提交 33bd250f 编写于 作者: T Teodor Sigaev

Cube extension kNN support

Introduce distance operators over cubes:
<#> taxicab distance
<->  euclidean distance
<=> chebyshev distance

Also add kNN support of those distances in GiST opclass.

Author: Stas Kelvich
上级 3d0c50ff
......@@ -4,7 +4,7 @@ MODULE_big = cube
OBJS= cube.o cubeparse.o $(WIN32RES)
EXTENSION = cube
DATA = cube--1.0.sql cube--unpackaged--1.0.sql
DATA = cube--1.1.sql cube--1.0--1.1.sql cube--unpackaged--1.0.sql
PGFILEDESC = "cube - multidimensional cube data type"
REGRESS = cube
......
/* contrib/cube/cube--1.0--1.1.sql */
-- complain if script is sourced in psql, rather than via ALTER EXTENSION
\echo Use "ALTER EXTENSION cube UPDATE TO '1.1'" to load this file. \quit
CREATE FUNCTION distance_chebyshev(cube, cube)
RETURNS float8
AS 'MODULE_PATHNAME'
LANGUAGE C IMMUTABLE STRICT;
CREATE FUNCTION distance_taxicab(cube, cube)
RETURNS float8
AS 'MODULE_PATHNAME'
LANGUAGE C IMMUTABLE STRICT;
CREATE FUNCTION cube_coord(cube, int4)
RETURNS float8
AS 'MODULE_PATHNAME'
LANGUAGE C IMMUTABLE STRICT;
CREATE FUNCTION cube_coord_llur(cube, int4)
RETURNS float8
AS 'MODULE_PATHNAME'
LANGUAGE C IMMUTABLE STRICT;
CREATE OPERATOR -> (
LEFTARG = cube, RIGHTARG = int, PROCEDURE = cube_coord
);
CREATE OPERATOR ~> (
LEFTARG = cube, RIGHTARG = int, PROCEDURE = cube_coord_llur
);
CREATE OPERATOR <#> (
LEFTARG = cube, RIGHTARG = cube, PROCEDURE = distance_taxicab,
COMMUTATOR = '<#>'
);
CREATE OPERATOR <-> (
LEFTARG = cube, RIGHTARG = cube, PROCEDURE = cube_distance,
COMMUTATOR = '<->'
);
CREATE OPERATOR <=> (
LEFTARG = cube, RIGHTARG = cube, PROCEDURE = distance_chebyshev,
COMMUTATOR = '<=>'
);
CREATE FUNCTION g_cube_distance (internal, cube, smallint, oid)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C IMMUTABLE STRICT;
ALTER OPERATOR FAMILY gist_cube_ops USING gist ADD
OPERATOR 15 ~> (cube, int) FOR ORDER BY float_ops,
OPERATOR 16 <#> (cube, cube) FOR ORDER BY float_ops,
OPERATOR 17 <-> (cube, cube) FOR ORDER BY float_ops,
OPERATOR 18 <=> (cube, cube) FOR ORDER BY float_ops,
FUNCTION 8 (cube, cube) g_cube_distance (internal, cube, smallint, oid);
/* contrib/cube/cube--1.0.sql */
/* contrib/cube/cube--1.1.sql */
-- complain if script is sourced in psql, rather than via CREATE EXTENSION
\echo Use "CREATE EXTENSION cube" to load this file. \quit
......@@ -140,6 +140,16 @@ RETURNS float8
AS 'MODULE_PATHNAME'
LANGUAGE C IMMUTABLE STRICT;
CREATE FUNCTION distance_chebyshev(cube, cube)
RETURNS float8
AS 'MODULE_PATHNAME'
LANGUAGE C IMMUTABLE STRICT;
CREATE FUNCTION distance_taxicab(cube, cube)
RETURNS float8
AS 'MODULE_PATHNAME'
LANGUAGE C IMMUTABLE STRICT;
-- Extracting elements functions
CREATE FUNCTION cube_dim(cube)
......@@ -157,6 +167,16 @@ RETURNS float8
AS 'MODULE_PATHNAME'
LANGUAGE C IMMUTABLE STRICT;
CREATE FUNCTION cube_coord(cube, int4)
RETURNS float8
AS 'MODULE_PATHNAME'
LANGUAGE C IMMUTABLE STRICT;
CREATE FUNCTION cube_coord_llur(cube, int4)
RETURNS float8
AS 'MODULE_PATHNAME'
LANGUAGE C IMMUTABLE STRICT;
CREATE FUNCTION cube(float8) RETURNS cube
AS 'MODULE_PATHNAME', 'cube_f8'
LANGUAGE C IMMUTABLE STRICT;
......@@ -246,6 +266,29 @@ CREATE OPERATOR <@ (
RESTRICT = contsel, JOIN = contjoinsel
);
CREATE OPERATOR -> (
LEFTARG = cube, RIGHTARG = int, PROCEDURE = cube_coord
);
CREATE OPERATOR ~> (
LEFTARG = cube, RIGHTARG = int, PROCEDURE = cube_coord_llur
);
CREATE OPERATOR <#> (
LEFTARG = cube, RIGHTARG = cube, PROCEDURE = distance_taxicab,
COMMUTATOR = '<#>'
);
CREATE OPERATOR <-> (
LEFTARG = cube, RIGHTARG = cube, PROCEDURE = cube_distance,
COMMUTATOR = '<->'
);
CREATE OPERATOR <=> (
LEFTARG = cube, RIGHTARG = cube, PROCEDURE = distance_chebyshev,
COMMUTATOR = '<=>'
);
-- these are obsolete/deprecated:
CREATE OPERATOR @ (
LEFTARG = cube, RIGHTARG = cube, PROCEDURE = cube_contains,
......@@ -296,6 +339,10 @@ RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C IMMUTABLE STRICT;
CREATE FUNCTION g_cube_distance (internal, cube, smallint, oid)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C IMMUTABLE STRICT;
-- Create the operator classes for indexing
......@@ -316,10 +363,17 @@ CREATE OPERATOR CLASS gist_cube_ops
OPERATOR 8 <@ ,
OPERATOR 13 @ ,
OPERATOR 14 ~ ,
OPERATOR 15 ~> (cube, int) FOR ORDER BY float_ops,
OPERATOR 16 <#> (cube, cube) FOR ORDER BY float_ops,
OPERATOR 17 <-> (cube, cube) FOR ORDER BY float_ops,
OPERATOR 18 <=> (cube, cube) FOR ORDER BY float_ops,
FUNCTION 1 g_cube_consistent (internal, cube, int, oid, internal),
FUNCTION 2 g_cube_union (internal, internal),
FUNCTION 3 g_cube_compress (internal),
FUNCTION 4 g_cube_decompress (internal),
FUNCTION 5 g_cube_penalty (internal, internal, internal),
FUNCTION 6 g_cube_picksplit (internal, internal),
FUNCTION 7 g_cube_same (cube, cube, internal);
FUNCTION 7 g_cube_same (cube, cube, internal),
FUNCTION 8 g_cube_distance (internal, cube, smallint, oid);
......@@ -40,6 +40,8 @@ PG_FUNCTION_INFO_V1(cube_c_f8_f8);
PG_FUNCTION_INFO_V1(cube_dim);
PG_FUNCTION_INFO_V1(cube_ll_coord);
PG_FUNCTION_INFO_V1(cube_ur_coord);
PG_FUNCTION_INFO_V1(cube_coord);
PG_FUNCTION_INFO_V1(cube_coord_llur);
PG_FUNCTION_INFO_V1(cube_subset);
/*
......@@ -53,6 +55,7 @@ PG_FUNCTION_INFO_V1(g_cube_penalty);
PG_FUNCTION_INFO_V1(g_cube_picksplit);
PG_FUNCTION_INFO_V1(g_cube_union);
PG_FUNCTION_INFO_V1(g_cube_same);
PG_FUNCTION_INFO_V1(g_cube_distance);
/*
** B-tree support functions
......@@ -79,7 +82,9 @@ PG_FUNCTION_INFO_V1(cube_size);
/*
** miscellaneous
*/
PG_FUNCTION_INFO_V1(distance_taxicab);
PG_FUNCTION_INFO_V1(cube_distance);
PG_FUNCTION_INFO_V1(distance_chebyshev);
PG_FUNCTION_INFO_V1(cube_is_point);
PG_FUNCTION_INFO_V1(cube_enlarge);
......@@ -1257,6 +1262,144 @@ cube_distance(PG_FUNCTION_ARGS)
PG_RETURN_FLOAT8(sqrt(distance));
}
Datum
distance_taxicab(PG_FUNCTION_ARGS)
{
NDBOX *a = PG_GETARG_NDBOX(0),
*b = PG_GETARG_NDBOX(1);
bool swapped = false;
double distance;
int i;
/* swap the box pointers if needed */
if (DIM(a) < DIM(b))
{
NDBOX *tmp = b;
b = a;
a = tmp;
swapped = true;
}
distance = 0.0;
/* compute within the dimensions of (b) */
for (i = 0; i < DIM(b); i++)
distance += fabs(distance_1D(LL_COORD(a,i), UR_COORD(a,i), LL_COORD(b,i), UR_COORD(b,i)));
/* compute distance to zero for those dimensions in (a) absent in (b) */
for (i = DIM(b); i < DIM(a); i++)
distance += fabs(distance_1D(LL_COORD(a,i), UR_COORD(a,i), 0.0, 0.0));
if (swapped)
{
PG_FREE_IF_COPY(b, 0);
PG_FREE_IF_COPY(a, 1);
}
else
{
PG_FREE_IF_COPY(a, 0);
PG_FREE_IF_COPY(b, 1);
}
PG_RETURN_FLOAT8(distance);
}
Datum
distance_chebyshev(PG_FUNCTION_ARGS)
{
NDBOX *a = PG_GETARG_NDBOX(0),
*b = PG_GETARG_NDBOX(1);
bool swapped = false;
double d, distance;
int i;
/* swap the box pointers if needed */
if (DIM(a) < DIM(b))
{
NDBOX *tmp = b;
b = a;
a = tmp;
swapped = true;
}
distance = 0.0;
/* compute within the dimensions of (b) */
for (i = 0; i < DIM(b); i++)
{
d = fabs(distance_1D(LL_COORD(a,i), UR_COORD(a,i), LL_COORD(b,i), UR_COORD(b,i)));
if (d > distance)
distance = d;
}
/* compute distance to zero for those dimensions in (a) absent in (b) */
for (i = DIM(b); i < DIM(a); i++)
{
d = fabs(distance_1D(LL_COORD(a,i), UR_COORD(a,i), 0.0, 0.0));
if (d > distance)
distance = d;
}
if (swapped)
{
PG_FREE_IF_COPY(b, 0);
PG_FREE_IF_COPY(a, 1);
}
else
{
PG_FREE_IF_COPY(a, 0);
PG_FREE_IF_COPY(b, 1);
}
PG_RETURN_FLOAT8(distance);
}
Datum
g_cube_distance(PG_FUNCTION_ARGS)
{
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
NDBOX *cube = DatumGetNDBOX(entry->key);
double retval;
if (strategy == CubeKNNDistanceCoord)
{
int coord = PG_GETARG_INT32(1);
if IS_POINT(cube)
{
retval = (cube)->x[(coord-1)%DIM(cube)];
}
else
{
retval = Min(
(cube)->x[(coord-1)%DIM(cube)],
(cube)->x[(coord-1)%DIM(cube) + DIM(cube)]
);
}
}
else
{
NDBOX *query = PG_GETARG_NDBOX(1);
switch(strategy)
{
case CubeKNNDistanceTaxicab:
retval = DatumGetFloat8(DirectFunctionCall2(distance_taxicab,
PointerGetDatum(cube), PointerGetDatum(query)));
break;
case CubeKNNDistanceEuclid:
retval = DatumGetFloat8(DirectFunctionCall2(cube_distance,
PointerGetDatum(cube), PointerGetDatum(query)));
break;
case CubeKNNDistanceChebyshev:
retval = DatumGetFloat8(DirectFunctionCall2(distance_chebyshev,
PointerGetDatum(cube), PointerGetDatum(query)));
break;
default:
elog(ERROR, "Cube: unknown strategy number.");
}
}
PG_RETURN_FLOAT8(retval);
}
static double
distance_1D(double a1, double a2, double b1, double b2)
{
......@@ -1352,6 +1495,71 @@ cube_ur_coord(PG_FUNCTION_ARGS)
PG_RETURN_FLOAT8(result);
}
/*
* Function returns cube coordinate.
* Numbers from 1 to DIM denotes first corner coordinates.
* Numbers from DIM+1 to 2*DIM denotes second corner coordinates.
*/
Datum
cube_coord(PG_FUNCTION_ARGS)
{
NDBOX *cube = PG_GETARG_NDBOX(0);
int coord = PG_GETARG_INT16(1);
if ((coord > 0) && (coord <= 2*DIM(cube)))
{
if IS_POINT(cube)
PG_RETURN_FLOAT8( (cube)->x[(coord-1)%DIM(cube)] );
else
PG_RETURN_FLOAT8( (cube)->x[coord-1] );
}
else
{
ereport(ERROR,
(errcode(ERRCODE_ARRAY_ELEMENT_ERROR),
errmsg("Cube index out of bounds")));
}
}
/*
* This function works like cube_coord(),
* but rearranges coordinates of corners to get cube representation
* in the form of (lower left, upper right).
* For historical reasons that extension allows us to create cubes in form
* ((2,1),(1,2)) and instead of normalizing such cube to ((1,1),(2,2)) it
* stores cube in original way. But to get cubes ordered by one of dimensions
* directly from the index without extra sort step we need some
* representation-independent coordinate getter. This function implements it.
*/
Datum
cube_coord_llur(PG_FUNCTION_ARGS)
{
NDBOX *cube = PG_GETARG_NDBOX(0);
int coord = PG_GETARG_INT16(1);
if ((coord > 0) && (coord <= DIM(cube)))
{
if IS_POINT(cube)
PG_RETURN_FLOAT8( (cube)->x[coord-1] );
else
PG_RETURN_FLOAT8( Min((cube)->x[coord-1], (cube)->x[coord-1+DIM(cube)]) );
}
else if ((coord > DIM(cube)) && (coord <= 2*DIM(cube)))
{
if IS_POINT(cube)
PG_RETURN_FLOAT8( (cube)->x[(coord-1)%DIM(cube)] );
else
PG_RETURN_FLOAT8( Max((cube)->x[coord-1], (cube)->x[coord-1-DIM(cube)]) );
}
else
{
ereport(ERROR,
(errcode(ERRCODE_ARRAY_ELEMENT_ERROR),
errmsg("Cube index out of bounds")));
}
}
/* Increase or decrease box size by a radius in at least n dimensions. */
Datum
cube_enlarge(PG_FUNCTION_ARGS)
......
# cube extension
comment = 'data type for multidimensional cubes'
default_version = '1.0'
default_version = '1.1'
module_pathname = '$libdir/cube'
relocatable = true
......@@ -47,6 +47,11 @@ typedef struct NDBOX
#define PG_GETARG_NDBOX(x) DatumGetNDBOX(PG_GETARG_DATUM(x))
#define PG_RETURN_NDBOX(x) PG_RETURN_POINTER(x)
#define CubeKNNDistanceCoord 15 /* ~> */
#define CubeKNNDistanceTaxicab 16 /* <#> */
#define CubeKNNDistanceEuclid 17 /* <-> */
#define CubeKNNDistanceChebyshev 18 /* <=> */
/* in cubescan.l */
extern int cube_yylex(void);
extern void cube_yyerror(NDBOX **result, const char *message) pg_attribute_noreturn();
......
......@@ -1381,6 +1381,151 @@ SELECT cube_size('(42,137)'::cube);
0
(1 row)
-- Test of distances
--
SELECT cube_distance('(1,1)'::cube, '(4,5)'::cube);
cube_distance
---------------
5
(1 row)
SELECT '(1,1)'::cube <-> '(4,5)'::cube as d_e;
d_e
-----
5
(1 row)
SELECT distance_chebyshev('(1,1)'::cube, '(4,5)'::cube);
distance_chebyshev
--------------------
4
(1 row)
SELECT '(1,1)'::cube <=> '(4,5)'::cube as d_c;
d_c
-----
4
(1 row)
SELECT distance_taxicab('(1,1)'::cube, '(4,5)'::cube);
distance_taxicab
------------------
7
(1 row)
SELECT '(1,1)'::cube <#> '(4,5)'::cube as d_t;
d_t
-----
7
(1 row)
-- zero for overlapping
SELECT cube_distance('(2,2),(10,10)'::cube, '(0,0),(5,5)'::cube);
cube_distance
---------------
0
(1 row)
SELECT distance_chebyshev('(2,2),(10,10)'::cube, '(0,0),(5,5)'::cube);
distance_chebyshev
--------------------
0
(1 row)
SELECT distance_taxicab('(2,2),(10,10)'::cube, '(0,0),(5,5)'::cube);
distance_taxicab
------------------
0
(1 row)
-- coordinate access
SELECT cube(array[10,20,30], array[40,50,60])->1;
?column?
----------
10
(1 row)
SELECT cube(array[40,50,60], array[10,20,30])->1;
?column?
----------
40
(1 row)
SELECT cube(array[10,20,30], array[40,50,60])->6;
?column?
----------
60
(1 row)
SELECT cube(array[10,20,30], array[40,50,60])->0;
ERROR: Cube index out of bounds
SELECT cube(array[10,20,30], array[40,50,60])->7;
ERROR: Cube index out of bounds
SELECT cube(array[10,20,30], array[40,50,60])->-1;
ERROR: Cube index out of bounds
SELECT cube(array[10,20,30], array[40,50,60])->-6;
ERROR: Cube index out of bounds
SELECT cube(array[10,20,30])->3;
?column?
----------
30
(1 row)
SELECT cube(array[10,20,30])->6;
?column?
----------
30
(1 row)
SELECT cube(array[10,20,30])->-6;
ERROR: Cube index out of bounds
-- "normalized" coordinate access
SELECT cube(array[10,20,30], array[40,50,60])~>1;
?column?
----------
10
(1 row)
SELECT cube(array[40,50,60], array[10,20,30])~>1;
?column?
----------
10
(1 row)
SELECT cube(array[10,20,30], array[40,50,60])~>2;
?column?
----------
20
(1 row)
SELECT cube(array[40,50,60], array[10,20,30])~>2;
?column?
----------
20
(1 row)
SELECT cube(array[10,20,30], array[40,50,60])~>3;
?column?
----------
30
(1 row)
SELECT cube(array[40,50,60], array[10,20,30])~>3;
?column?
----------
30
(1 row)
SELECT cube(array[40,50,60], array[10,20,30])~>0;
ERROR: Cube index out of bounds
SELECT cube(array[40,50,60], array[10,20,30])~>4;
?column?
----------
40
(1 row)
SELECT cube(array[40,50,60], array[10,20,30])~>(-1);
ERROR: Cube index out of bounds
-- Load some example data and build the index
--
CREATE TABLE test_cube (c cube);
......@@ -1407,3 +1552,159 @@ SELECT * FROM test_cube WHERE c && '(3000,1000),(0,0)' GROUP BY c ORDER BY c;
(2424, 160),(2424, 81)
(5 rows)
-- kNN with index
SELECT *, c <-> '(100, 100),(500, 500)'::cube as dist FROM test_cube ORDER BY c <-> '(100, 100),(500, 500)'::cube LIMIT 5;
c | dist
-------------------------+------------------
(337, 455),(240, 359) | 0
(759, 187),(662, 163) | 162
(948, 1201),(907, 1156) | 772.000647668122
(1444, 403),(1346, 344) | 846
(369, 1457),(278, 1409) | 909
(5 rows)
SELECT *, c <=> '(100, 100),(500, 500)'::cube as dist FROM test_cube ORDER BY c <=> '(100, 100),(500, 500)'::cube LIMIT 5;
c | dist
-------------------------+------
(337, 455),(240, 359) | 0
(759, 187),(662, 163) | 162
(948, 1201),(907, 1156) | 656
(1444, 403),(1346, 344) | 846
(369, 1457),(278, 1409) | 909
(5 rows)
SELECT *, c <#> '(100, 100),(500, 500)'::cube as dist FROM test_cube ORDER BY c <#> '(100, 100),(500, 500)'::cube LIMIT 5;
c | dist
-------------------------+------
(337, 455),(240, 359) | 0
(759, 187),(662, 163) | 162
(1444, 403),(1346, 344) | 846
(369, 1457),(278, 1409) | 909
(948, 1201),(907, 1156) | 1063
(5 rows)
-- kNN-based sorting
SELECT * FROM test_cube ORDER BY c~>1 LIMIT 15; -- ascending by 1st coordinate of lower left corner
c
---------------------------
(54, 38679),(3, 38602)
(83, 10271),(15, 10265)
(122, 46832),(64, 46762)
(167, 17214),(92, 17184)
(161, 24465),(107, 24374)
(162, 26040),(120, 25963)
(154, 4019),(138, 3990)
(259, 1850),(175, 1820)
(207, 40886),(179, 40879)
(288, 49588),(204, 49571)
(270, 32616),(226, 32607)
(318, 31489),(235, 31404)
(337, 455),(240, 359)
(270, 29508),(264, 29440)
(369, 1457),(278, 1409)
(15 rows)
SELECT * FROM test_cube ORDER BY c~>4 LIMIT 15; -- ascending by 2nd coordinate or upper right corner
c
---------------------------
(30333, 50),(30273, 6)
(43301, 75),(43227, 43)
(19650, 142),(19630, 51)
(2424, 160),(2424, 81)
(3449, 171),(3354, 108)
(18037, 155),(17941, 109)
(28511, 208),(28479, 114)
(19946, 217),(19941, 118)
(16906, 191),(16816, 139)
(759, 187),(662, 163)
(22684, 266),(22656, 181)
(24423, 255),(24360, 213)
(45989, 249),(45910, 222)
(11399, 377),(11360, 294)
(12162, 389),(12103, 309)
(15 rows)
SELECT * FROM test_cube ORDER BY c~>1 DESC LIMIT 15; -- descending by 1st coordinate of lower left corner
c
-------------------------------
(50027, 49230),(49951, 49214)
(49980, 35004),(49937, 34963)
(49985, 6436),(49927, 6338)
(49999, 27218),(49908, 27176)
(49954, 1340),(49905, 1294)
(49944, 25163),(49902, 25153)
(49981, 34876),(49898, 34786)
(49957, 43390),(49897, 43384)
(49853, 18504),(49848, 18503)
(49902, 41752),(49818, 41746)
(49907, 30225),(49810, 30158)
(49843, 5175),(49808, 5145)
(49887, 24274),(49805, 24184)
(49847, 7128),(49798, 7067)
(49820, 7990),(49771, 7967)
(15 rows)
SELECT * FROM test_cube ORDER BY c~>4 DESC LIMIT 15; -- descending by 2nd coordinate or upper right corner
c
-------------------------------
(36311, 50073),(36258, 49987)
(30746, 50040),(30727, 49992)
(2168, 50012),(2108, 49914)
(21551, 49983),(21492, 49885)
(17954, 49975),(17865, 49915)
(3531, 49962),(3463, 49934)
(19128, 49932),(19112, 49849)
(31287, 49923),(31236, 49913)
(43925, 49912),(43888, 49878)
(29261, 49910),(29247, 49818)
(14913, 49873),(14849, 49836)
(20007, 49858),(19921, 49778)
(38266, 49852),(38233, 49844)
(37595, 49849),(37581, 49834)
(46151, 49848),(46058, 49830)
(15 rows)
-- same thing for index with points
CREATE TABLE test_point(c cube);
INSERT INTO test_point(SELECT cube(array[c->1,c->2,c->3,c->4]) FROM test_cube);
CREATE INDEX ON test_point USING gist(c);
SELECT * FROM test_point ORDER BY c~>1, c~>2 LIMIT 15; -- ascending by 1st then by 2nd coordinate
c
--------------------------
(54, 38679, 3, 38602)
(83, 10271, 15, 10265)
(122, 46832, 64, 46762)
(154, 4019, 138, 3990)
(161, 24465, 107, 24374)
(162, 26040, 120, 25963)
(167, 17214, 92, 17184)
(207, 40886, 179, 40879)
(259, 1850, 175, 1820)
(270, 29508, 264, 29440)
(270, 32616, 226, 32607)
(288, 49588, 204, 49571)
(318, 31489, 235, 31404)
(326, 18837, 285, 18817)
(337, 455, 240, 359)
(15 rows)
SELECT * FROM test_point ORDER BY c~>4 DESC LIMIT 15; -- descending by 1st coordinate
c
------------------------------
(30746, 50040, 30727, 49992)
(36311, 50073, 36258, 49987)
(3531, 49962, 3463, 49934)
(17954, 49975, 17865, 49915)
(2168, 50012, 2108, 49914)
(31287, 49923, 31236, 49913)
(21551, 49983, 21492, 49885)
(43925, 49912, 43888, 49878)
(19128, 49932, 19112, 49849)
(38266, 49852, 38233, 49844)
(14913, 49873, 14849, 49836)
(37595, 49849, 37581, 49834)
(46151, 49848, 46058, 49830)
(29261, 49910, 29247, 49818)
(19233, 49824, 19185, 49794)
(15 rows)
......@@ -1381,6 +1381,151 @@ SELECT cube_size('(42,137)'::cube);
0
(1 row)
-- Test of distances
--
SELECT cube_distance('(1,1)'::cube, '(4,5)'::cube);
cube_distance
---------------
5
(1 row)
SELECT '(1,1)'::cube <-> '(4,5)'::cube as d_e;
d_e
-----
5
(1 row)
SELECT distance_chebyshev('(1,1)'::cube, '(4,5)'::cube);
distance_chebyshev
--------------------
4
(1 row)
SELECT '(1,1)'::cube <=> '(4,5)'::cube as d_c;
d_c
-----
4
(1 row)
SELECT distance_taxicab('(1,1)'::cube, '(4,5)'::cube);
distance_taxicab
------------------
7
(1 row)
SELECT '(1,1)'::cube <#> '(4,5)'::cube as d_t;
d_t
-----
7
(1 row)
-- zero for overlapping
SELECT cube_distance('(2,2),(10,10)'::cube, '(0,0),(5,5)'::cube);
cube_distance
---------------
0
(1 row)
SELECT distance_chebyshev('(2,2),(10,10)'::cube, '(0,0),(5,5)'::cube);
distance_chebyshev
--------------------
0
(1 row)
SELECT distance_taxicab('(2,2),(10,10)'::cube, '(0,0),(5,5)'::cube);
distance_taxicab
------------------
0
(1 row)
-- coordinate access
SELECT cube(array[10,20,30], array[40,50,60])->1;
?column?
----------
10
(1 row)
SELECT cube(array[40,50,60], array[10,20,30])->1;
?column?
----------
40
(1 row)
SELECT cube(array[10,20,30], array[40,50,60])->6;
?column?
----------
60
(1 row)
SELECT cube(array[10,20,30], array[40,50,60])->0;
ERROR: Cube index out of bounds
SELECT cube(array[10,20,30], array[40,50,60])->7;
ERROR: Cube index out of bounds
SELECT cube(array[10,20,30], array[40,50,60])->-1;
ERROR: Cube index out of bounds
SELECT cube(array[10,20,30], array[40,50,60])->-6;
ERROR: Cube index out of bounds
SELECT cube(array[10,20,30])->3;
?column?
----------
30
(1 row)
SELECT cube(array[10,20,30])->6;
?column?
----------
30
(1 row)
SELECT cube(array[10,20,30])->-6;
ERROR: Cube index out of bounds
-- "normalized" coordinate access
SELECT cube(array[10,20,30], array[40,50,60])~>1;
?column?
----------
10
(1 row)
SELECT cube(array[40,50,60], array[10,20,30])~>1;
?column?
----------
10
(1 row)
SELECT cube(array[10,20,30], array[40,50,60])~>2;
?column?
----------
20
(1 row)
SELECT cube(array[40,50,60], array[10,20,30])~>2;
?column?
----------
20
(1 row)
SELECT cube(array[10,20,30], array[40,50,60])~>3;
?column?
----------
30
(1 row)
SELECT cube(array[40,50,60], array[10,20,30])~>3;
?column?
----------
30
(1 row)
SELECT cube(array[40,50,60], array[10,20,30])~>0;
ERROR: Cube index out of bounds
SELECT cube(array[40,50,60], array[10,20,30])~>4;
?column?
----------
40
(1 row)
SELECT cube(array[40,50,60], array[10,20,30])~>(-1);
ERROR: Cube index out of bounds
-- Load some example data and build the index
--
CREATE TABLE test_cube (c cube);
......@@ -1407,3 +1552,159 @@ SELECT * FROM test_cube WHERE c && '(3000,1000),(0,0)' GROUP BY c ORDER BY c;
(2424, 160),(2424, 81)
(5 rows)
-- kNN with index
SELECT *, c <-> '(100, 100),(500, 500)'::cube as dist FROM test_cube ORDER BY c <-> '(100, 100),(500, 500)'::cube LIMIT 5;
c | dist
-------------------------+------------------
(337, 455),(240, 359) | 0
(759, 187),(662, 163) | 162
(948, 1201),(907, 1156) | 772.000647668122
(1444, 403),(1346, 344) | 846
(369, 1457),(278, 1409) | 909
(5 rows)
SELECT *, c <=> '(100, 100),(500, 500)'::cube as dist FROM test_cube ORDER BY c <=> '(100, 100),(500, 500)'::cube LIMIT 5;
c | dist
-------------------------+------
(337, 455),(240, 359) | 0
(759, 187),(662, 163) | 162
(948, 1201),(907, 1156) | 656
(1444, 403),(1346, 344) | 846
(369, 1457),(278, 1409) | 909
(5 rows)
SELECT *, c <#> '(100, 100),(500, 500)'::cube as dist FROM test_cube ORDER BY c <#> '(100, 100),(500, 500)'::cube LIMIT 5;
c | dist
-------------------------+------
(337, 455),(240, 359) | 0
(759, 187),(662, 163) | 162
(1444, 403),(1346, 344) | 846
(369, 1457),(278, 1409) | 909
(948, 1201),(907, 1156) | 1063
(5 rows)
-- kNN-based sorting
SELECT * FROM test_cube ORDER BY c~>1 LIMIT 15; -- ascending by 1st coordinate of lower left corner
c
---------------------------
(54, 38679),(3, 38602)
(83, 10271),(15, 10265)
(122, 46832),(64, 46762)
(167, 17214),(92, 17184)
(161, 24465),(107, 24374)
(162, 26040),(120, 25963)
(154, 4019),(138, 3990)
(259, 1850),(175, 1820)
(207, 40886),(179, 40879)
(288, 49588),(204, 49571)
(270, 32616),(226, 32607)
(318, 31489),(235, 31404)
(337, 455),(240, 359)
(270, 29508),(264, 29440)
(369, 1457),(278, 1409)
(15 rows)
SELECT * FROM test_cube ORDER BY c~>4 LIMIT 15; -- ascending by 2nd coordinate or upper right corner
c
---------------------------
(30333, 50),(30273, 6)
(43301, 75),(43227, 43)
(19650, 142),(19630, 51)
(2424, 160),(2424, 81)
(3449, 171),(3354, 108)
(18037, 155),(17941, 109)
(28511, 208),(28479, 114)
(19946, 217),(19941, 118)
(16906, 191),(16816, 139)
(759, 187),(662, 163)
(22684, 266),(22656, 181)
(24423, 255),(24360, 213)
(45989, 249),(45910, 222)
(11399, 377),(11360, 294)
(12162, 389),(12103, 309)
(15 rows)
SELECT * FROM test_cube ORDER BY c~>1 DESC LIMIT 15; -- descending by 1st coordinate of lower left corner
c
-------------------------------
(50027, 49230),(49951, 49214)
(49980, 35004),(49937, 34963)
(49985, 6436),(49927, 6338)
(49999, 27218),(49908, 27176)
(49954, 1340),(49905, 1294)
(49944, 25163),(49902, 25153)
(49981, 34876),(49898, 34786)
(49957, 43390),(49897, 43384)
(49853, 18504),(49848, 18503)
(49902, 41752),(49818, 41746)
(49907, 30225),(49810, 30158)
(49843, 5175),(49808, 5145)
(49887, 24274),(49805, 24184)
(49847, 7128),(49798, 7067)
(49820, 7990),(49771, 7967)
(15 rows)
SELECT * FROM test_cube ORDER BY c~>4 DESC LIMIT 15; -- descending by 2nd coordinate or upper right corner
c
-------------------------------
(36311, 50073),(36258, 49987)
(30746, 50040),(30727, 49992)
(2168, 50012),(2108, 49914)
(21551, 49983),(21492, 49885)
(17954, 49975),(17865, 49915)
(3531, 49962),(3463, 49934)
(19128, 49932),(19112, 49849)
(31287, 49923),(31236, 49913)
(43925, 49912),(43888, 49878)
(29261, 49910),(29247, 49818)
(14913, 49873),(14849, 49836)
(20007, 49858),(19921, 49778)
(38266, 49852),(38233, 49844)
(37595, 49849),(37581, 49834)
(46151, 49848),(46058, 49830)
(15 rows)
-- same thing for index with points
CREATE TABLE test_point(c cube);
INSERT INTO test_point(SELECT cube(array[c->1,c->2,c->3,c->4]) FROM test_cube);
CREATE INDEX ON test_point USING gist(c);
SELECT * FROM test_point ORDER BY c~>1, c~>2 LIMIT 15; -- ascending by 1st then by 2nd coordinate
c
--------------------------
(54, 38679, 3, 38602)
(83, 10271, 15, 10265)
(122, 46832, 64, 46762)
(154, 4019, 138, 3990)
(161, 24465, 107, 24374)
(162, 26040, 120, 25963)
(167, 17214, 92, 17184)
(207, 40886, 179, 40879)
(259, 1850, 175, 1820)
(270, 29508, 264, 29440)
(270, 32616, 226, 32607)
(288, 49588, 204, 49571)
(318, 31489, 235, 31404)
(326, 18837, 285, 18817)
(337, 455, 240, 359)
(15 rows)
SELECT * FROM test_point ORDER BY c~>4 DESC LIMIT 15; -- descending by 1st coordinate
c
------------------------------
(30746, 50040, 30727, 49992)
(36311, 50073, 36258, 49987)
(3531, 49962, 3463, 49934)
(17954, 49975, 17865, 49915)
(2168, 50012, 2108, 49914)
(31287, 49923, 31236, 49913)
(21551, 49983, 21492, 49885)
(43925, 49912, 43888, 49878)
(19128, 49932, 19112, 49849)
(38266, 49852, 38233, 49844)
(14913, 49873, 14849, 49836)
(37595, 49849, 37581, 49834)
(46151, 49848, 46058, 49830)
(29261, 49910, 29247, 49818)
(19233, 49824, 19185, 49794)
(15 rows)
......@@ -1381,6 +1381,151 @@ SELECT cube_size('(42,137)'::cube);
0
(1 row)
-- Test of distances
--
SELECT cube_distance('(1,1)'::cube, '(4,5)'::cube);
cube_distance
---------------
5
(1 row)
SELECT '(1,1)'::cube <-> '(4,5)'::cube as d_e;
d_e
-----
5
(1 row)
SELECT distance_chebyshev('(1,1)'::cube, '(4,5)'::cube);
distance_chebyshev
--------------------
4
(1 row)
SELECT '(1,1)'::cube <=> '(4,5)'::cube as d_c;
d_c
-----
4
(1 row)
SELECT distance_taxicab('(1,1)'::cube, '(4,5)'::cube);
distance_taxicab
------------------
7
(1 row)
SELECT '(1,1)'::cube <#> '(4,5)'::cube as d_t;
d_t
-----
7
(1 row)
-- zero for overlapping
SELECT cube_distance('(2,2),(10,10)'::cube, '(0,0),(5,5)'::cube);
cube_distance
---------------
0
(1 row)
SELECT distance_chebyshev('(2,2),(10,10)'::cube, '(0,0),(5,5)'::cube);
distance_chebyshev
--------------------
0
(1 row)
SELECT distance_taxicab('(2,2),(10,10)'::cube, '(0,0),(5,5)'::cube);
distance_taxicab
------------------
0
(1 row)
-- coordinate access
SELECT cube(array[10,20,30], array[40,50,60])->1;
?column?
----------
10
(1 row)
SELECT cube(array[40,50,60], array[10,20,30])->1;
?column?
----------
40
(1 row)
SELECT cube(array[10,20,30], array[40,50,60])->6;
?column?
----------
60
(1 row)
SELECT cube(array[10,20,30], array[40,50,60])->0;
ERROR: Cube index out of bounds
SELECT cube(array[10,20,30], array[40,50,60])->7;
ERROR: Cube index out of bounds
SELECT cube(array[10,20,30], array[40,50,60])->-1;
ERROR: Cube index out of bounds
SELECT cube(array[10,20,30], array[40,50,60])->-6;
ERROR: Cube index out of bounds
SELECT cube(array[10,20,30])->3;
?column?
----------
30
(1 row)
SELECT cube(array[10,20,30])->6;
?column?
----------
30
(1 row)
SELECT cube(array[10,20,30])->-6;
ERROR: Cube index out of bounds
-- "normalized" coordinate access
SELECT cube(array[10,20,30], array[40,50,60])~>1;
?column?
----------
10
(1 row)
SELECT cube(array[40,50,60], array[10,20,30])~>1;
?column?
----------
10
(1 row)
SELECT cube(array[10,20,30], array[40,50,60])~>2;
?column?
----------
20
(1 row)
SELECT cube(array[40,50,60], array[10,20,30])~>2;
?column?
----------
20
(1 row)
SELECT cube(array[10,20,30], array[40,50,60])~>3;
?column?
----------
30
(1 row)
SELECT cube(array[40,50,60], array[10,20,30])~>3;
?column?
----------
30
(1 row)
SELECT cube(array[40,50,60], array[10,20,30])~>0;
ERROR: Cube index out of bounds
SELECT cube(array[40,50,60], array[10,20,30])~>4;
?column?
----------
40
(1 row)
SELECT cube(array[40,50,60], array[10,20,30])~>(-1);
ERROR: Cube index out of bounds
-- Load some example data and build the index
--
CREATE TABLE test_cube (c cube);
......@@ -1407,3 +1552,159 @@ SELECT * FROM test_cube WHERE c && '(3000,1000),(0,0)' GROUP BY c ORDER BY c;
(2424, 160),(2424, 81)
(5 rows)
-- kNN with index
SELECT *, c <-> '(100, 100),(500, 500)'::cube as dist FROM test_cube ORDER BY c <-> '(100, 100),(500, 500)'::cube LIMIT 5;
c | dist
-------------------------+------------------
(337, 455),(240, 359) | 0
(759, 187),(662, 163) | 162
(948, 1201),(907, 1156) | 772.000647668122
(1444, 403),(1346, 344) | 846
(369, 1457),(278, 1409) | 909
(5 rows)
SELECT *, c <=> '(100, 100),(500, 500)'::cube as dist FROM test_cube ORDER BY c <=> '(100, 100),(500, 500)'::cube LIMIT 5;
c | dist
-------------------------+------
(337, 455),(240, 359) | 0
(759, 187),(662, 163) | 162
(948, 1201),(907, 1156) | 656
(1444, 403),(1346, 344) | 846
(369, 1457),(278, 1409) | 909
(5 rows)
SELECT *, c <#> '(100, 100),(500, 500)'::cube as dist FROM test_cube ORDER BY c <#> '(100, 100),(500, 500)'::cube LIMIT 5;
c | dist
-------------------------+------
(337, 455),(240, 359) | 0
(759, 187),(662, 163) | 162
(1444, 403),(1346, 344) | 846
(369, 1457),(278, 1409) | 909
(948, 1201),(907, 1156) | 1063
(5 rows)
-- kNN-based sorting
SELECT * FROM test_cube ORDER BY c~>1 LIMIT 15; -- ascending by 1st coordinate of lower left corner
c
---------------------------
(54, 38679),(3, 38602)
(83, 10271),(15, 10265)
(122, 46832),(64, 46762)
(167, 17214),(92, 17184)
(161, 24465),(107, 24374)
(162, 26040),(120, 25963)
(154, 4019),(138, 3990)
(259, 1850),(175, 1820)
(207, 40886),(179, 40879)
(288, 49588),(204, 49571)
(270, 32616),(226, 32607)
(318, 31489),(235, 31404)
(337, 455),(240, 359)
(270, 29508),(264, 29440)
(369, 1457),(278, 1409)
(15 rows)
SELECT * FROM test_cube ORDER BY c~>4 LIMIT 15; -- ascending by 2nd coordinate or upper right corner
c
---------------------------
(30333, 50),(30273, 6)
(43301, 75),(43227, 43)
(19650, 142),(19630, 51)
(2424, 160),(2424, 81)
(3449, 171),(3354, 108)
(18037, 155),(17941, 109)
(28511, 208),(28479, 114)
(19946, 217),(19941, 118)
(16906, 191),(16816, 139)
(759, 187),(662, 163)
(22684, 266),(22656, 181)
(24423, 255),(24360, 213)
(45989, 249),(45910, 222)
(11399, 377),(11360, 294)
(12162, 389),(12103, 309)
(15 rows)
SELECT * FROM test_cube ORDER BY c~>1 DESC LIMIT 15; -- descending by 1st coordinate of lower left corner
c
-------------------------------
(50027, 49230),(49951, 49214)
(49980, 35004),(49937, 34963)
(49985, 6436),(49927, 6338)
(49999, 27218),(49908, 27176)
(49954, 1340),(49905, 1294)
(49944, 25163),(49902, 25153)
(49981, 34876),(49898, 34786)
(49957, 43390),(49897, 43384)
(49853, 18504),(49848, 18503)
(49902, 41752),(49818, 41746)
(49907, 30225),(49810, 30158)
(49843, 5175),(49808, 5145)
(49887, 24274),(49805, 24184)
(49847, 7128),(49798, 7067)
(49820, 7990),(49771, 7967)
(15 rows)
SELECT * FROM test_cube ORDER BY c~>4 DESC LIMIT 15; -- descending by 2nd coordinate or upper right corner
c
-------------------------------
(36311, 50073),(36258, 49987)
(30746, 50040),(30727, 49992)
(2168, 50012),(2108, 49914)
(21551, 49983),(21492, 49885)
(17954, 49975),(17865, 49915)
(3531, 49962),(3463, 49934)
(19128, 49932),(19112, 49849)
(31287, 49923),(31236, 49913)
(43925, 49912),(43888, 49878)
(29261, 49910),(29247, 49818)
(14913, 49873),(14849, 49836)
(20007, 49858),(19921, 49778)
(38266, 49852),(38233, 49844)
(37595, 49849),(37581, 49834)
(46151, 49848),(46058, 49830)
(15 rows)
-- same thing for index with points
CREATE TABLE test_point(c cube);
INSERT INTO test_point(SELECT cube(array[c->1,c->2,c->3,c->4]) FROM test_cube);
CREATE INDEX ON test_point USING gist(c);
SELECT * FROM test_point ORDER BY c~>1, c~>2 LIMIT 15; -- ascending by 1st then by 2nd coordinate
c
--------------------------
(54, 38679, 3, 38602)
(83, 10271, 15, 10265)
(122, 46832, 64, 46762)
(154, 4019, 138, 3990)
(161, 24465, 107, 24374)
(162, 26040, 120, 25963)
(167, 17214, 92, 17184)
(207, 40886, 179, 40879)
(259, 1850, 175, 1820)
(270, 29508, 264, 29440)
(270, 32616, 226, 32607)
(288, 49588, 204, 49571)
(318, 31489, 235, 31404)
(326, 18837, 285, 18817)
(337, 455, 240, 359)
(15 rows)
SELECT * FROM test_point ORDER BY c~>4 DESC LIMIT 15; -- descending by 1st coordinate
c
------------------------------
(30746, 50040, 30727, 49992)
(36311, 50073, 36258, 49987)
(3531, 49962, 3463, 49934)
(17954, 49975, 17865, 49915)
(2168, 50012, 2108, 49914)
(31287, 49923, 31236, 49913)
(21551, 49983, 21492, 49885)
(43925, 49912, 43888, 49878)
(19128, 49932, 19112, 49849)
(38266, 49852, 38233, 49844)
(14913, 49873, 14849, 49836)
(37595, 49849, 37581, 49834)
(46151, 49848, 46058, 49830)
(29261, 49910, 29247, 49818)
(19233, 49824, 19185, 49794)
(15 rows)
......@@ -1381,6 +1381,151 @@ SELECT cube_size('(42,137)'::cube);
0
(1 row)
-- Test of distances
--
SELECT cube_distance('(1,1)'::cube, '(4,5)'::cube);
cube_distance
---------------
5
(1 row)
SELECT '(1,1)'::cube <-> '(4,5)'::cube as d_e;
d_e
-----
5
(1 row)
SELECT distance_chebyshev('(1,1)'::cube, '(4,5)'::cube);
distance_chebyshev
--------------------
4
(1 row)
SELECT '(1,1)'::cube <=> '(4,5)'::cube as d_c;
d_c
-----
4
(1 row)
SELECT distance_taxicab('(1,1)'::cube, '(4,5)'::cube);
distance_taxicab
------------------
7
(1 row)
SELECT '(1,1)'::cube <#> '(4,5)'::cube as d_t;
d_t
-----
7
(1 row)
-- zero for overlapping
SELECT cube_distance('(2,2),(10,10)'::cube, '(0,0),(5,5)'::cube);
cube_distance
---------------
0
(1 row)
SELECT distance_chebyshev('(2,2),(10,10)'::cube, '(0,0),(5,5)'::cube);
distance_chebyshev
--------------------
0
(1 row)
SELECT distance_taxicab('(2,2),(10,10)'::cube, '(0,0),(5,5)'::cube);
distance_taxicab
------------------
0
(1 row)
-- coordinate access
SELECT cube(array[10,20,30], array[40,50,60])->1;
?column?
----------
10
(1 row)
SELECT cube(array[40,50,60], array[10,20,30])->1;
?column?
----------
40
(1 row)
SELECT cube(array[10,20,30], array[40,50,60])->6;
?column?
----------
60
(1 row)
SELECT cube(array[10,20,30], array[40,50,60])->0;
ERROR: Cube index out of bounds
SELECT cube(array[10,20,30], array[40,50,60])->7;
ERROR: Cube index out of bounds
SELECT cube(array[10,20,30], array[40,50,60])->-1;
ERROR: Cube index out of bounds
SELECT cube(array[10,20,30], array[40,50,60])->-6;
ERROR: Cube index out of bounds
SELECT cube(array[10,20,30])->3;
?column?
----------
30
(1 row)
SELECT cube(array[10,20,30])->6;
?column?
----------
30
(1 row)
SELECT cube(array[10,20,30])->-6;
ERROR: Cube index out of bounds
-- "normalized" coordinate access
SELECT cube(array[10,20,30], array[40,50,60])~>1;
?column?
----------
10
(1 row)
SELECT cube(array[40,50,60], array[10,20,30])~>1;
?column?
----------
10
(1 row)
SELECT cube(array[10,20,30], array[40,50,60])~>2;
?column?
----------
20
(1 row)
SELECT cube(array[40,50,60], array[10,20,30])~>2;
?column?
----------
20
(1 row)
SELECT cube(array[10,20,30], array[40,50,60])~>3;
?column?
----------
30
(1 row)
SELECT cube(array[40,50,60], array[10,20,30])~>3;
?column?
----------
30
(1 row)
SELECT cube(array[40,50,60], array[10,20,30])~>0;
ERROR: Cube index out of bounds
SELECT cube(array[40,50,60], array[10,20,30])~>4;
?column?
----------
40
(1 row)
SELECT cube(array[40,50,60], array[10,20,30])~>(-1);
ERROR: Cube index out of bounds
-- Load some example data and build the index
--
CREATE TABLE test_cube (c cube);
......@@ -1407,3 +1552,159 @@ SELECT * FROM test_cube WHERE c && '(3000,1000),(0,0)' GROUP BY c ORDER BY c;
(2424, 160),(2424, 81)
(5 rows)
-- kNN with index
SELECT *, c <-> '(100, 100),(500, 500)'::cube as dist FROM test_cube ORDER BY c <-> '(100, 100),(500, 500)'::cube LIMIT 5;
c | dist
-------------------------+------------------
(337, 455),(240, 359) | 0
(759, 187),(662, 163) | 162
(948, 1201),(907, 1156) | 772.000647668122
(1444, 403),(1346, 344) | 846
(369, 1457),(278, 1409) | 909
(5 rows)
SELECT *, c <=> '(100, 100),(500, 500)'::cube as dist FROM test_cube ORDER BY c <=> '(100, 100),(500, 500)'::cube LIMIT 5;
c | dist
-------------------------+------
(337, 455),(240, 359) | 0
(759, 187),(662, 163) | 162
(948, 1201),(907, 1156) | 656
(1444, 403),(1346, 344) | 846
(369, 1457),(278, 1409) | 909
(5 rows)
SELECT *, c <#> '(100, 100),(500, 500)'::cube as dist FROM test_cube ORDER BY c <#> '(100, 100),(500, 500)'::cube LIMIT 5;
c | dist
-------------------------+------
(337, 455),(240, 359) | 0
(759, 187),(662, 163) | 162
(1444, 403),(1346, 344) | 846
(369, 1457),(278, 1409) | 909
(948, 1201),(907, 1156) | 1063
(5 rows)
-- kNN-based sorting
SELECT * FROM test_cube ORDER BY c~>1 LIMIT 15; -- ascending by 1st coordinate of lower left corner
c
---------------------------
(54, 38679),(3, 38602)
(83, 10271),(15, 10265)
(122, 46832),(64, 46762)
(167, 17214),(92, 17184)
(161, 24465),(107, 24374)
(162, 26040),(120, 25963)
(154, 4019),(138, 3990)
(259, 1850),(175, 1820)
(207, 40886),(179, 40879)
(288, 49588),(204, 49571)
(270, 32616),(226, 32607)
(318, 31489),(235, 31404)
(337, 455),(240, 359)
(270, 29508),(264, 29440)
(369, 1457),(278, 1409)
(15 rows)
SELECT * FROM test_cube ORDER BY c~>4 LIMIT 15; -- ascending by 2nd coordinate or upper right corner
c
---------------------------
(30333, 50),(30273, 6)
(43301, 75),(43227, 43)
(19650, 142),(19630, 51)
(2424, 160),(2424, 81)
(3449, 171),(3354, 108)
(18037, 155),(17941, 109)
(28511, 208),(28479, 114)
(19946, 217),(19941, 118)
(16906, 191),(16816, 139)
(759, 187),(662, 163)
(22684, 266),(22656, 181)
(24423, 255),(24360, 213)
(45989, 249),(45910, 222)
(11399, 377),(11360, 294)
(12162, 389),(12103, 309)
(15 rows)
SELECT * FROM test_cube ORDER BY c~>1 DESC LIMIT 15; -- descending by 1st coordinate of lower left corner
c
-------------------------------
(50027, 49230),(49951, 49214)
(49980, 35004),(49937, 34963)
(49985, 6436),(49927, 6338)
(49999, 27218),(49908, 27176)
(49954, 1340),(49905, 1294)
(49944, 25163),(49902, 25153)
(49981, 34876),(49898, 34786)
(49957, 43390),(49897, 43384)
(49853, 18504),(49848, 18503)
(49902, 41752),(49818, 41746)
(49907, 30225),(49810, 30158)
(49843, 5175),(49808, 5145)
(49887, 24274),(49805, 24184)
(49847, 7128),(49798, 7067)
(49820, 7990),(49771, 7967)
(15 rows)
SELECT * FROM test_cube ORDER BY c~>4 DESC LIMIT 15; -- descending by 2nd coordinate or upper right corner
c
-------------------------------
(36311, 50073),(36258, 49987)
(30746, 50040),(30727, 49992)
(2168, 50012),(2108, 49914)
(21551, 49983),(21492, 49885)
(17954, 49975),(17865, 49915)
(3531, 49962),(3463, 49934)
(19128, 49932),(19112, 49849)
(31287, 49923),(31236, 49913)
(43925, 49912),(43888, 49878)
(29261, 49910),(29247, 49818)
(14913, 49873),(14849, 49836)
(20007, 49858),(19921, 49778)
(38266, 49852),(38233, 49844)
(37595, 49849),(37581, 49834)
(46151, 49848),(46058, 49830)
(15 rows)
-- same thing for index with points
CREATE TABLE test_point(c cube);
INSERT INTO test_point(SELECT cube(array[c->1,c->2,c->3,c->4]) FROM test_cube);
CREATE INDEX ON test_point USING gist(c);
SELECT * FROM test_point ORDER BY c~>1, c~>2 LIMIT 15; -- ascending by 1st then by 2nd coordinate
c
--------------------------
(54, 38679, 3, 38602)
(83, 10271, 15, 10265)
(122, 46832, 64, 46762)
(154, 4019, 138, 3990)
(161, 24465, 107, 24374)
(162, 26040, 120, 25963)
(167, 17214, 92, 17184)
(207, 40886, 179, 40879)
(259, 1850, 175, 1820)
(270, 29508, 264, 29440)
(270, 32616, 226, 32607)
(288, 49588, 204, 49571)
(318, 31489, 235, 31404)
(326, 18837, 285, 18817)
(337, 455, 240, 359)
(15 rows)
SELECT * FROM test_point ORDER BY c~>4 DESC LIMIT 15; -- descending by 1st coordinate
c
------------------------------
(30746, 50040, 30727, 49992)
(36311, 50073, 36258, 49987)
(3531, 49962, 3463, 49934)
(17954, 49975, 17865, 49915)
(2168, 50012, 2108, 49914)
(31287, 49923, 31236, 49913)
(21551, 49983, 21492, 49885)
(43925, 49912, 43888, 49878)
(19128, 49932, 19112, 49849)
(38266, 49852, 38233, 49844)
(14913, 49873, 14849, 49836)
(37595, 49849, 37581, 49834)
(46151, 49848, 46058, 49830)
(29261, 49910, 29247, 49818)
(19233, 49824, 19185, 49794)
(15 rows)
......@@ -325,6 +325,41 @@ SELECT cube_inter('(1,2,3)'::cube, '(5,6,3)'::cube); -- point args
SELECT cube_size('(4,8),(15,16)'::cube);
SELECT cube_size('(42,137)'::cube);
-- Test of distances
--
SELECT cube_distance('(1,1)'::cube, '(4,5)'::cube);
SELECT '(1,1)'::cube <-> '(4,5)'::cube as d_e;
SELECT distance_chebyshev('(1,1)'::cube, '(4,5)'::cube);
SELECT '(1,1)'::cube <=> '(4,5)'::cube as d_c;
SELECT distance_taxicab('(1,1)'::cube, '(4,5)'::cube);
SELECT '(1,1)'::cube <#> '(4,5)'::cube as d_t;
-- zero for overlapping
SELECT cube_distance('(2,2),(10,10)'::cube, '(0,0),(5,5)'::cube);
SELECT distance_chebyshev('(2,2),(10,10)'::cube, '(0,0),(5,5)'::cube);
SELECT distance_taxicab('(2,2),(10,10)'::cube, '(0,0),(5,5)'::cube);
-- coordinate access
SELECT cube(array[10,20,30], array[40,50,60])->1;
SELECT cube(array[40,50,60], array[10,20,30])->1;
SELECT cube(array[10,20,30], array[40,50,60])->6;
SELECT cube(array[10,20,30], array[40,50,60])->0;
SELECT cube(array[10,20,30], array[40,50,60])->7;
SELECT cube(array[10,20,30], array[40,50,60])->-1;
SELECT cube(array[10,20,30], array[40,50,60])->-6;
SELECT cube(array[10,20,30])->3;
SELECT cube(array[10,20,30])->6;
SELECT cube(array[10,20,30])->-6;
-- "normalized" coordinate access
SELECT cube(array[10,20,30], array[40,50,60])~>1;
SELECT cube(array[40,50,60], array[10,20,30])~>1;
SELECT cube(array[10,20,30], array[40,50,60])~>2;
SELECT cube(array[40,50,60], array[10,20,30])~>2;
SELECT cube(array[10,20,30], array[40,50,60])~>3;
SELECT cube(array[40,50,60], array[10,20,30])~>3;
SELECT cube(array[40,50,60], array[10,20,30])~>0;
SELECT cube(array[40,50,60], array[10,20,30])~>4;
SELECT cube(array[40,50,60], array[10,20,30])~>(-1);
-- Load some example data and build the index
--
CREATE TABLE test_cube (c cube);
......@@ -336,3 +371,21 @@ SELECT * FROM test_cube WHERE c && '(3000,1000),(0,0)' ORDER BY c;
-- Test sorting
SELECT * FROM test_cube WHERE c && '(3000,1000),(0,0)' GROUP BY c ORDER BY c;
-- kNN with index
SELECT *, c <-> '(100, 100),(500, 500)'::cube as dist FROM test_cube ORDER BY c <-> '(100, 100),(500, 500)'::cube LIMIT 5;
SELECT *, c <=> '(100, 100),(500, 500)'::cube as dist FROM test_cube ORDER BY c <=> '(100, 100),(500, 500)'::cube LIMIT 5;
SELECT *, c <#> '(100, 100),(500, 500)'::cube as dist FROM test_cube ORDER BY c <#> '(100, 100),(500, 500)'::cube LIMIT 5;
-- kNN-based sorting
SELECT * FROM test_cube ORDER BY c~>1 LIMIT 15; -- ascending by 1st coordinate of lower left corner
SELECT * FROM test_cube ORDER BY c~>4 LIMIT 15; -- ascending by 2nd coordinate or upper right corner
SELECT * FROM test_cube ORDER BY c~>1 DESC LIMIT 15; -- descending by 1st coordinate of lower left corner
SELECT * FROM test_cube ORDER BY c~>4 DESC LIMIT 15; -- descending by 2nd coordinate or upper right corner
-- same thing for index with points
CREATE TABLE test_point(c cube);
INSERT INTO test_point(SELECT cube(array[c->1,c->2,c->3,c->4]) FROM test_cube);
CREATE INDEX ON test_point USING gist(c);
SELECT * FROM test_point ORDER BY c~>1, c~>2 LIMIT 15; -- ascending by 1st then by 2nd coordinate
SELECT * FROM test_point ORDER BY c~>4 DESC LIMIT 15; -- descending by 1st coordinate
......@@ -75,6 +75,8 @@
entered in. The <type>cube</> functions
automatically swap values if needed to create a uniform
<quote>lower left &mdash; upper right</> internal representation.
When corners coincide cube stores only one corner along with a
special flag in order to reduce size wasted.
</para>
<para>
......@@ -131,6 +133,19 @@
<entry><literal>a &lt;@ b</></entry>
<entry>The cube a is contained in the cube b.</entry>
</row>
<row>
<entry><literal>a -&gt; n</></entry>
<entry>Get n-th coordinate of cube.</entry>
</row>
<row>
<entry><literal>a ~&gt; n</></entry>
<entry>
Get n-th coordinate in 'normalized' cube representation. Noramlization
means coordinate rearrangement to form (lower left, upper right).
</entry>
</row>
</tbody>
</tgroup>
</table>
......@@ -143,6 +158,87 @@
data types!)
</para>
<para>
GiST index can be used to retrieve nearest neighbours via several metric
operators. As always any of them can be used as ordinary function.
</para>
<table id="cube-gistknn-operators">
<title>Cube GiST-kNN Operators</title>
<tgroup cols="2">
<thead>
<row>
<entry>Operator</entry>
<entry>Description</entry>
</row>
</thead>
<tbody>
<row>
<entry><literal>a &lt;-&gt; b</></entry>
<entry>Euclidean distance between a and b</entry>
</row>
<row>
<entry><literal>a &lt;#&gt; b</></entry>
<entry>Taxicab (L-1 metric) distance between a and b</entry>
</row>
<row>
<entry><literal>a &lt;=&gt; b</></entry>
<entry>Chebyshev (L-inf metric) distance between a and b</entry>
</row>
</tbody>
</tgroup>
</table>
<para>
Selection of nearing neigbours can be done in the following way:
</para>
<programlisting>
SELECT c FROM test
ORDER BY cube(array[0.5,0.5,0.5])<->c
LIMIT 1;
</programlisting>
<para>
Also kNN framework allows us to cheat with metrics in order to get results
sorted by selected coodinate directly from the index without extra sorting
step. That technique significantly faster on small values of LIMIT, however
with bigger values of LIMIT planner will switch automatically to standart
index scan and sort.
That behavior can be achieved using coordinate operator
(cube c)~&gt;(int offset).
</para>
<programlisting>
=> select cube(array[0.41,0.42,0.43])~>2 as coord;
coord
-------
0.42
(1 row)
</programlisting>
<para>
So using that operator as kNN metric we can obtain cubes sorted by it's
coordinate.
</para>
<para>
To get cubes ordered by first coordinate of lower left corner ascending
one can use the following query:
</para>
<programlisting>
SELECT c FROM test ORDER BY c~>1 LIMIT 5;
</programlisting>
<para>
And to get cubes descending by first coordinate of upper right corner
of 2d-cube:
</para>
<programlisting>
SELECT c FROM test ORDER BY c~>3 DESC LIMIT 5;
</programlisting>
<para>
The standard B-tree operators are also provided, for example
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册