bgfg_gaussmix.cpp 48.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

/////////////////////////////////////// MOG model //////////////////////////////////////////

static void CV_CDECL
icvReleaseGaussianBGModel( CvGaussBGModel** bg_model )
{
    if( !bg_model )
        CV_Error( CV_StsNullPtr, "" );
50

51 52
    if( *bg_model )
    {
53
        delete (cv::Ptr<cv::BackgroundSubtractor>*)((*bg_model)->mog);
54 55 56 57 58 59 60 61 62 63 64 65 66
        cvReleaseImage( &(*bg_model)->background );
        cvReleaseImage( &(*bg_model)->foreground );
        memset( *bg_model, 0, sizeof(**bg_model) );
        delete *bg_model;
        *bg_model = 0;
    }
}


static int CV_CDECL
icvUpdateGaussianBGModel( IplImage* curr_frame, CvGaussBGModel*  bg_model, double learningRate )
{
    cv::Mat image = cv::cvarrToMat(curr_frame), mask = cv::cvarrToMat(bg_model->foreground);
67

68
    cv::Ptr<cv::BackgroundSubtractor>* mog = (cv::Ptr<cv::BackgroundSubtractor>*)(bg_model->mog);
V
Vadim Pisarevsky 已提交
69
    CV_Assert(mog != 0);
70

71
    (*mog)->apply(image, mask, learningRate);
V
Vadim Pisarevsky 已提交
72
    bg_model->countFrames++;
73

V
Vadim Pisarevsky 已提交
74
    return 0;
75 76 77 78 79 80
}

CV_IMPL CvBGStatModel*
cvCreateGaussianBGModel( IplImage* first_frame, CvGaussBGStatModelParams* parameters )
{
    CvGaussBGStatModelParams params;
81

82
    CV_Assert( CV_IS_IMAGE(first_frame) );
83

84 85 86 87 88
    //init parameters
    if( parameters == NULL )
    {                        // These constants are defined in cvaux/include/cvaux.h
        params.win_size      = CV_BGFG_MOG_WINDOW_SIZE;
        params.bg_threshold  = CV_BGFG_MOG_BACKGROUND_THRESHOLD;
89

90 91
        params.std_threshold = CV_BGFG_MOG_STD_THRESHOLD;
        params.weight_init   = CV_BGFG_MOG_WEIGHT_INIT;
92

93 94 95 96 97 98
        params.variance_init = CV_BGFG_MOG_SIGMA_INIT*CV_BGFG_MOG_SIGMA_INIT;
        params.minArea       = CV_BGFG_MOG_MINAREA;
        params.n_gauss       = CV_BGFG_MOG_NGAUSSIANS;
    }
    else
        params = *parameters;
99

100 101 102 103 104
    CvGaussBGModel* bg_model = new CvGaussBGModel;
    memset( bg_model, 0, sizeof(*bg_model) );
    bg_model->type = CV_BG_MODEL_MOG;
    bg_model->release = (CvReleaseBGStatModel)icvReleaseGaussianBGModel;
    bg_model->update = (CvUpdateBGStatModel)icvUpdateGaussianBGModel;
105

106
    bg_model->params = params;
107

108 109 110 111 112
    cv::Ptr<cv::BackgroundSubtractor> mog = cv::createBackgroundSubtractorMOG(params.win_size, params.n_gauss,
                                                                              params.bg_threshold);
    cv::Ptr<cv::BackgroundSubtractor>* pmog = new cv::Ptr<cv::BackgroundSubtractor>;
    *pmog = mog;
    bg_model->mog = pmog;
113

V
Vadim Pisarevsky 已提交
114 115 116
    CvSize sz = cvGetSize(first_frame);
    bg_model->background = cvCreateImage(sz, IPL_DEPTH_8U, first_frame->nChannels);
    bg_model->foreground = cvCreateImage(sz, IPL_DEPTH_8U, 1);
117

118
    bg_model->countFrames = 0;
119

120
    icvUpdateGaussianBGModel( first_frame, bg_model, 1 );
121

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
    return (CvBGStatModel*)bg_model;
}


//////////////////////////////////////////// MOG2 //////////////////////////////////////////////

/*M///////////////////////////////////////////////////////////////////////////////////////
 //
 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 //
 //  By downloading, copying, installing or using the software you agree to this license.
 //  If you do not agree to this license, do not download, install,
 //  copy or use the software.
 //
 //
 //                        Intel License Agreement
 //
 // Copyright (C) 2000, Intel Corporation, all rights reserved.
 // Third party copyrights are property of their respective owners.
 //
 // Redistribution and use in source and binary forms, with or without modification,
 // are permitted provided that the following conditions are met:
 //
 //   * Redistribution's of source code must retain the above copyright notice,
 //     this list of conditions and the following disclaimer.
 //
 //   * Redistribution's in binary form must reproduce the above copyright notice,
 //     this list of conditions and the following disclaimer in the documentation
 //     and/or other materials provided with the distribution.
 //
 //   * The name of Intel Corporation may not be used to endorse or promote products
 //     derived from this software without specific prior written permission.
 //
 // This software is provided by the copyright holders and contributors "as is" and
 // any express or implied warranties, including, but not limited to, the implied
 // warranties of merchantability and fitness for a particular purpose are disclaimed.
 // In no event shall the Intel Corporation or contributors be liable for any direct,
 // indirect, incidental, special, exemplary, or consequential damages
 // (including, but not limited to, procurement of substitute goods or services;
 // loss of use, data, or profits; or business interruption) however caused
 // and on any theory of liability, whether in contract, strict liability,
 // or tort (including negligence or otherwise) arising in any way out of
 // the use of this software, even if advised of the possibility of such damage.
 //
 //M*/

/*//Implementation of the Gaussian mixture model background subtraction from:
 //
 //"Improved adaptive Gausian mixture model for background subtraction"
171
 //Z.Zivkovic
172 173
 //International Conference Pattern Recognition, UK, August, 2004
 //http://www.zoranz.net/Publications/zivkovic2004ICPR.pdf
174
 //The code is very fast and performs also shadow detection.
175 176 177 178 179
 //Number of Gausssian components is adapted per pixel.
 //
 // and
 //
 //"Efficient Adaptive Density Estimapion per Image Pixel for the Task of Background Subtraction"
180
 //Z.Zivkovic, F. van der Heijden
181 182 183 184 185 186
 //Pattern Recognition Letters, vol. 27, no. 7, pages 773-780, 2006.
 //
 //The algorithm similar to the standard Stauffer&Grimson algorithm with
 //additional selection of the number of the Gaussian components based on:
 //
 //"Recursive unsupervised learning of finite mixture models "
187
 //Z.Zivkovic, F.van der Heijden
188 189 190 191 192 193
 //IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.26, no.5, pages 651-656, 2004
 //http://www.zoranz.net/Publications/zivkovic2004PAMI.pdf
 //
 //
 //Example usage with as cpp class
 // BackgroundSubtractorMOG2 bg_model;
194
 //For each new image the model is updates using:
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
 // bg_model(img, fgmask);
 //
 //Example usage as part of the CvBGStatModel:
 // CvBGStatModel* bg_model = cvCreateGaussianBGModel2( first_frame );
 //
 // //update for each frame
 // cvUpdateBGStatModel( tmp_frame, bg_model );//segmentation result is in bg_model->foreground
 //
 // //release at the program termination
 // cvReleaseBGStatModel( &bg_model );
 //
 //Author: Z.Zivkovic, www.zoranz.net
 //Date: 7-April-2011, Version:1.0
 ///////////*/

#include "precomp.hpp"


/*
 Interface of Gaussian mixture algorithm from:
215

216 217 218 219
 "Improved adaptive Gausian mixture model for background subtraction"
 Z.Zivkovic
 International Conference Pattern Recognition, UK, August, 2004
 http://www.zoranz.net/Publications/zivkovic2004ICPR.pdf
220

221 222 223
 Advantages:
 -fast - number of Gausssian components is constantly adapted per pixel.
 -performs also shadow detection (see bgfg_segm_test.cpp example)
224

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
 */


#define CV_BG_MODEL_MOG2            3                 /* "Mixture of Gaussians 2".  */


/* default parameters of gaussian background detection algorithm */
#define CV_BGFG_MOG2_STD_THRESHOLD            4.0f     /* lambda=2.5 is 99% */
#define CV_BGFG_MOG2_WINDOW_SIZE              500      /* Learning rate; alpha = 1/CV_GBG_WINDOW_SIZE */
#define CV_BGFG_MOG2_BACKGROUND_THRESHOLD     0.9f     /* threshold sum of weights for background test */
#define CV_BGFG_MOG2_STD_THRESHOLD_GENERATE   3.0f     /* lambda=2.5 is 99% */
#define CV_BGFG_MOG2_NGAUSSIANS               5        /* = K = number of Gaussians in mixture */
#define CV_BGFG_MOG2_VAR_INIT                 15.0f    /* initial variance for new components*/
#define CV_BGFG_MOG2_VAR_MIN                    4.0f
#define CV_BGFG_MOG2_VAR_MAX                      5*CV_BGFG_MOG2_VAR_INIT
#define CV_BGFG_MOG2_MINAREA                  15.0f    /* for postfiltering */

/* additional parameters */
#define CV_BGFG_MOG2_CT                               0.05f     /* complexity reduction prior constant 0 - no reduction of number of components*/
#define CV_BGFG_MOG2_SHADOW_VALUE             127       /* value to use in the segmentation mask for shadows, sot 0 not to do shadow detection*/
#define CV_BGFG_MOG2_SHADOW_TAU               0.5f      /* Tau - shadow threshold, see the paper for explanation*/

typedef struct CvGaussBGStatModel2Params
{
    //image info
    int nWidth;
    int nHeight;
    int nND;//number of data dimensions (image channels)
253 254

    bool bPostFiltering;//defult 1 - do postfiltering - will make shadow detection results also give value 255
255
    double  minArea; // for postfiltering
256

257
    bool bInit;//default 1, faster updates at start
258

259 260 261 262 263 264 265 266 267 268 269 270
    /////////////////////////
    //very important parameters - things you will change
    ////////////////////////
    float fAlphaT;
    //alpha - speed of update - if the time interval you want to average over is T
    //set alpha=1/T. It is also usefull at start to make T slowly increase
    //from 1 until the desired T
    float fTb;
    //Tb - threshold on the squared Mahalan. dist. to decide if it is well described
    //by the background model or not. Related to Cthr from the paper.
    //This does not influence the update of the background. A typical value could be 4 sigma
    //and that is Tb=4*4=16;
271

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
    /////////////////////////
    //less important parameters - things you might change but be carefull
    ////////////////////////
    float fTg;
    //Tg - threshold on the squared Mahalan. dist. to decide
    //when a sample is close to the existing components. If it is not close
    //to any a new component will be generated. I use 3 sigma => Tg=3*3=9.
    //Smaller Tg leads to more generated components and higher Tg might make
    //lead to small number of components but they can grow too large
    float fTB;//1-cf from the paper
    //TB - threshold when the component becomes significant enough to be included into
    //the background model. It is the TB=1-cf from the paper. So I use cf=0.1 => TB=0.
    //For alpha=0.001 it means that the mode should exist for approximately 105 frames before
    //it is considered foreground
    float fVarInit;
    float fVarMax;
    float fVarMin;
    //initial standard deviation  for the newly generated components.
    //It will will influence the speed of adaptation. A good guess should be made.
    //A simple way is to estimate the typical standard deviation from the images.
    //I used here 10 as a reasonable value
    float fCT;//CT - complexity reduction prior
    //this is related to the number of samples needed to accept that a component
    //actually exists. We use CT=0.05 of all the samples. By setting CT=0 you get
    //the standard Stauffer&Grimson algorithm (maybe not exact but very similar)
297

298 299
    //even less important parameters
    int nM;//max number of modes - const - 4 is usually enough
300

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
    //shadow detection parameters
    bool bShadowDetection;//default 1 - do shadow detection
    unsigned char nShadowDetection;//do shadow detection - insert this value as the detection result
    float fTau;
    // Tau - shadow threshold. The shadow is detected if the pixel is darker
    //version of the background. Tau is a threshold on how much darker the shadow can be.
    //Tau= 0.5 means that if pixel is more than 2 times darker then it is not shadow
    //See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.
} CvGaussBGStatModel2Params;

#define CV_BGFG_MOG2_NDMAX 3

typedef struct CvPBGMMGaussian
{
    float weight;
    float mean[CV_BGFG_MOG2_NDMAX];
    float variance;
}CvPBGMMGaussian;

typedef struct CvGaussBGStatModel2Data
321
{
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
    CvPBGMMGaussian* rGMM; //array for the mixture of Gaussians
    unsigned char* rnUsedModes;//number of Gaussian components per pixel (maximum 255)
} CvGaussBGStatModel2Data;


/*
 //only foreground image is updated
 //no filtering included
 typedef struct CvGaussBGModel2
 {
 CV_BG_STAT_MODEL_FIELDS();
 CvGaussBGStatModel2Params params;
 CvGaussBGStatModel2Data   data;
 int                       countFrames;
 } CvGaussBGModel2;
337

338 339
 CVAPI(CvBGStatModel*) cvCreateGaussianBGModel2( IplImage* first_frame,
 CvGaussBGStatModel2Params* params CV_DEFAULT(NULL) );
340
 */
341 342 343 344 345

//shadow detection performed per pixel
// should work for rgb data, could be usefull for gray scale and depth data as well
//  See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.
CV_INLINE int _icvRemoveShadowGMM(float* data, int nD,
346
                                  unsigned char nModes,
347 348
                                  CvPBGMMGaussian* pGMM,
                                  float m_fTb,
349
                                  float m_fTB,
350 351 352 353 354 355 356
                                  float m_fTau)
{
    float tWeight = 0;
    float numerator, denominator;
    // check all the components  marked as background:
    for (int iModes=0;iModes<nModes;iModes++)
    {
357

358
        CvPBGMMGaussian g=pGMM[iModes];
359

360 361 362 363 364 365 366
        numerator = 0.0f;
        denominator = 0.0f;
        for (int iD=0;iD<nD;iD++)
        {
            numerator   += data[iD]  * g.mean[iD];
            denominator += g.mean[iD]* g.mean[iD];
        }
367

368 369 370 371 372 373
        // no division by zero allowed
        if (denominator == 0)
        {
            return 0;
        };
        float a = numerator / denominator;
374

375 376 377
        // if tau < a < 1 then also check the color distortion
        if ((a <= 1) && (a >= m_fTau))
        {
378

379
            float dist2a=0.0f;
380

381 382 383 384 385
            for (int iD=0;iD<nD;iD++)
            {
                float dD= a*g.mean[iD] - data[iD];
                dist2a += (dD*dD);
            }
386

387 388 389 390 391
            if (dist2a<m_fTb*g.variance*a*a)
            {
                return 2;
            }
        };
392

393 394 395 396 397 398 399 400 401 402 403 404
        tWeight += g.weight;
        if (tWeight > m_fTB)
        {
            return 0;
        };
    };
    return 0;
}

//update GMM - the base update function performed per pixel
//
//"Efficient Adaptive Density Estimapion per Image Pixel for the Task of Background Subtraction"
405
//Z.Zivkovic, F. van der Heijden
406 407 408 409 410 411
//Pattern Recognition Letters, vol. 27, no. 7, pages 773-780, 2006.
//
//The algorithm similar to the standard Stauffer&Grimson algorithm with
//additional selection of the number of the Gaussian components based on:
//
//"Recursive unsupervised learning of finite mixture models "
412
//Z.Zivkovic, F.van der Heijden
413 414 415 416
//IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.26, no.5, pages 651-656, 2004
//http://www.zoranz.net/Publications/zivkovic2004PAMI.pdf

CV_INLINE int _icvUpdateGMM(float* data, int nD,
417
                            unsigned char* pModesUsed,
418 419 420 421
                            CvPBGMMGaussian* pGMM,
                            int m_nM,
                            float m_fAlphaT,
                            float m_fTb,
422
                            float m_fTB,
423 424 425 426 427 428 429
                            float m_fTg,
                            float m_fVarInit,
                            float m_fVarMax,
                            float m_fVarMin,
                            float m_fPrune)
{
    //calculate distances to the modes (+ sort)
430
    //here we need to go in descending order!!!
431
    bool bBackground=0;//return value -> true - the pixel classified as background
432

433
    //internal:
434
    bool bFitsPDF=0;//if it remains zero a new GMM mode will be added
435 436 437
    float m_fOneMinAlpha=1-m_fAlphaT;
    unsigned char nModes=*pModesUsed;//current number of modes in GMM
    float totalWeight=0.0f;
438

439 440 441 442 443 444 445 446
    //////
    //go through all modes
    int iMode=0;
    CvPBGMMGaussian* pGauss=pGMM;
    for (;iMode<nModes;iMode++,pGauss++)
    {
        float weight = pGauss->weight;//need only weight if fit is found
        weight=m_fOneMinAlpha*weight+m_fPrune;
447

448 449 450 451 452 453
        ////
        //fit not found yet
        if (!bFitsPDF)
        {
            //check if it belongs to some of the remaining modes
            float var=pGauss->variance;
454

455 456 457 458 459
            //calculate difference and distance
            float dist2=0.0f;
#if (CV_BGFG_MOG2_NDMAX==1)
            float dData=pGauss->mean[0]-data[0];
            dist2=dData*dData;
460
#else
461
            float dData[CV_BGFG_MOG2_NDMAX];
462

463 464 465 466 467
            for (int iD=0;iD<nD;iD++)
            {
                dData[iD]=pGauss->mean[iD]-data[iD];
                dist2+=dData[iD]*dData[iD];
            }
468
#endif
469 470 471
            //background? - m_fTb - usually larger than m_fTg
            if ((totalWeight<m_fTB)&&(dist2<m_fTb*var))
                bBackground=1;
472

473 474 475 476 477 478
            //check fit
            if (dist2<m_fTg*var)
            {
                /////
                //belongs to the mode - bFitsPDF becomes 1
                bFitsPDF=1;
479 480 481

                //update distribution

482 483
                //update weight
                weight+=m_fAlphaT;
484

485
                float k = m_fAlphaT/weight;
486

487 488 489
                //update mean
#if (CV_BGFG_MOG2_NDMAX==1)
                pGauss->mean[0]-=k*dData;
490
#else
491 492 493 494 495
                for (int iD=0;iD<nD;iD++)
                {
                    pGauss->mean[iD]-=k*dData[iD];
                }
#endif
496

497 498
                //update variance
                float varnew = var + k*(dist2-var);
499
                //limit the variance
500
                pGauss->variance = MIN(m_fVarMax,MAX(varnew,m_fVarMin));
501

502
                //sort
503 504
                //all other weights are at the same place and
                //only the matched (iModes) is higher -> just find the new place for it
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
                for (int iLocal = iMode;iLocal>0;iLocal--)
                {
                    //check one up
                    if (weight < (pGMM[iLocal-1].weight))
                    {
                        break;
                    }
                    else
                    {
                        //swap one up
                        CvPBGMMGaussian temp = pGMM[iLocal];
                        pGMM[iLocal] = pGMM[iLocal-1];
                        pGMM[iLocal-1] = temp;
                        pGauss--;
                    }
                }
                //belongs to the mode - bFitsPDF becomes 1
                /////
            }
        }//!bFitsPDF)
525

526 527 528 529 530 531
        //check prune
        if (weight<-m_fPrune)
        {
            weight=0.0;
            nModes--;
        }
532

533 534 535 536 537
        pGauss->weight=weight;//update weight by the calculated value
        totalWeight+=weight;
    }
    //go through all modes
    //////
538

539 540 541 542 543
    //renormalize weights
    for (iMode = 0; iMode < nModes; iMode++)
    {
        pGMM[iMode].weight = pGMM[iMode].weight/totalWeight;
    }
544

545 546 547 548 549 550 551 552 553 554 555 556 557 558
    //make new mode if needed and exit
    if (!bFitsPDF)
    {
        if (nModes==m_nM)
        {
            //replace the weakest
            pGauss=pGMM+m_nM-1;
        }
        else
        {
            //add a new one
            pGauss=pGMM+nModes;
            nModes++;
        }
559

560 561 562 563 564 565 566
        if (nModes==1)
        {
            pGauss->weight=1;
        }
        else
        {
            pGauss->weight=m_fAlphaT;
567

568 569 570 571 572 573
            //renormalize all weights
            for (iMode = 0; iMode < nModes-1; iMode++)
            {
                pGMM[iMode].weight *=m_fOneMinAlpha;
            }
        }
574 575

        //init
576 577
        memcpy(pGauss->mean,data,nD*sizeof(float));
        pGauss->variance=m_fVarInit;
578

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
        //sort
        //find the new place for it
        for (int iLocal = nModes-1;iLocal>0;iLocal--)
        {
            //check one up
            if (m_fAlphaT < (pGMM[iLocal-1].weight))
            {
                break;
            }
            else
            {
                //swap one up
                CvPBGMMGaussian temp = pGMM[iLocal];
                pGMM[iLocal] = pGMM[iLocal-1];
                pGMM[iLocal-1] = temp;
            }
        }
    }
597

598 599
    //set the number of modes
    *pModesUsed=nModes;
600

601 602 603 604 605
    return bBackground;
}

// a bit more efficient implementation for common case of 3 channel (rgb) images
CV_INLINE int _icvUpdateGMM_C3(float r,float g, float b,
606
                               unsigned char* pModesUsed,
607 608 609 610
                               CvPBGMMGaussian* pGMM,
                               int m_nM,
                               float m_fAlphaT,
                               float m_fTb,
611
                               float m_fTB,
612 613 614 615 616 617 618
                               float m_fTg,
                               float m_fVarInit,
                               float m_fVarMax,
                               float m_fVarMin,
                               float m_fPrune)
{
    //calculate distances to the modes (+ sort)
619
    //here we need to go in descending order!!!
620
    bool bBackground=0;//return value -> true - the pixel classified as background
621

622
    //internal:
623
    bool bFitsPDF=0;//if it remains zero a new GMM mode will be added
624 625 626
    float m_fOneMinAlpha=1-m_fAlphaT;
    unsigned char nModes=*pModesUsed;//current number of modes in GMM
    float totalWeight=0.0f;
627

628 629 630 631 632 633 634 635
    //////
    //go through all modes
    int iMode=0;
    CvPBGMMGaussian* pGauss=pGMM;
    for (;iMode<nModes;iMode++,pGauss++)
    {
        float weight = pGauss->weight;//need only weight if fit is found
        weight=m_fOneMinAlpha*weight+m_fPrune;
636

637 638 639 640 641 642
        ////
        //fit not found yet
        if (!bFitsPDF)
        {
            //check if it belongs to some of the remaining modes
            float var=pGauss->variance;
643

644 645 646 647
            //calculate difference and distance
            float muR = pGauss->mean[0];
            float muG = pGauss->mean[1];
            float muB = pGauss->mean[2];
648

649 650 651
            float dR=muR - r;
            float dG=muG - g;
            float dB=muB - b;
652 653 654

            float dist2=(dR*dR+dG*dG+dB*dB);

655 656 657
            //background? - m_fTb - usually larger than m_fTg
            if ((totalWeight<m_fTB)&&(dist2<m_fTb*var))
                bBackground=1;
658

659 660 661 662 663 664
            //check fit
            if (dist2<m_fTg*var)
            {
                /////
                //belongs to the mode - bFitsPDF becomes 1
                bFitsPDF=1;
665 666 667

                //update distribution

668 669
                //update weight
                weight+=m_fAlphaT;
670

671
                float k = m_fAlphaT/weight;
672

673 674 675 676
                //update mean
                pGauss->mean[0] = muR - k*(dR);
                pGauss->mean[1] = muG - k*(dG);
                pGauss->mean[2] = muB - k*(dB);
677

678 679
                //update variance
                float varnew = var + k*(dist2-var);
680
                //limit the variance
681
                pGauss->variance = MIN(m_fVarMax,MAX(varnew,m_fVarMin));
682

683
                //sort
684 685
                //all other weights are at the same place and
                //only the matched (iModes) is higher -> just find the new place for it
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
                for (int iLocal = iMode;iLocal>0;iLocal--)
                {
                    //check one up
                    if (weight < (pGMM[iLocal-1].weight))
                    {
                        break;
                    }
                    else
                    {
                        //swap one up
                        CvPBGMMGaussian temp = pGMM[iLocal];
                        pGMM[iLocal] = pGMM[iLocal-1];
                        pGMM[iLocal-1] = temp;
                        pGauss--;
                    }
                }
                //belongs to the mode - bFitsPDF becomes 1
                /////
704 705
            }

706
        }//!bFitsPDF)
707

708 709 710 711 712 713
        //check prunning
        if (weight<-m_fPrune)
        {
            weight=0.0;
            nModes--;
        }
714

715 716 717 718 719
        pGauss->weight=weight;
        totalWeight+=weight;
    }
    //go through all modes
    //////
720

721 722 723 724 725
    //renormalize weights
    for (iMode = 0; iMode < nModes; iMode++)
    {
        pGMM[iMode].weight = pGMM[iMode].weight/totalWeight;
    }
726

727 728 729 730 731 732 733 734 735 736 737 738 739 740
    //make new mode if needed and exit
    if (!bFitsPDF)
    {
        if (nModes==m_nM)
        {
            //replace the weakest
            pGauss=pGMM+m_nM-1;
        }
        else
        {
            //add a new one
            pGauss=pGMM+nModes;
            nModes++;
        }
741

742 743 744 745 746 747 748
        if (nModes==1)
        {
            pGauss->weight=1;
        }
        else
        {
            pGauss->weight=m_fAlphaT;
749

750 751 752 753 754 755
            //renormalize all weights
            for (iMode = 0; iMode < nModes-1; iMode++)
            {
                pGMM[iMode].weight *=m_fOneMinAlpha;
            }
        }
756 757

        //init
758 759 760
        pGauss->mean[0]=r;
        pGauss->mean[1]=g;
        pGauss->mean[2]=b;
761

762
        pGauss->variance=m_fVarInit;
763

764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
        //sort
        //find the new place for it
        for (int iLocal = nModes-1;iLocal>0;iLocal--)
        {
            //check one up
            if (m_fAlphaT < (pGMM[iLocal-1].weight))
            {
                break;
            }
            else
            {
                //swap one up
                CvPBGMMGaussian temp = pGMM[iLocal];
                pGMM[iLocal] = pGMM[iLocal-1];
                pGMM[iLocal-1] = temp;
            }
        }
    }
782

783 784
    //set the number of modes
    *pModesUsed=nModes;
785

786 787 788 789
    return bBackground;
}

//the main function to update the background model
A
Andrey Kamaev 已提交
790
static void icvUpdatePixelBackgroundGMM2( const CvArr* srcarr, CvArr* dstarr ,
791 792 793 794
                                  CvPBGMMGaussian *pGMM,
                                  unsigned char *pUsedModes,
                                  //CvGaussBGStatModel2Params* pGMMPar,
                                  int nM,
795 796 797
                                  float fTb,
                                  float fTB,
                                  float fTg,
798 799 800 801 802 803 804 805 806 807 808 809 810
                                  float fVarInit,
                                  float fVarMax,
                                  float fVarMin,
                                  float fCT,
                                  float fTau,
                                  bool bShadowDetection,
                                  unsigned char  nShadowDetection,
                                  float alpha)
{
    CvMat sstub, *src = cvGetMat(srcarr, &sstub);
    CvMat dstub, *dst = cvGetMat(dstarr, &dstub);
    CvSize size = cvGetMatSize(src);
    int nD=CV_MAT_CN(src->type);
811

812 813 814 815 816 817
    //reshape if possible
    if( CV_IS_MAT_CONT(src->type & dst->type) )
    {
        size.width *= size.height;
        size.height = 1;
    }
818

819 820 821
    int x, y;
    float data[CV_BGFG_MOG2_NDMAX];
    float prune=-alpha*fCT;
822

823
    //general nD
824

825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
    if (nD!=3)
    {
        switch (CV_MAT_DEPTH(src->type))
        {
            case CV_8U:
                for( y = 0; y < size.height; y++ )
                {
                    uchar* sptr = src->data.ptr + src->step*y;
                    uchar* pDataOutput = dst->data.ptr + dst->step*y;
                    for( x = 0; x < size.width; x++,
                        pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
                    {
                        //convert data
                        for (int iD=0;iD<nD;iD++) data[iD]=float(sptr[iD]);
                        //update GMM model
                        int result = _icvUpdateGMM(data,nD,pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
                        //detect shadows in the foreground
                        if (bShadowDetection)
                            if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
                        //generate output
845
                        (* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
                    }
                }
                break;
            case CV_16S:
                for( y = 0; y < size.height; y++ )
                {
                    short* sptr = src->data.s + src->step*y;
                    uchar* pDataOutput = dst->data.ptr + dst->step*y;
                    for( x = 0; x < size.width; x++,
                        pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
                    {
                        //convert data
                        for (int iD=0;iD<nD;iD++) data[iD]=float(sptr[iD]);
                        //update GMM model
                        int result = _icvUpdateGMM(data,nD,pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
                        //detect shadows in the foreground
                        if (bShadowDetection)
                            if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
                        //generate output
865
                        (* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
                    }
                }
                break;
            case CV_16U:
                for( y = 0; y < size.height; y++ )
                {
                    unsigned short* sptr = (unsigned short*) (src->data.s + src->step*y);
                    uchar* pDataOutput = dst->data.ptr + dst->step*y;
                    for( x = 0; x < size.width; x++,
                        pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
                    {
                        //convert data
                        for (int iD=0;iD<nD;iD++) data[iD]=float(sptr[iD]);
                        //update GMM model
                        int result = _icvUpdateGMM(data,nD,pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
                        //detect shadows in the foreground
                        if (bShadowDetection)
                            if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
                        //generate output
885
                        (* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
                    }
                }
                break;
            case CV_32S:
                for( y = 0; y < size.height; y++ )
                {
                    int* sptr = src->data.i + src->step*y;
                    uchar* pDataOutput = dst->data.ptr + dst->step*y;
                    for( x = 0; x < size.width; x++,
                        pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
                    {
                        //convert data
                        for (int iD=0;iD<nD;iD++) data[iD]=float(sptr[iD]);
                        //update GMM model
                        int result = _icvUpdateGMM(data,nD,pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
                        //detect shadows in the foreground
                        if (bShadowDetection)
                            if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
                        //generate output
905
                        (* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
                    }
                }
                break;
            case CV_32F:
                for( y = 0; y < size.height; y++ )
                {
                    float* sptr = src->data.fl + src->step*y;
                    uchar* pDataOutput = dst->data.ptr + dst->step*y;
                    for( x = 0; x < size.width; x++,
                        pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
                    {
                        //update GMM model
                        int result = _icvUpdateGMM(sptr,nD,pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
                        //detect shadows in the foreground
                        if (bShadowDetection)
                            if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
                        //generate output
923
                        (* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
                    }
                }
                break;
            case CV_64F:
                for( y = 0; y < size.height; y++ )
                {
                    double* sptr = src->data.db + src->step*y;
                    uchar* pDataOutput = dst->data.ptr + dst->step*y;
                    for( x = 0; x < size.width; x++,
                        pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
                    {
                        //convert data
                        for (int iD=0;iD<nD;iD++) data[iD]=float(sptr[iD]);
                        //update GMM model
                        int result = _icvUpdateGMM(data,nD,pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
                        //detect shadows in the foreground
                        if (bShadowDetection)
                            if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
                        //generate output
943
                        (* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
                    }
                }
                break;
        }
    }else ///if (nD==3) - a bit faster
    {
        switch (CV_MAT_DEPTH(src->type))
        {
            case CV_8U:
                for( y = 0; y < size.height; y++ )
                {
                    uchar* sptr = src->data.ptr + src->step*y;
                    uchar* pDataOutput = dst->data.ptr + dst->step*y;
                    for( x = 0; x < size.width; x++,
                        pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
                    {
                        //convert data
                        data[0]=float(sptr[0]),data[1]=float(sptr[1]),data[2]=float(sptr[2]);
                        //update GMM model
                        int result = _icvUpdateGMM_C3(data[0],data[1],data[2],pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
                        //detect shadows in the foreground
                        if (bShadowDetection)
                            if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
                        //generate output
968
                        (* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
                    }
                }
                break;
            case CV_16S:
                for( y = 0; y < size.height; y++ )
                {
                    short* sptr = src->data.s + src->step*y;
                    uchar* pDataOutput = dst->data.ptr + dst->step*y;
                    for( x = 0; x < size.width; x++,
                        pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
                    {
                        //convert data
                        data[0]=float(sptr[0]),data[1]=float(sptr[1]),data[2]=float(sptr[2]);
                        //update GMM model
                        int result = _icvUpdateGMM_C3(data[0],data[1],data[2],pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
                        //detect shadows in the foreground
                        if (bShadowDetection)
                            if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
                        //generate output
988
                        (* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
                    }
                }
                break;
            case CV_16U:
                for( y = 0; y < size.height; y++ )
                {
                    unsigned short* sptr = (unsigned short*) src->data.s + src->step*y;
                    uchar* pDataOutput = dst->data.ptr + dst->step*y;
                    for( x = 0; x < size.width; x++,
                        pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
                    {
                        //convert data
                        data[0]=float(sptr[0]),data[1]=float(sptr[1]),data[2]=float(sptr[2]);
                        //update GMM model
                        int result = _icvUpdateGMM_C3(data[0],data[1],data[2],pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
                        //detect shadows in the foreground
                        if (bShadowDetection)
                            if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
                        //generate output
1008
                        (* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
                    }
                }
                break;
            case CV_32S:
                for( y = 0; y < size.height; y++ )
                {
                    int* sptr = src->data.i + src->step*y;
                    uchar* pDataOutput = dst->data.ptr + dst->step*y;
                    for( x = 0; x < size.width; x++,
                        pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
                    {
                        //convert data
                        data[0]=float(sptr[0]),data[1]=float(sptr[1]),data[2]=float(sptr[2]);
                        //update GMM model
                        int result = _icvUpdateGMM_C3(data[0],data[1],data[2],pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
                        //detect shadows in the foreground
                        if (bShadowDetection)
                            if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
                        //generate output
1028
                        (* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
                    }
                }
                break;
            case CV_32F:
                for( y = 0; y < size.height; y++ )
                {
                    float* sptr = src->data.fl + src->step*y;
                    uchar* pDataOutput = dst->data.ptr + dst->step*y;
                    for( x = 0; x < size.width; x++,
                        pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
                    {
                        //update GMM model
                        int result = _icvUpdateGMM_C3(sptr[0],sptr[1],sptr[2],pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
                        //detect shadows in the foreground
                        if (bShadowDetection)
                            if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
                        //generate output
1046
                        (* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
                    }
                }
                break;
            case CV_64F:
                for( y = 0; y < size.height; y++ )
                {
                    double* sptr = src->data.db + src->step*y;
                    uchar* pDataOutput = dst->data.ptr + dst->step*y;
                    for( x = 0; x < size.width; x++,
                        pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
                    {
                        //convert data
                        data[0]=float(sptr[0]),data[1]=float(sptr[1]),data[2]=float(sptr[2]);
                        //update GMM model
                        int result = _icvUpdateGMM_C3(data[0],data[1],data[2],pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
                        //detect shadows in the foreground
                        if (bShadowDetection)
                            if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
                        //generate output
1066
                        (* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
1067 1068 1069 1070
                    }
                }
                break;
        }
1071
    }//a bit faster for nD=3;
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
}


//only foreground image is updated
//no filtering included
typedef struct CvGaussBGModel2
{
    CV_BG_STAT_MODEL_FIELDS();
    CvGaussBGStatModel2Params params;
    CvGaussBGStatModel2Data   data;
    int                       countFrames;
} CvGaussBGModel2;

CVAPI(CvBGStatModel*) cvCreateGaussianBGModel2( IplImage* first_frame,
                                               CvGaussBGStatModel2Params* params CV_DEFAULT(NULL) );

//////////////////////////////////////////////
//implementation as part of the CvBGStatModel
static void CV_CDECL icvReleaseGaussianBGModel2( CvGaussBGModel2** bg_model );
static int CV_CDECL icvUpdateGaussianBGModel2( IplImage* curr_frame, CvGaussBGModel2*  bg_model );


CV_IMPL CvBGStatModel*
cvCreateGaussianBGModel2( IplImage* first_frame, CvGaussBGStatModel2Params* parameters )
{
    CvGaussBGModel2* bg_model = 0;
    int w,h;
1099

1100
    CV_FUNCNAME( "cvCreateGaussianBGModel2" );
1101

1102
    __BEGIN__;
1103

1104
    CvGaussBGStatModel2Params params;
1105

1106 1107
    if( !CV_IS_IMAGE(first_frame) )
        CV_ERROR( CV_StsBadArg, "Invalid or NULL first_frame parameter" );
1108

1109 1110
    if( first_frame->nChannels>CV_BGFG_MOG2_NDMAX )
        CV_ERROR( CV_StsBadArg, "Maxumum number of channels in the image is excedded (change CV_BGFG_MOG2_MAXBANDS constant)!" );
1111 1112


1113 1114 1115 1116 1117
    CV_CALL( bg_model = (CvGaussBGModel2*)cvAlloc( sizeof(*bg_model) ));
    memset( bg_model, 0, sizeof(*bg_model) );
    bg_model->type    = CV_BG_MODEL_MOG2;
    bg_model->release = (CvReleaseBGStatModel) icvReleaseGaussianBGModel2;
    bg_model->update  = (CvUpdateBGStatModel)  icvUpdateGaussianBGModel2;
1118 1119

    //init parameters
1120
    if( parameters == NULL )
1121
    {
1122
        memset(&params, 0, sizeof(params));
1123

1124 1125 1126 1127
        // These constants are defined in cvaux/include/cvaux.h
        params.bShadowDetection = 1;
        params.bPostFiltering=0;
        params.minArea=CV_BGFG_MOG2_MINAREA;
1128

1129 1130
        //set parameters
        // K - max number of Gaussians per pixel
1131
        params.nM = CV_BGFG_MOG2_NGAUSSIANS;//4;
1132 1133 1134 1135
        // Tb - the threshold - n var
        //pGMM->fTb = 4*4;
        params.fTb = CV_BGFG_MOG2_STD_THRESHOLD*CV_BGFG_MOG2_STD_THRESHOLD;
        // Tbf - the threshold
1136
        //pGMM->fTB = 0.9f;//1-cf from the paper
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
        params.fTB = CV_BGFG_MOG2_BACKGROUND_THRESHOLD;
        // Tgenerate - the threshold
        params.fTg = CV_BGFG_MOG2_STD_THRESHOLD_GENERATE*CV_BGFG_MOG2_STD_THRESHOLD_GENERATE;//update the mode or generate new
        //pGMM->fSigma= 11.0f;//sigma for the new mode
        params.fVarInit = CV_BGFG_MOG2_VAR_INIT;
        params.fVarMax = CV_BGFG_MOG2_VAR_MAX;
        params.fVarMin = CV_BGFG_MOG2_VAR_MIN;
        // alpha - the learning factor
        params.fAlphaT = 1.0f/CV_BGFG_MOG2_WINDOW_SIZE;//0.003f;
        // complexity reduction prior constant
        params.fCT = CV_BGFG_MOG2_CT;//0.05f;
1148

1149 1150 1151 1152 1153 1154 1155 1156 1157
        //shadow
        // Shadow detection
        params.nShadowDetection = (unsigned char)CV_BGFG_MOG2_SHADOW_VALUE;//value 0 to turn off
        params.fTau = CV_BGFG_MOG2_SHADOW_TAU;//0.5f;// Tau - shadow threshold
    }
    else
    {
        params = *parameters;
    }
1158

1159
    bg_model->params = params;
1160 1161

    //image data
1162 1163
    w = first_frame->width;
    h = first_frame->height;
1164

1165 1166
    bg_model->params.nWidth = w;
    bg_model->params.nHeight = h;
1167

1168
    bg_model->params.nND = first_frame->nChannels;
1169 1170


1171
    //allocate GMM data
1172

1173 1174 1175 1176 1177
    //GMM for each pixel
    bg_model->data.rGMM = (CvPBGMMGaussian*) malloc(w*h * params.nM * sizeof(CvPBGMMGaussian));
    //used modes per pixel
    bg_model->data.rnUsedModes = (unsigned char* ) malloc(w*h);
    memset(bg_model->data.rnUsedModes,0,w*h);//no modes used
1178 1179

    //prepare storages
1180 1181
    CV_CALL( bg_model->background = cvCreateImage(cvSize(w,h), IPL_DEPTH_8U, first_frame->nChannels));
    CV_CALL( bg_model->foreground = cvCreateImage(cvSize(w,h), IPL_DEPTH_8U, 1));
1182

1183 1184
    //for eventual filtering
    CV_CALL( bg_model->storage = cvCreateMemStorage());
1185

1186
    bg_model->countFrames = 0;
1187

1188
    __END__;
1189

1190 1191 1192
    if( cvGetErrStatus() < 0 )
    {
        CvBGStatModel* base_ptr = (CvBGStatModel*)bg_model;
1193

1194 1195 1196 1197 1198 1199
        if( bg_model && bg_model->release )
            bg_model->release( &base_ptr );
        else
            cvFree( &bg_model );
        bg_model = 0;
    }
1200

1201 1202 1203 1204 1205 1206 1207 1208
    return (CvBGStatModel*)bg_model;
}


static void CV_CDECL
icvReleaseGaussianBGModel2( CvGaussBGModel2** _bg_model )
{
    CV_FUNCNAME( "icvReleaseGaussianBGModel2" );
1209

1210
    __BEGIN__;
1211

1212 1213
    if( !_bg_model )
        CV_ERROR( CV_StsNullPtr, "" );
1214

1215 1216 1217
    if( *_bg_model )
    {
        CvGaussBGModel2* bg_model = *_bg_model;
1218

1219 1220
        free (bg_model->data.rGMM);
        free (bg_model->data.rnUsedModes);
1221

1222 1223 1224 1225 1226 1227
        cvReleaseImage( &bg_model->background );
        cvReleaseImage( &bg_model->foreground );
        cvReleaseMemStorage(&bg_model->storage);
        memset( bg_model, 0, sizeof(*bg_model) );
        cvFree( _bg_model );
    }
1228

1229 1230 1231 1232 1233 1234
    __END__;
}


static int CV_CDECL
icvUpdateGaussianBGModel2( IplImage* curr_frame, CvGaussBGModel2*  bg_model )
1235 1236
{
    //checks
1237 1238
    if ((curr_frame->height!=bg_model->params.nHeight)||(curr_frame->width!=bg_model->params.nWidth)||(curr_frame->nChannels!=bg_model->params.nND))
        CV_Error( CV_StsBadSize, "the image not the same size as the reserved GMM background model");
1239

1240 1241
    float alpha=bg_model->params.fAlphaT;
    bg_model->countFrames++;
1242

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
    //faster initial updates - increase value of alpha
    if (bg_model->params.bInit){
        float alphaInit=(1.0f/(2*bg_model->countFrames+1));
        if (alphaInit>alpha)
        {
            alpha = alphaInit;
        }
        else
        {
            bg_model->params.bInit = 0;
        }
    }
1255

1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
    //update background
    //icvUpdatePixelBackgroundGMM2( curr_frame, bg_model->foreground, bg_model->data.rGMM,bg_model->data.rnUsedModes,&(bg_model->params),alpha);
    icvUpdatePixelBackgroundGMM2( curr_frame, bg_model->foreground, bg_model->data.rGMM,bg_model->data.rnUsedModes,
                                 bg_model->params.nM,
                                 bg_model->params.fTb,
                                 bg_model->params.fTB,
                                 bg_model->params.fTg,
                                 bg_model->params.fVarInit,
                                 bg_model->params.fVarMax,
                                 bg_model->params.fVarMin,
                                 bg_model->params.fCT,
                                 bg_model->params.fTau,
                                 bg_model->params.bShadowDetection,
                                 bg_model->params.nShadowDetection,
                                 alpha);
1271

1272 1273 1274 1275 1276
    //foreground filtering
    if (bg_model->params.bPostFiltering==1)
    {
        int region_count = 0;
        CvSeq *first_seq = NULL, *prev_seq = NULL, *seq = NULL;
1277 1278


1279 1280
        //filter small regions
        cvClearMemStorage(bg_model->storage);
1281

1282 1283
        cvMorphologyEx( bg_model->foreground, bg_model->foreground, 0, 0, CV_MOP_OPEN, 1 );
        cvMorphologyEx( bg_model->foreground, bg_model->foreground, 0, 0, CV_MOP_CLOSE, 1 );
1284

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
        cvFindContours( bg_model->foreground, bg_model->storage, &first_seq, sizeof(CvContour), CV_RETR_LIST );
        for( seq = first_seq; seq; seq = seq->h_next )
        {
            CvContour* cnt = (CvContour*)seq;
            if( cnt->rect.width * cnt->rect.height < bg_model->params.minArea )
            {
                //delete small contour
                prev_seq = seq->h_prev;
                if( prev_seq )
                {
                    prev_seq->h_next = seq->h_next;
                    if( seq->h_next ) seq->h_next->h_prev = prev_seq;
                }
                else
                {
                    first_seq = seq->h_next;
                    if( seq->h_next ) seq->h_next->h_prev = NULL;
                }
            }
            else
            {
                region_count++;
            }
        }
        bg_model->foreground_regions = first_seq;
        cvZero(bg_model->foreground);
        cvDrawContours(bg_model->foreground, first_seq, CV_RGB(0, 0, 255), CV_RGB(0, 0, 255), 10, -1);
1312 1313

        return region_count;
1314
    }
1315

1316 1317 1318 1319 1320
    return 1;
}

/* End of file. */