point = intersectionLines(curved_parts_points[0], curved_parts_points[2],
                                                 curved_parts_points[1], curved_parts_points[3]);
        if (cvIsNaN(center_point.x) || cvIsNaN(center_point.y))
            return false;

        vector<Point2f> pts = curved_parts_points;
        pts.push_back(center_point);

        Mat H = findHomography(pts, perspective_points);
        Mat temp_intermediate(temporary_size, CV_8UC1);
        warpPerspective(test_mask, temp_intermediate, H, temporary_size, INTER_NEAREST);
        perspective_result += temp_intermediate;

    }
    Mat white_mask = Mat(temporary_size, CV_8UC1, Scalar(255));
    Mat inversion = white_mask - perspective_result;
    Mat temp_result;

    original_curved_points = temp_closest_points;

    Point2f original_center_point = intersectionLines(original_curved_points[0], original_curved_points[2],
                                                      original_curved_points[1], original_curved_points[3]);

    original_curved_points.push_back(original_center_point);

    for (size_t i = 0; i < original_curved_points.size(); i++)
    {
        if (cvIsNaN(original_curved_points[i].x) || cvIsNaN(original_curved_points[i].y))
            return false;
    }

    vector<Point2f> perspective_straight_points;
    perspective_straight_points.push_back(Point2f(0.f, 0.f));
    perspective_straight_points.push_back(Point2f(perspective_curved_size, 0.f));

    perspective_straight_points.push_back(Point2f(perspective_curved_size, perspective_curved_size));
    perspective_straight_points.push_back(Point2f(0.f, perspective_curved_size));

    perspective_straight_points.push_back(Point2f(perspective_curved_size * 0.5f, perspective_curved_size * 0.5f));

    Mat H = findHomography(original_curved_points, perspective_straight_points);
    warpPerspective(inversion, temp_result, H, temporary_size, INTER_NEAREST, BORDER_REPLICATE);

    no_border_intermediate = temp_result(Range(1, temp_result.rows), Range(1, temp_result.cols));
    const int border = cvRound(0.1 * perspective_curved_size);
    const int borderType = BORDER_CONSTANT;
    copyMakeBorder(no_border_intermediate, curved_to_straight, border, border, border, border, borderType, Scalar(255));
    intermediate = curved_to_straight;

    return true;
}

bool QRDecode::preparingCurvedQRCodes()
{
    vector<Point> result_integer_hull;
    getPointsInsideQRCode(original_points);
    if (qrcode_locations.size() == 0)
        return false;
    convexHull(qrcode_locations, result_integer_hull);
    if (!computeClosestPoints(result_integer_hull))
        return false;
    if (!computeSidesPoints(result_integer_hull))
        return false;
A
APrigarina 已提交
2214
    if (!findAndAddStablePoint())
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
        return false;
    if (!findIndexesCurvedSides())
        return false;
    if (findIncompleteIndexesCurvedSides())
    {
        if(!addPointsToSides())
            return false;
    }
    completeAndSortSides();
    if (!straightenQRCodeInParts())
        return false;

    return true;
}

bool QRDecode::updatePerspective()
{
    CV_TRACE_FUNCTION();
    const Point2f centerPt = intersectionLines(original_points[0], original_points[2],
                                               original_points[1], original_points[3]);
    if (cvIsNaN(centerPt.x) || cvIsNaN(centerPt.y))
        return false;

    const Size temporary_size(cvRound(test_perspective_size), cvRound(test_perspective_size));

    vector<Point2f> perspective_points;
    perspective_points.push_back(Point2f(0.f, 0.f));
    perspective_points.push_back(Point2f(test_perspective_size, 0.f));

    perspective_points.push_back(Point2f(test_perspective_size, test_perspective_size));
    perspective_points.push_back(Point2f(0.f, test_perspective_size));

    perspective_points.push_back(Point2f(test_perspective_size * 0.5f, test_perspective_size * 0.5f));

    vector<Point2f> pts = original_points;
    pts.push_back(centerPt);

    Mat H = findHomography(pts, perspective_points);
    Mat bin_original;
    adaptiveThreshold(original, bin_original, 255, ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY, 83, 2);
    Mat temp_intermediate;
    warpPerspective(bin_original, temp_intermediate, H, temporary_size, INTER_NEAREST);
    no_border_intermediate = temp_intermediate(Range(1, temp_intermediate.rows), Range(1, temp_intermediate.cols));

    const int border = cvRound(0.1 * test_perspective_size);
    const int borderType = BORDER_CONSTANT;
    copyMakeBorder(no_border_intermediate, intermediate, border, border, border, border, borderType, Scalar(255));
    return true;
}

inline Point computeOffset(const vector<Point>& v)
{
    // compute the width/height of convex hull
    Rect areaBox = boundingRect(v);

    // compute the good offset
    // the box is consisted by 7 steps
    // to pick the middle of the stripe, it needs to be 1/14 of the size
    const int cStep = 7 * 2;
    Point offset = Point(areaBox.width, areaBox.height);
    offset /= cStep;
    return offset;
}

bool QRDecode::versionDefinition()
{
    CV_TRACE_FUNCTION();
    LineIterator line_iter(intermediate, Point2f(0, 0), Point2f(test_perspective_size, test_perspective_size));
    Point black_point = Point(0, 0);
    for(int j = 0; j < line_iter.count; j++, ++line_iter)
    {
        const uint8_t value = intermediate.at<uint8_t>(line_iter.pos());
        if (value == 0)
        {
            black_point = line_iter.pos();
            break;
        }
    }

    Mat mask = Mat::zeros(intermediate.rows + 2, intermediate.cols + 2, CV_8UC1);
    floodFill(intermediate, mask, black_point, 255, 0, Scalar(), Scalar(), FLOODFILL_MASK_ONLY);

    vector<Point> locations, non_zero_elem;
    Mat mask_roi = mask(Range(1, intermediate.rows - 1), Range(1, intermediate.cols - 1));
    findNonZero(mask_roi, non_zero_elem);
    convexHull(non_zero_elem, locations);
    Point offset = computeOffset(locations);

    Point temp_remote = locations[0], remote_point;
    const Point delta_diff = offset;
    for (size_t i = 0; i < locations.size(); i++)
    {
        if (norm(black_point - temp_remote) <= norm(black_point - locations[i]))
        {
            const uint8_t value = intermediate.at<uint8_t>(temp_remote - delta_diff);
            temp_remote = locations[i];
            if (value == 0) { remote_point = temp_remote - delta_diff; }
            else { remote_point = temp_remote - (delta_diff / 2); }
        }
    }

    size_t transition_x = 0 , transition_y = 0;

    uint8_t future_pixel = 255;
    const uint8_t *intermediate_row = intermediate.ptr<uint8_t>(remote_point.y);
    for(int i = remote_point.x; i < intermediate.cols; i++)
    {
        if (intermediate_row[i] == future_pixel)
        {
            future_pixel = static_cast<uint8_t>(~future_pixel);
            transition_x++;
        }
    }

    future_pixel = 255;
    for(int j = remote_point.y; j < intermediate.rows; j++)
    {
        const uint8_t value = intermediate.at<uint8_t>(Point(j, remote_point.x));
        if (value == future_pixel)
        {
            future_pixel = static_cast<uint8_t>(~future_pixel);
            transition_y++;
        }
    }
    version = saturate_cast<uint8_t>((std::min(transition_x, transition_y) - 1) * 0.25 - 1);
    if ( !(  0 < version && version <= 40 ) ) { return false; }
    version_size = 21 + (version - 1) * 4;
    return true;
}

bool QRDecode::samplingForVersion()
{
    CV_TRACE_FUNCTION();
    const double multiplyingFactor = (version < 3)  ? 1 :
                                     (version == 3) ? 1.5 :
                                     version * (version + 1);
    const Size newFactorSize(
                  cvRound(no_border_intermediate.size().width  * multiplyingFactor),
                  cvRound(no_border_intermediate.size().height * multiplyingFactor));
    Mat postIntermediate(newFactorSize, CV_8UC1);
    resize(no_border_intermediate, postIntermediate, newFactorSize, 0, 0, INTER_AREA);

    const int delta_rows = cvRound((postIntermediate.rows * 1.0) / version_size);
    const int delta_cols = cvRound((postIntermediate.cols * 1.0) / version_size);

    vector<double> listFrequencyElem;
    for (int r = 0; r < postIntermediate.rows; r += delta_rows)
    {
        for (int c = 0; c < postIntermediate.cols; c += delta_cols)
        {
            Mat tile = postIntermediate(
                           Range(r, min(r + delta_rows, postIntermediate.rows)),
                           Range(c, min(c + delta_cols, postIntermediate.cols)));
            const double frequencyElem = (countNonZero(tile) * 1.0) / tile.total();
            listFrequencyElem.push_back(frequencyElem);
        }
    }

    double dispersionEFE = std::numeric_limits<double>::max();
    double experimentalFrequencyElem = 0;
    for (double expVal = 0; expVal < 1; expVal+=0.001)
    {
        double testDispersionEFE = 0.0;
        for (size_t i = 0; i < listFrequencyElem.size(); i++)
        {
            testDispersionEFE += (listFrequencyElem[i] - expVal) *
                                 (listFrequencyElem[i] - expVal);
        }
        testDispersionEFE /= (listFrequencyElem.size() - 1);
        if (dispersionEFE > testDispersionEFE)
        {
            dispersionEFE = testDispersionEFE;
            experimentalFrequencyElem = expVal;
        }
    }

    straight = Mat(Size(version_size, version_size), CV_8UC1, Scalar(0));
    for (int r = 0; r < version_size * version_size; r++)
    {
        int i   = r / straight.cols;
        int j   = r % straight.cols;
        straight.ptr<uint8_t>(i)[j] = (listFrequencyElem[r] < experimentalFrequencyElem) ? 0 : 255;
    }
    return true;
}

bool QRDecode::decodingProcess()
{
#ifdef HAVE_QUIRC
    if (straight.empty()) { return false; }

    quirc_code qr_code;
    memset(&qr_code, 0, sizeof(qr_code));

    qr_code.size = straight.size().width;
    for (int x = 0; x < qr_code.size; x++)
    {
        for (int y = 0; y < qr_code.size; y++)
        {
            int position = y * qr_code.size + x;
            qr_code.cell_bitmap[position >> 3]
                |= straight.ptr<uint8_t>(y)[x] ? 0 : (1 << (position & 7));
        }
    }

    quirc_data qr_code_data;
    quirc_decode_error_t errorCode = quirc_decode(&qr_code, &qr_code_data);
    if (errorCode != 0) { return false; }

    for (int i = 0; i < qr_code_data.payload_len; i++)
    {
        result_info += qr_code_data.payload[i];
    }
    return true;
#else
    return false;
#endif

}

bool QRDecode::straightDecodingProcess()
{
#ifdef HAVE_QUIRC
    if (!updatePerspective())  { return false; }
    if (!versionDefinition())  { return false; }
    if (!samplingForVersion()) { return false; }
    if (!decodingProcess())    { return false; }
    return true;
#else
    std::cout << "Library QUIRC is not linked. No decoding is performed. Take it to the OpenCV repository." << std::endl;
    return false;
#endif
}

bool QRDecode::curvedDecodingProcess()
{
#ifdef HAVE_QUIRC
    if (!preparingCurvedQRCodes()) { return false; }
    if (!versionDefinition())  { return false; }
    if (!samplingForVersion()) { return false; }
    if (!decodingProcess())    { return false; }
    return true;
#else
    std::cout << "Library QUIRC is not linked. No decoding is performed. Take it to the OpenCV repository." << std::endl;
A
Alexander Nesterov 已提交
2459 2460 2461 2462
    return false;
#endif
}

2463 2464 2465 2466 2467 2468 2469
bool decodeQRCode(InputArray in, InputArray points, std::string &decoded_info, OutputArray straight_qrcode)
{
    QRCodeDetector qrcode;
    decoded_info = qrcode.decode(in, points, straight_qrcode);
    return !decoded_info.empty();
}

2470 2471 2472 2473 2474 2475 2476
bool decodeCurvedQRCode(InputArray in, InputArray points, std::string &decoded_info, OutputArray straight_qrcode)
{
    QRCodeDetector qrcode;
    decoded_info = qrcode.decodeCurved(in, points, straight_qrcode);
    return !decoded_info.empty();
}

2477 2478
cv::String QRCodeDetector::decode(InputArray in, InputArray points,
                                  OutputArray straight_qrcode)
A
Alexander Nesterov 已提交
2479
{
2480 2481 2482
    Mat inarr;
    if (!checkQRInputImage(in, inarr))
        return std::string();
A
Alexander Nesterov 已提交
2483 2484 2485 2486

    vector<Point2f> src_points;
    points.copyTo(src_points);
    CV_Assert(src_points.size() == 4);
2487
    CV_CheckGT(contourArea(src_points), 0.0, "Invalid QR code source points");
A
Alexander Nesterov 已提交
2488 2489 2490

    QRDecode qrdec;
    qrdec.init(inarr, src_points);
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
    bool ok = qrdec.straightDecodingProcess();

    std::string decoded_info = qrdec.getDecodeInformation();

    if (ok && straight_qrcode.needed())
    {
        qrdec.getStraightBarcode().convertTo(straight_qrcode,
                                             straight_qrcode.fixedType() ?
                                             straight_qrcode.type() : CV_32FC2);
    }

    return ok ? decoded_info : std::string();
}

cv::String QRCodeDetector::decodeCurved(InputArray in, InputArray points,
                                        OutputArray straight_qrcode)
{
    Mat inarr;
    if (!checkQRInputImage(in, inarr))
        return std::string();

    vector<Point2f> src_points;
    points.copyTo(src_points);
    CV_Assert(src_points.size() == 4);
    CV_CheckGT(contourArea(src_points), 0.0, "Invalid QR code source points");

    QRDecode qrdec;
    qrdec.init(inarr, src_points);
    bool ok = qrdec.curvedDecodingProcess();
A
Alexander Nesterov 已提交
2520

2521
    std::string decoded_info = qrdec.getDecodeInformation();
A
Alexander Nesterov 已提交
2522

2523
    if (ok && straight_qrcode.needed())
A
Alexander Nesterov 已提交
2524 2525 2526 2527 2528 2529
    {
        qrdec.getStraightBarcode().convertTo(straight_qrcode,
                                             straight_qrcode.fixedType() ?
                                             straight_qrcode.type() : CV_32FC2);
    }

2530
    return ok ? decoded_info : std::string();
A
Alexander Nesterov 已提交
2531 2532
}

2533 2534 2535 2536
cv::String QRCodeDetector::detectAndDecode(InputArray in,
                                           OutputArray points_,
                                           OutputArray straight_qrcode)
{
2537 2538
    Mat inarr;
    if (!checkQRInputImage(in, inarr))
2539
    {
2540 2541
        points_.release();
        return std::string();
2542 2543 2544 2545
    }

    vector<Point2f> points;
    bool ok = detect(inarr, points);
2546
    if (!ok)
2547
    {
2548 2549
        points_.release();
        return std::string();
2550
    }
2551 2552
    updatePointsResult(points_, points);
    std::string decoded_info = decode(inarr, points, straight_qrcode);
2553 2554 2555
    return decoded_info;
}

2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
cv::String QRCodeDetector::detectAndDecodeCurved(InputArray in,
                                                 OutputArray points_,
                                                 OutputArray straight_qrcode)
{
    Mat inarr;
    if (!checkQRInputImage(in, inarr))
    {
        points_.release();
        return std::string();
    }

    vector<Point2f> points;
    bool ok = detect(inarr, points);
    if (!ok)
    {
        points_.release();
        return std::string();
    }
    updatePointsResult(points_, points);
    std::string decoded_info = decodeCurved(inarr, points, straight_qrcode);
    return decoded_info;
}

2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
class QRDetectMulti : public QRDetect
{
public:
    void init(const Mat& src, double eps_vertical_ = 0.2, double eps_horizontal_ = 0.1);
    bool localization();
    bool computeTransformationPoints(const size_t cur_ind);
    vector< vector < Point2f > > getTransformationPoints() { return transformation_points;}

protected:
    int findNumberLocalizationPoints(vector<Point2f>& tmp_localization_points);
    void findQRCodeContours(vector<Point2f>& tmp_localization_points, vector< vector< Point2f > >& true_points_group, const int& num_qrcodes);
    bool checkSets(vector<vector<Point2f> >& true_points_group, vector<vector<Point2f> >& true_points_group_copy,
                   vector<Point2f>& tmp_localization_points);
    void deleteUsedPoints(vector<vector<Point2f> >& true_points_group, vector<vector<Point2f> >& loc,
                          vector<Point2f>& tmp_localization_points);
    void fixationPoints(vector<Point2f> &local_point);
2595
    bool checkPoints(vector<Point2f> quadrangle_points);
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
    bool checkPointsInsideQuadrangle(const vector<Point2f>& quadrangle_points);
    bool checkPointsInsideTriangle(const vector<Point2f>& triangle_points);

    Mat bin_barcode_fullsize, bin_barcode_temp;
    vector<Point2f> not_resized_loc_points;
    vector<Point2f> resized_loc_points;
    vector< vector< Point2f > > localization_points, transformation_points;
    struct compareDistanse_y
    {
        bool operator()(const Point2f& a, const Point2f& b) const
        {
            return a.y < b.y;
        }
    };
    struct compareSquare
    {
        const vector<Point2f>& points;
        compareSquare(const vector<Point2f>& points_) : points(points_) {}
        bool operator()(const Vec3i& a, const Vec3i& b) const;
    };
    Mat original;
    class ParallelSearch : public ParallelLoopBody
    {
    public:
        ParallelSearch(vector< vector< Point2f > >& true_points_group_,
R
rayonnant14 已提交
2621
                vector< vector< Point2f > >& loc_, int iter_, vector<int>& end_,
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
                vector< vector< Vec3i > >& all_points_,
                QRDetectMulti& cl_)
        :
            true_points_group(true_points_group_),
            loc(loc_),
            iter(iter_),
            end(end_),
            all_points(all_points_),
            cl(cl_)
        {
        }
        void operator()(const Range& range) const CV_OVERRIDE;
        vector< vector< Point2f > >& true_points_group;
        vector< vector< Point2f > >& loc;
        int iter;
R
rayonnant14 已提交
2637
        vector<int>& end;
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
        vector< vector< Vec3i > >& all_points;
        QRDetectMulti& cl;
    };
};

void QRDetectMulti::ParallelSearch::operator()(const Range& range) const
{
    for (int s = range.start; s < range.end; s++)
    {
        bool flag = false;
        for (int r = iter; r < end[s]; r++)
        {
            if (flag)
                break;

            size_t x = iter + s;
            size_t k = r - iter;
            vector<Point2f> triangle;

            for (int l = 0; l < 3; l++)
            {
                triangle.push_back(true_points_group[s][all_points[s][k][l]]);
            }

            if (cl.checkPointsInsideTriangle(triangle))
            {
                bool flag_for_break = false;
                cl.fixationPoints(triangle);
                if (triangle.size() == 3)
                {
                    cl.localization_points[x] = triangle;
                    if (cl.purpose == cl.SHRINKING)
                    {

                        for (size_t j = 0; j < 3; j++)
                        {
                            cl.localization_points[x][j] *= cl.coeff_expansion;
                        }
                    }
                    else if (cl.purpose == cl.ZOOMING)
                    {
                        for (size_t j = 0; j < 3; j++)
                        {
                            cl.localization_points[x][j] /= cl.coeff_expansion;
                        }
                    }
                    for (size_t i = 0; i < 3; i++)
                    {
                        for (size_t j = i + 1; j < 3; j++)
                        {
                            if (norm(cl.localization_points[x][i] - cl.localization_points[x][j]) < 10)
                            {
                                cl.localization_points[x].clear();
                                flag_for_break = true;
                                break;
                            }
                        }
                        if (flag_for_break)
                            break;
                    }
                    if ((!flag_for_break)
                            && (cl.localization_points[x].size() == 3)
                            && (cl.computeTransformationPoints(x))
                            && (cl.checkPointsInsideQuadrangle(cl.transformation_points[x]))
                            && (cl.checkPoints(cl.transformation_points[x])))
                    {
                        for (int l = 0; l < 3; l++)
                        {
                            loc[s][all_points[s][k][l]].x = -1;
                        }

                        flag = true;
                        break;
                    }
                }
                if (flag)
                {
                    break;
                }
                else
                {
                    cl.transformation_points[x].clear();
                    cl.localization_points[x].clear();
                }
            }
        }
    }
}

void QRDetectMulti::init(const Mat& src, double eps_vertical_, double eps_horizontal_)
{
    CV_TRACE_FUNCTION();

    CV_Assert(!src.empty());
    const double min_side = std::min(src.size().width, src.size().height);
    if (min_side < 512.0)
    {
        purpose = ZOOMING;
        coeff_expansion = 512.0 / min_side;
        const int width  = cvRound(src.size().width  * coeff_expansion);
        const int height = cvRound(src.size().height  * coeff_expansion);
        Size new_size(width, height);
        resize(src, barcode, new_size, 0, 0, INTER_LINEAR);
    }
    else if (min_side > 512.0)
    {
        purpose = SHRINKING;
        coeff_expansion = min_side / 512.0;
        const int width  = cvRound(src.size().width  / coeff_expansion);
        const int height = cvRound(src.size().height  / coeff_expansion);
        Size new_size(width, height);
        resize(src, barcode, new_size, 0, 0, INTER_AREA);
    }
    else
    {
        purpose = UNCHANGED;
        coeff_expansion = 1.0;
        barcode = src.clone();
    }

    eps_vertical   = eps_vertical_;
    eps_horizontal = eps_horizontal_;
    adaptiveThreshold(barcode, bin_barcode, 255, ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY, 83, 2);
    adaptiveThreshold(src, bin_barcode_fullsize, 255, ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY, 83, 2);
}

void QRDetectMulti::fixationPoints(vector<Point2f> &local_point)
{
    CV_TRACE_FUNCTION();

    Point2f v0(local_point[1] - local_point[2]);
    Point2f v1(local_point[0] - local_point[2]);
    Point2f v2(local_point[1] - local_point[0]);

    double cos_angles[3], norm_triangl[3];
    norm_triangl[0] = norm(v0);
    norm_triangl[1] = norm(v1);
    norm_triangl[2] = norm(v2);

    cos_angles[0] = v2.dot(-v1) / (norm_triangl[1] * norm_triangl[2]);
    cos_angles[1] = v2.dot(v0) / (norm_triangl[0] * norm_triangl[2]);
    cos_angles[2] = v1.dot(v0) / (norm_triangl[0] * norm_triangl[1]);

    const double angle_barrier = 0.85;
    if (fabs(cos_angles[0]) > angle_barrier || fabs(cos_angles[1]) > angle_barrier || fabs(cos_angles[2]) > angle_barrier)
    {
        local_point.clear();
        return;
    }

    size_t i_min_cos =
            (cos_angles[0] < cos_angles[1] && cos_angles[0] < cos_angles[2]) ? 0 :
                    (cos_angles[1] < cos_angles[0] && cos_angles[1] < cos_angles[2]) ? 1 : 2;

    size_t index_max = 0;
    double max_area = std::numeric_limits<double>::min();
    for (size_t i = 0; i < local_point.size(); i++)
    {
        const size_t current_index = i % 3;
        const size_t left_index  = (i + 1) % 3;
        const size_t right_index = (i + 2) % 3;

        const Point2f current_point(local_point[current_index]);
        const Point2f left_point(local_point[left_index]);
        const Point2f right_point(local_point[right_index]);
        const Point2f central_point(intersectionLines(
                current_point,
                Point2f(static_cast<float>((local_point[left_index].x + local_point[right_index].x) * 0.5),
                        static_cast<float>((local_point[left_index].y + local_point[right_index].y) * 0.5)),
                Point2f(0, static_cast<float>(bin_barcode_temp.rows - 1)),
                Point2f(static_cast<float>(bin_barcode_temp.cols - 1),
                        static_cast<float>(bin_barcode_temp.rows - 1))));

        vector<Point2f> list_area_pnt;
        list_area_pnt.push_back(current_point);

        vector<LineIterator> list_line_iter;
        list_line_iter.push_back(LineIterator(bin_barcode_temp, current_point, left_point));
        list_line_iter.push_back(LineIterator(bin_barcode_temp, current_point, central_point));
        list_line_iter.push_back(LineIterator(bin_barcode_temp, current_point, right_point));

        for (size_t k = 0; k < list_line_iter.size(); k++)
        {
            LineIterator& li = list_line_iter[k];
            uint8_t future_pixel = 255, count_index = 0;
            for (int j = 0; j < li.count; j++, ++li)
            {
                Point p = li.pos();
                if (p.x >= bin_barcode_temp.cols ||
                    p.y >= bin_barcode_temp.rows)
                {
                    break;
                }

                const uint8_t value = bin_barcode_temp.at<uint8_t>(p);
                if (value == future_pixel)
                {
                    future_pixel = static_cast<uint8_t>(~future_pixel);
                    count_index++;
                    if (count_index == 3)
                    {
                        list_area_pnt.push_back(p);
                        break;
                    }
                }
            }
        }

        const double temp_check_area = contourArea(list_area_pnt);
        if (temp_check_area > max_area)
        {
            index_max = current_index;
            max_area = temp_check_area;
        }

    }
    if (index_max == i_min_cos)
    {
        std::swap(local_point[0], local_point[index_max]);
    }
    else
    {
        local_point.clear();
        return;
    }
2863

2864 2865 2866 2867 2868 2869
    const Point2f rpt = local_point[0], bpt = local_point[1], gpt = local_point[2];
    Matx22f m(rpt.x - bpt.x, rpt.y - bpt.y, gpt.x - rpt.x, gpt.y - rpt.y);
    if (determinant(m) > 0)
    {
        std::swap(local_point[1], local_point[2]);
    }
N
Nesterov Alexander 已提交
2870
}
2871

2872
class BWCounter
2873
{
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
    size_t white;
    size_t black;
public:
    BWCounter(size_t b = 0, size_t w = 0) : white(w), black(b) {}
    BWCounter& operator+=(const BWCounter& other) { black += other.black; white += other.white; return *this; }
    void count1(uchar pixel) { if (pixel == 255) white++; else if (pixel == 0) black++; }
    double getBWFraction() const { return white == 0 ? std::numeric_limits<double>::infinity() : double(black) / double(white); }
    static BWCounter checkOnePair(const Point2f& tl, const Point2f& tr, const Point2f& bl, const Point2f& br, const Mat& img)
    {
        BWCounter res;
        LineIterator li1(img, tl, tr), li2(img, bl, br);
        for (int i = 0; i < li1.count && i < li2.count; i++, li1++, li2++)
2886
        {
2887 2888 2889
            LineIterator it(img, li1.pos(), li2.pos());
            for (int r = 0; r < it.count; r++, it++)
                res.count1(img.at<uchar>(it.pos()));
2890
        }
2891
        return res;
2892
    }
2893
};
2894

2895 2896 2897
bool QRDetectMulti::checkPoints(vector<Point2f> quadrangle)
{
    if (quadrangle.size() != 4)
2898
        return false;
2899 2900 2901 2902 2903 2904
    std::sort(quadrangle.begin(), quadrangle.end(), compareDistanse_y());
    BWCounter s;
    s += BWCounter::checkOnePair(quadrangle[1], quadrangle[0], quadrangle[2], quadrangle[0], bin_barcode);
    s += BWCounter::checkOnePair(quadrangle[1], quadrangle[3], quadrangle[2], quadrangle[3], bin_barcode);
    const double frac = s.getBWFraction();
    return frac > 0.76 && frac < 1.24;
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
}

bool QRDetectMulti::checkPointsInsideQuadrangle(const vector<Point2f>& quadrangle_points)
{
    if (quadrangle_points.size() != 4)
        return false;

    int count = 0;
    for (size_t i = 0; i < not_resized_loc_points.size(); i++)
    {
        if (pointPolygonTest(quadrangle_points, not_resized_loc_points[i], true) > 0)
        {
            count++;
        }
    }
    if (count == 3)
        return true;
    else
        return false;
}

bool QRDetectMulti::checkPointsInsideTriangle(const vector<Point2f>& triangle_points)
{
    if (triangle_points.size() != 3)
        return false;
    double eps = 3;
    for (size_t i = 0; i < resized_loc_points.size(); i++)
    {
        if (pointPolygonTest( triangle_points, resized_loc_points[i], true ) > 0)
        {
            if ((abs(resized_loc_points[i].x - triangle_points[0].x) > eps)
                    && (abs(resized_loc_points[i].x - triangle_points[1].x) > eps)
                    && (abs(resized_loc_points[i].x - triangle_points[2].x) > eps))
            {
                return false;
            }
        }
    }
    return true;
}

bool QRDetectMulti::compareSquare::operator()(const Vec3i& a, const Vec3i& b) const
{
    Point2f a0 = points[a[0]];
    Point2f a1 = points[a[1]];
    Point2f a2 = points[a[2]];
    Point2f b0 = points[b[0]];
    Point2f b1 = points[b[1]];
    Point2f b2 = points[b[2]];
    return fabs((a1.x - a0.x) * (a2.y - a0.y) - (a2.x - a0.x) * (a1.y - a0.y)) <
           fabs((b1.x - b0.x) * (b2.y - b0.y) - (b2.x - b0.x) * (b1.y - b0.y));
}

int QRDetectMulti::findNumberLocalizationPoints(vector<Point2f>& tmp_localization_points)
{
    size_t number_possible_purpose = 1;
    if (purpose == SHRINKING)
        number_possible_purpose = 2;
    Mat tmp_shrinking = bin_barcode;
    int tmp_num_points = 0;
    int num_points = -1;
    for (eps_horizontal = 0.1; eps_horizontal < 0.4; eps_horizontal += 0.1)
    {
        tmp_num_points = 0;
        num_points = -1;
        if (purpose == SHRINKING)
            number_possible_purpose = 2;
        else
            number_possible_purpose = 1;
        for (size_t k = 0; k < number_possible_purpose; k++)
        {
            if (k == 1)
                bin_barcode = bin_barcode_fullsize;
            vector<Vec3d> list_lines_x = searchHorizontalLines();
            if (list_lines_x.empty())
            {
                if (k == 0)
                {
                    k = 1;
                    bin_barcode = bin_barcode_fullsize;
                    list_lines_x = searchHorizontalLines();
                    if (list_lines_x.empty())
                        break;
                }
                else
                    break;
            }
            vector<Point2f> list_lines_y = extractVerticalLines(list_lines_x, eps_horizontal);
            if (list_lines_y.size() < 3)
            {
                if (k == 0)
                {
                    k = 1;
                    bin_barcode = bin_barcode_fullsize;
                    list_lines_x = searchHorizontalLines();
                    if (list_lines_x.empty())
                        break;
                    list_lines_y = extractVerticalLines(list_lines_x, eps_horizontal);
                    if (list_lines_y.size() < 3)
                        break;
                }
                else
                    break;
            }
            vector<int> index_list_lines_y;
            for (size_t i = 0; i < list_lines_y.size(); i++)
                index_list_lines_y.push_back(-1);
            num_points = 0;
            for (size_t i = 0; i < list_lines_y.size() - 1; i++)
            {
                for (size_t j = i; j < list_lines_y.size(); j++ )
                {

                    double points_distance = norm(list_lines_y[i] - list_lines_y[j]);
                    if (points_distance <= 10)
                    {
                        if ((index_list_lines_y[i] == -1) && (index_list_lines_y[j] == -1))
                        {
                            index_list_lines_y[i] = num_points;
                            index_list_lines_y[j] = num_points;
                            num_points++;
                        }
                        else if (index_list_lines_y[i] != -1)
                            index_list_lines_y[j] = index_list_lines_y[i];
                        else if (index_list_lines_y[j] != -1)
                            index_list_lines_y[i] = index_list_lines_y[j];
                    }
                }
            }
            for (size_t i = 0; i < index_list_lines_y.size(); i++)
            {
                if (index_list_lines_y[i] == -1)
                {
                    index_list_lines_y[i] = num_points;
                    num_points++;
                }
            }
            if ((tmp_num_points < num_points) && (k == 1))
            {
                purpose = UNCHANGED;
                tmp_num_points = num_points;
                bin_barcode = bin_barcode_fullsize;
                coeff_expansion = 1.0;
            }
            if ((tmp_num_points < num_points) && (k == 0))
            {
                tmp_num_points = num_points;
            }
        }

        if ((tmp_num_points < 3) && (tmp_num_points >= 1))
        {
            const double min_side = std::min(bin_barcode_fullsize.size().width, bin_barcode_fullsize.size().height);
            if (min_side > 512)
            {
                bin_barcode = tmp_shrinking;
                purpose = SHRINKING;
                coeff_expansion = min_side / 512.0;
            }
            if (min_side < 512)
            {
                bin_barcode = tmp_shrinking;
                purpose = ZOOMING;
                coeff_expansion = 512 / min_side;
            }
        }
        else
            break;
    }
    if (purpose == SHRINKING)
        bin_barcode = tmp_shrinking;
    num_points = tmp_num_points;
    vector<Vec3d> list_lines_x = searchHorizontalLines();
    if (list_lines_x.empty())
        return num_points;
    vector<Point2f> list_lines_y = extractVerticalLines(list_lines_x, eps_horizontal);
    if (list_lines_y.size() < 3)
        return num_points;
    if (num_points < 3)
        return num_points;

    Mat labels;
    kmeans(list_lines_y, num_points, labels,
            TermCriteria( TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1),
            num_points, KMEANS_PP_CENTERS, tmp_localization_points);
    bin_barcode_temp = bin_barcode.clone();
    if (purpose == SHRINKING)
    {
        const int width  = cvRound(bin_barcode.size().width  * coeff_expansion);
        const int height = cvRound(bin_barcode.size().height * coeff_expansion);
        Size new_size(width, height);
        Mat intermediate;
        resize(bin_barcode, intermediate, new_size, 0, 0, INTER_LINEAR);
        bin_barcode = intermediate.clone();
    }
    else if (purpose == ZOOMING)
    {
        const int width  = cvRound(bin_barcode.size().width  / coeff_expansion);
        const int height = cvRound(bin_barcode.size().height / coeff_expansion);
        Size new_size(width, height);
        Mat intermediate;
        resize(bin_barcode, intermediate, new_size, 0, 0, INTER_LINEAR);
        bin_barcode = intermediate.clone();
    }
    else
    {
        bin_barcode = bin_barcode_fullsize.clone();
    }
    return num_points;
}

void QRDetectMulti::findQRCodeContours(vector<Point2f>& tmp_localization_points,
                                      vector< vector< Point2f > >& true_points_group, const int& num_qrcodes)
{
    Mat gray, blur_image, threshold_output;
    Mat bar = barcode;
    const int width  = cvRound(bin_barcode.size().width);
    const int height = cvRound(bin_barcode.size().height);
    Size new_size(width, height);
    resize(bar, bar, new_size, 0, 0, INTER_LINEAR);
    blur(bar, blur_image, Size(3, 3));
    threshold(blur_image, threshold_output, 50, 255, THRESH_BINARY);

    vector< vector< Point > > contours;
    vector<Vec4i> hierarchy;
    findContours(threshold_output, contours, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0));
    vector<Point2f> all_contours_points;
    for (size_t i = 0; i < contours.size(); i++)
    {
        for (size_t j = 0; j < contours[i].size(); j++)
        {
            all_contours_points.push_back(contours[i][j]);
        }
    }
    Mat qrcode_labels;
    vector<Point2f> clustered_localization_points;
    int count_contours = num_qrcodes;
    if (all_contours_points.size() < size_t(num_qrcodes))
        count_contours = (int)all_contours_points.size();
    kmeans(all_contours_points, count_contours, qrcode_labels,
          TermCriteria( TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1),
          count_contours, KMEANS_PP_CENTERS, clustered_localization_points);

    vector< vector< Point2f > > qrcode_clusters(count_contours);
    for (int i = 0; i < count_contours; i++)
        for (int j = 0; j < int(all_contours_points.size()); j++)
        {
            if (qrcode_labels.at<int>(j, 0) == i)
            {
                qrcode_clusters[i].push_back(all_contours_points[j]);
            }
        }
    vector< vector< Point2f > > hull(count_contours);
    for (size_t i = 0; i < qrcode_clusters.size(); i++)
        convexHull(Mat(qrcode_clusters[i]), hull[i]);
    not_resized_loc_points = tmp_localization_points;
    resized_loc_points = tmp_localization_points;
    if (purpose == SHRINKING)
    {
        for (size_t j = 0; j < not_resized_loc_points.size(); j++)
        {
            not_resized_loc_points[j] *= coeff_expansion;
        }
    }
    else if (purpose == ZOOMING)
    {
        for (size_t j = 0; j < not_resized_loc_points.size(); j++)
        {
            not_resized_loc_points[j] /= coeff_expansion;
        }
    }

    true_points_group.resize(hull.size());

    for (size_t j = 0; j < hull.size(); j++)
    {
        for (size_t i = 0; i < not_resized_loc_points.size(); i++)
        {
            if (pointPolygonTest(hull[j], not_resized_loc_points[i], true) > 0)
            {
                true_points_group[j].push_back(tmp_localization_points[i]);
                tmp_localization_points[i].x = -1;
            }

        }
    }
    vector<Point2f> copy;
    for (size_t j = 0; j < tmp_localization_points.size(); j++)
    {
       if (tmp_localization_points[j].x != -1)
            copy.push_back(tmp_localization_points[j]);
    }
    tmp_localization_points = copy;
}

bool QRDetectMulti::checkSets(vector<vector<Point2f> >& true_points_group, vector<vector<Point2f> >& true_points_group_copy,
                              vector<Point2f>& tmp_localization_points)
{
    for (size_t i = 0; i < true_points_group.size(); i++)
    {
        if (true_points_group[i].size() < 3)
        {
            for (size_t j = 0; j < true_points_group[i].size(); j++)
                tmp_localization_points.push_back(true_points_group[i][j]);
            true_points_group[i].clear();
        }
    }
    vector< vector< Point2f > > temp_for_copy;
    for (size_t i = 0; i < true_points_group.size(); i++)
    {
        if (true_points_group[i].size() != 0)
            temp_for_copy.push_back(true_points_group[i]);
    }
    true_points_group = temp_for_copy;
    if (true_points_group.size() == 0)
    {
        true_points_group.push_back(tmp_localization_points);
        tmp_localization_points.clear();
    }
    if (true_points_group.size() == 0)
        return false;
    if (true_points_group[0].size() < 3)
        return false;


R
rayonnant14 已提交
3230
    vector<int> set_size(true_points_group.size());
3231 3232
    for (size_t i = 0; i < true_points_group.size(); i++)
    {
3233
        set_size[i] = int( (true_points_group[i].size() - 2 ) * (true_points_group[i].size() - 1) * true_points_group[i].size()) / 6;
3234
    }
3235

3236 3237 3238 3239 3240 3241 3242
    vector< vector< Vec3i > > all_points(true_points_group.size());
    for (size_t i = 0; i < true_points_group.size(); i++)
        all_points[i].resize(set_size[i]);
    int cur_cluster = 0;
    for (size_t i = 0; i < true_points_group.size(); i++)
    {
        cur_cluster = 0;
3243 3244 3245 3246 3247 3248 3249 3250 3251
        for (size_t l = 0; l < true_points_group[i].size() - 2; l++)
            for (size_t j = l + 1; j < true_points_group[i].size() - 1; j++)
                for (size_t k = j + 1; k < true_points_group[i].size(); k++)
                {
                    all_points[i][cur_cluster][0] = int(l);
                    all_points[i][cur_cluster][1] = int(j);
                    all_points[i][cur_cluster][2] = int(k);
                    cur_cluster++;
                }
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
    }

    for (size_t i = 0; i < true_points_group.size(); i++)
    {
        std::sort(all_points[i].begin(), all_points[i].end(), compareSquare(true_points_group[i]));
    }
    if (true_points_group.size() == 1)
    {
        int check_number = 35;
        if (set_size[0] > check_number)
            set_size[0] = check_number;
        all_points[0].resize(set_size[0]);
    }
    int iter = (int)localization_points.size();
    localization_points.resize(iter + true_points_group.size());
    transformation_points.resize(iter + true_points_group.size());

    true_points_group_copy = true_points_group;
R
rayonnant14 已提交
3270
    vector<int> end(true_points_group.size());
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
    for (size_t i = 0; i < true_points_group.size(); i++)
        end[i] = iter + set_size[i];
    ParallelSearch parallelSearch(true_points_group,
            true_points_group_copy, iter, end, all_points, *this);
    parallel_for_(Range(0, (int)true_points_group.size()), parallelSearch);

    return true;
}

void QRDetectMulti::deleteUsedPoints(vector<vector<Point2f> >& true_points_group, vector<vector<Point2f> >& loc,
                                     vector<Point2f>& tmp_localization_points)
{
    size_t iter = localization_points.size() - true_points_group.size() ;
    for (size_t s = 0; s < true_points_group.size(); s++)
    {
        if (localization_points[iter + s].empty())
            loc[s][0].x = -2;

        if (loc[s].size() == 3)
        {

            if ((true_points_group.size() > 1) || ((true_points_group.size() == 1) && (tmp_localization_points.size() != 0)) )
            {
                for (size_t j = 0; j < true_points_group[s].size(); j++)
                {
                    if (loc[s][j].x != -1)
                    {
                        loc[s][j].x = -1;
                        tmp_localization_points.push_back(true_points_group[s][j]);
                    }
                }
            }
        }
        vector<Point2f> for_copy;
        for (size_t j = 0; j < loc[s].size(); j++)
        {
            if ((loc[s][j].x != -1) && (loc[s][j].x != -2) )
            {
                for_copy.push_back(true_points_group[s][j]);
            }
            if ((loc[s][j].x == -2) && (true_points_group.size() > 1))
            {
                tmp_localization_points.push_back(true_points_group[s][j]);
            }
        }
        true_points_group[s] = for_copy;
    }

    vector< vector< Point2f > > for_copy_loc;
    vector< vector< Point2f > > for_copy_trans;


    for (size_t i = 0; i < localization_points.size(); i++)
    {
        if ((localization_points[i].size() == 3) && (transformation_points[i].size() == 4))
        {
            for_copy_loc.push_back(localization_points[i]);
            for_copy_trans.push_back(transformation_points[i]);
        }
    }
    localization_points = for_copy_loc;
    transformation_points = for_copy_trans;
}

bool QRDetectMulti::localization()
{
    CV_TRACE_FUNCTION();
    vector<Point2f> tmp_localization_points;
    int num_points = findNumberLocalizationPoints(tmp_localization_points);
    if (num_points < 3)
        return false;
    int num_qrcodes = divUp(num_points, 3);
    vector<vector<Point2f> > true_points_group;
    findQRCodeContours(tmp_localization_points, true_points_group, num_qrcodes);
    for (int q = 0; q < num_qrcodes; q++)
    {
       vector<vector<Point2f> > loc;
       size_t iter = localization_points.size();

       if (!checkSets(true_points_group, loc, tmp_localization_points))
            break;
       deleteUsedPoints(true_points_group, loc, tmp_localization_points);
       if ((localization_points.size() - iter) == 1)
           q--;
       if (((localization_points.size() - iter) == 0) && (tmp_localization_points.size() == 0) && (true_points_group.size() == 1) )
            break;
    }
    if ((transformation_points.size() == 0) || (localization_points.size() == 0))
       return false;
    return true;
}

bool QRDetectMulti::computeTransformationPoints(const size_t cur_ind)
{
    CV_TRACE_FUNCTION();

    if (localization_points[cur_ind].size() != 3)
    {
        return false;
    }

    vector<Point> locations, non_zero_elem[3], newHull;
    vector<Point2f> new_non_zero_elem[3];
    for (size_t i = 0; i < 3 ; i++)
    {
        Mat mask = Mat::zeros(bin_barcode.rows + 2, bin_barcode.cols + 2, CV_8UC1);
        uint8_t next_pixel, future_pixel = 255;
        int localization_point_x = cvRound(localization_points[cur_ind][i].x);
        int localization_point_y = cvRound(localization_points[cur_ind][i].y);
        int count_test_lines = 0, index = localization_point_x;
        for (; index < bin_barcode.cols - 1; index++)
        {
            next_pixel = bin_barcode.at<uint8_t>(localization_point_y, index + 1);
            if (next_pixel == future_pixel)
            {
                future_pixel = static_cast<uint8_t>(~future_pixel);
                count_test_lines++;

                if (count_test_lines == 2)
                {
                    // TODO avoid drawing functions
                    floodFill(bin_barcode, mask,
                            Point(index + 1, localization_point_y), 255,
                            0, Scalar(), Scalar(), FLOODFILL_MASK_ONLY);
                    break;
                }
            }

        }
        Mat mask_roi = mask(Range(1, bin_barcode.rows - 1), Range(1, bin_barcode.cols - 1));
        findNonZero(mask_roi, non_zero_elem[i]);
        newHull.insert(newHull.end(), non_zero_elem[i].begin(), non_zero_elem[i].end());
    }
    convexHull(newHull, locations);
    for (size_t i = 0; i < locations.size(); i++)
    {
        for (size_t j = 0; j < 3; j++)
        {
            for (size_t k = 0; k < non_zero_elem[j].size(); k++)
            {
                if (locations[i] == non_zero_elem[j][k])
                {
                    new_non_zero_elem[j].push_back(locations[i]);
                }
            }
        }
    }

    if (new_non_zero_elem[0].size() == 0)
        return false;

    double pentagon_diag_norm = -1;
    Point2f down_left_edge_point, up_right_edge_point, up_left_edge_point;
    for (size_t i = 0; i < new_non_zero_elem[1].size(); i++)
    {
        for (size_t j = 0; j < new_non_zero_elem[2].size(); j++)
        {
            double temp_norm = norm(new_non_zero_elem[1][i] - new_non_zero_elem[2][j]);
            if (temp_norm > pentagon_diag_norm)
            {
                down_left_edge_point = new_non_zero_elem[1][i];
                up_right_edge_point  = new_non_zero_elem[2][j];
                pentagon_diag_norm = temp_norm;
            }
        }
    }

    if (down_left_edge_point == Point2f(0, 0) ||
        up_right_edge_point  == Point2f(0, 0))
    {
        return false;
    }

    double max_area = -1;
    up_left_edge_point = new_non_zero_elem[0][0];

    for (size_t i = 0; i < new_non_zero_elem[0].size(); i++)
    {
        vector<Point2f> list_edge_points;
        list_edge_points.push_back(new_non_zero_elem[0][i]);
        list_edge_points.push_back(down_left_edge_point);
        list_edge_points.push_back(up_right_edge_point);

        double temp_area = fabs(contourArea(list_edge_points));
        if (max_area < temp_area)
        {
            up_left_edge_point = new_non_zero_elem[0][i];
            max_area = temp_area;
        }
    }

    Point2f down_max_delta_point, up_max_delta_point;
    double norm_down_max_delta = -1, norm_up_max_delta = -1;
    for (size_t i = 0; i < new_non_zero_elem[1].size(); i++)
    {
        double temp_norm_delta = norm(up_left_edge_point - new_non_zero_elem[1][i]) + norm(down_left_edge_point - new_non_zero_elem[1][i]);
        if (norm_down_max_delta < temp_norm_delta)
        {
            down_max_delta_point = new_non_zero_elem[1][i];
            norm_down_max_delta = temp_norm_delta;
        }
    }


    for (size_t i = 0; i < new_non_zero_elem[2].size(); i++)
    {
        double temp_norm_delta = norm(up_left_edge_point - new_non_zero_elem[2][i]) + norm(up_right_edge_point - new_non_zero_elem[2][i]);
        if (norm_up_max_delta < temp_norm_delta)
        {
            up_max_delta_point = new_non_zero_elem[2][i];
            norm_up_max_delta = temp_norm_delta;
        }
    }
    vector<Point2f> tmp_transformation_points;
    tmp_transformation_points.push_back(down_left_edge_point);
    tmp_transformation_points.push_back(up_left_edge_point);
    tmp_transformation_points.push_back(up_right_edge_point);
    tmp_transformation_points.push_back(intersectionLines(
                    down_left_edge_point, down_max_delta_point,
                    up_right_edge_point, up_max_delta_point));
    transformation_points[cur_ind] = tmp_transformation_points;

    vector<Point2f> quadrilateral = getQuadrilateral(transformation_points[cur_ind]);
    transformation_points[cur_ind] = quadrilateral;

    return true;
}

bool QRCodeDetector::detectMulti(InputArray in, OutputArray points) const
{
    Mat inarr;
    if (!checkQRInputImage(in, inarr))
    {
        points.release();
        return false;
    }

    QRDetectMulti qrdet;
    qrdet.init(inarr, p->epsX, p->epsY);
    if (!qrdet.localization())
    {
        points.release();
        return false;
    }
    vector< vector< Point2f > > pnts2f = qrdet.getTransformationPoints();
    vector<Point2f> trans_points;
    for(size_t i = 0; i < pnts2f.size(); i++)
        for(size_t j = 0; j < pnts2f[i].size(); j++)
            trans_points.push_back(pnts2f[i][j]);

    updatePointsResult(points, trans_points);

    return true;
}

class ParallelDecodeProcess : public ParallelLoopBody
{
public:
    ParallelDecodeProcess(Mat& inarr_, vector<QRDecode>& qrdec_, vector<std::string>& decoded_info_,
            vector<Mat>& straight_barcode_, vector< vector< Point2f > >& src_points_)
        : inarr(inarr_), qrdec(qrdec_), decoded_info(decoded_info_)
        , straight_barcode(straight_barcode_), src_points(src_points_)
    {
        // nothing
    }
    void operator()(const Range& range) const CV_OVERRIDE
    {
        for (int i = range.start; i < range.end; i++)
        {
            qrdec[i].init(inarr, src_points[i]);
3541
            bool ok = qrdec[i].straightDecodingProcess();
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
            if (ok)
            {
                decoded_info[i] = qrdec[i].getDecodeInformation();
                straight_barcode[i] = qrdec[i].getStraightBarcode();
            }
            else if (std::min(inarr.size().width, inarr.size().height) > 512)
            {
                const int min_side = std::min(inarr.size().width, inarr.size().height);
                double coeff_expansion = min_side / 512;
                const int width  = cvRound(inarr.size().width  / coeff_expansion);
                const int height = cvRound(inarr.size().height / coeff_expansion);
                Size new_size(width, height);
                Mat inarr2;
                resize(inarr, inarr2, new_size, 0, 0, INTER_AREA);
                for (size_t j = 0; j < 4; j++)
                {
                    src_points[i][j] /= static_cast<float>(coeff_expansion);
                }
                qrdec[i].init(inarr2, src_points[i]);
3561
                ok = qrdec[i].straightDecodingProcess();
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
                if (ok)
                {
                    decoded_info[i] = qrdec[i].getDecodeInformation();
                    straight_barcode[i] = qrdec[i].getStraightBarcode();
                }
            }
            if (decoded_info[i].empty())
                decoded_info[i] = "";
        }
    }

private:
    Mat& inarr;
    vector<QRDecode>& qrdec;
    vector<std::string>& decoded_info;
    vector<Mat>& straight_barcode;
    vector< vector< Point2f > >& src_points;

};

bool QRCodeDetector::decodeMulti(
        InputArray img,
        InputArray points,
        CV_OUT std::vector<cv::String>& decoded_info,
        OutputArrayOfArrays straight_qrcode
    ) const
{
    Mat inarr;
    if (!checkQRInputImage(img, inarr))
        return false;
    CV_Assert(points.size().width > 0);
    CV_Assert((points.size().width % 4) == 0);
    vector< vector< Point2f > > src_points ;
    Mat qr_points = points.getMat();
3596 3597
    qr_points = qr_points.reshape(2, 1);
    for (int i = 0; i < qr_points.size().width ; i += 4)
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
    {
        vector<Point2f> tempMat = qr_points.colRange(i, i + 4);
        if (contourArea(tempMat) > 0.0)
        {
            src_points.push_back(tempMat);
        }
    }
    CV_Assert(src_points.size() > 0);
    vector<QRDecode> qrdec(src_points.size());
    vector<Mat> straight_barcode(src_points.size());
    vector<std::string> info(src_points.size());
    ParallelDecodeProcess parallelDecodeProcess(inarr, qrdec, info, straight_barcode, src_points);
    parallel_for_(Range(0, int(src_points.size())), parallelDecodeProcess);
    vector<Mat> for_copy;
    for (size_t i = 0; i < straight_barcode.size(); i++)
    {
        if (!(straight_barcode[i].empty()))
            for_copy.push_back(straight_barcode[i]);
    }
    straight_barcode = for_copy;
    vector<Mat> tmp_straight_qrcodes;
    if (straight_qrcode.needed())
    {
        for (size_t i = 0; i < straight_barcode.size(); i++)
        {
            Mat tmp_straight_qrcode;
            tmp_straight_qrcodes.push_back(tmp_straight_qrcode);
            straight_barcode[i].convertTo(((OutputArray)tmp_straight_qrcodes[i]),
                                             ((OutputArray)tmp_straight_qrcodes[i]).fixedType() ?
                                             ((OutputArray)tmp_straight_qrcodes[i]).type() : CV_32FC2);
        }
        straight_qrcode.createSameSize(tmp_straight_qrcodes, CV_32FC2);
        straight_qrcode.assign(tmp_straight_qrcodes);
    }
    decoded_info.clear();
    for (size_t i = 0; i < info.size(); i++)
    {
       decoded_info.push_back(info[i]);
    }
    if (!decoded_info.empty())
        return true;
    else
        return false;
}

bool QRCodeDetector::detectAndDecodeMulti(
        InputArray img,
        CV_OUT std::vector<cv::String>& decoded_info,
        OutputArray points_,
        OutputArrayOfArrays straight_qrcode
    ) const
{
    Mat inarr;
    if (!checkQRInputImage(img, inarr))
    {
        points_.release();
        return false;
    }

    vector<Point2f> points;
    bool ok = detectMulti(inarr, points);
    if (!ok)
    {
        points_.release();
        return false;
    }
    updatePointsResult(points_, points);
    decoded_info.clear();
    ok = decodeMulti(inarr, points, decoded_info, straight_qrcode);
    return ok;
}

}  // namespace