planner.c 122.6 KB
Newer Older
1 2
/*-------------------------------------------------------------------------
 *
3
 * planner.c
4
 *	  The query optimizer external interface.
5
 *
B
Bruce Momjian 已提交
6
 * Portions Copyright (c) 1996-2015, PostgreSQL Global Development Group
B
Add:  
Bruce Momjian 已提交
7
 * Portions Copyright (c) 1994, Regents of the University of California
8 9 10
 *
 *
 * IDENTIFICATION
11
 *	  src/backend/optimizer/plan/planner.c
12 13 14
 *
 *-------------------------------------------------------------------------
 */
M
Marc G. Fournier 已提交
15

16 17
#include "postgres.h"

18 19
#include <limits.h>

20
#include "access/htup_details.h"
21
#include "executor/executor.h"
22
#include "executor/nodeAgg.h"
23
#include "foreign/fdwapi.h"
24
#include "miscadmin.h"
B
Bruce Momjian 已提交
25
#include "nodes/makefuncs.h"
26 27 28
#ifdef OPTIMIZER_DEBUG
#include "nodes/print.h"
#endif
B
Bruce Momjian 已提交
29
#include "optimizer/clauses.h"
30 31
#include "optimizer/cost.h"
#include "optimizer/pathnode.h"
32
#include "optimizer/paths.h"
33
#include "optimizer/plancat.h"
B
Bruce Momjian 已提交
34
#include "optimizer/planmain.h"
35 36
#include "optimizer/planner.h"
#include "optimizer/prep.h"
37
#include "optimizer/subselect.h"
38
#include "optimizer/tlist.h"
39
#include "parser/analyze.h"
40
#include "parser/parsetree.h"
41
#include "rewrite/rewriteManip.h"
42
#include "utils/rel.h"
43
#include "utils/selfuncs.h"
44

45

46
/* GUC parameter */
47
double		cursor_tuple_fraction = DEFAULT_CURSOR_TUPLE_FRACTION;
48

49 50 51 52
/* Hook for plugins to get control in planner() */
planner_hook_type planner_hook = NULL;


53
/* Expression kind codes for preprocess_expression */
54 55 56
#define EXPRKIND_QUAL			0
#define EXPRKIND_TARGET			1
#define EXPRKIND_RTFUNC			2
B
Bruce Momjian 已提交
57
#define EXPRKIND_RTFUNC_LATERAL 3
58
#define EXPRKIND_VALUES			4
B
Bruce Momjian 已提交
59
#define EXPRKIND_VALUES_LATERAL 5
60 61 62
#define EXPRKIND_LIMIT			6
#define EXPRKIND_APPINFO		7
#define EXPRKIND_PHV			8
63
#define EXPRKIND_TABLESAMPLE    9
64

65 66 67 68 69 70
/* Passthrough data for standard_qp_callback */
typedef struct
{
	List	   *tlist;			/* preprocessed query targetlist */
	List	   *activeWindows;	/* active windows, if any */
} standard_qp_extra;
71

72
/* Local functions */
73 74
static Node *preprocess_expression(PlannerInfo *root, Node *expr, int kind);
static void preprocess_qual_conditions(PlannerInfo *root, Node *jtnode);
75
static Plan *inheritance_planner(PlannerInfo *root);
76
static Plan *grouping_planner(PlannerInfo *root, double tuple_fraction);
77
static void preprocess_rowmarks(PlannerInfo *root);
78
static double preprocess_limit(PlannerInfo *root,
B
Bruce Momjian 已提交
79
				 double tuple_fraction,
B
Bruce Momjian 已提交
80
				 int64 *offset_est, int64 *count_est);
81
static bool limit_needed(Query *parse);
82
static void preprocess_groupclause(PlannerInfo *root);
83
static void standard_qp_callback(PlannerInfo *root, void *extra);
84 85
static bool choose_hashed_grouping(PlannerInfo *root,
					   double tuple_fraction, double limit_tuples,
86
					   double path_rows, int path_width,
87
					   Path *cheapest_path, Path *sorted_path,
88
					   double dNumGroups, AggClauseCosts *agg_costs);
89 90
static bool choose_hashed_distinct(PlannerInfo *root,
					   double tuple_fraction, double limit_tuples,
91 92 93 94
					   double path_rows, int path_width,
					   Cost cheapest_startup_cost, Cost cheapest_total_cost,
					   Cost sorted_startup_cost, Cost sorted_total_cost,
					   List *sorted_pathkeys,
95
					   double dNumDistinctRows);
96
static List *make_subplanTargetList(PlannerInfo *root, List *tlist,
97
					   AttrNumber **groupColIdx, bool *need_tlist_eval);
98
static int	get_grouping_column_index(Query *parse, TargetEntry *tle);
99
static void locate_grouping_columns(PlannerInfo *root,
B
Bruce Momjian 已提交
100 101 102
						List *tlist,
						List *sub_tlist,
						AttrNumber *groupColIdx);
103
static List *postprocess_setop_tlist(List *new_tlist, List *orig_tlist);
T
Tom Lane 已提交
104
static List *select_active_windows(PlannerInfo *root, WindowFuncLists *wflists);
105 106
static List *make_windowInputTargetList(PlannerInfo *root,
						   List *tlist, List *activeWindows);
T
Tom Lane 已提交
107
static List *make_pathkeys_for_window(PlannerInfo *root, WindowClause *wc,
108
						 List *tlist);
T
Tom Lane 已提交
109
static void get_column_info_for_window(PlannerInfo *root, WindowClause *wc,
110 111 112 113 114 115 116 117
						   List *tlist,
						   int numSortCols, AttrNumber *sortColIdx,
						   int *partNumCols,
						   AttrNumber **partColIdx,
						   Oid **partOperators,
						   int *ordNumCols,
						   AttrNumber **ordColIdx,
						   Oid **ordOperators);
118

119 120 121

/*****************************************************************************
 *
122 123
 *	   Query optimizer entry point
 *
124 125 126 127 128 129 130 131
 * To support loadable plugins that monitor or modify planner behavior,
 * we provide a hook variable that lets a plugin get control before and
 * after the standard planning process.  The plugin would normally call
 * standard_planner().
 *
 * Note to plugin authors: standard_planner() scribbles on its Query input,
 * so you'd better copy that data structure if you want to plan more than once.
 *
132
 *****************************************************************************/
133
PlannedStmt *
134
planner(Query *parse, int cursorOptions, ParamListInfo boundParams)
135 136 137 138 139 140 141 142 143 144 145 146
{
	PlannedStmt *result;

	if (planner_hook)
		result = (*planner_hook) (parse, cursorOptions, boundParams);
	else
		result = standard_planner(parse, cursorOptions, boundParams);
	return result;
}

PlannedStmt *
standard_planner(Query *parse, int cursorOptions, ParamListInfo boundParams)
147
{
148
	PlannedStmt *result;
149
	PlannerGlobal *glob;
150
	double		tuple_fraction;
151 152
	PlannerInfo *root;
	Plan	   *top_plan;
153
	ListCell   *lp,
154
			   *lr;
155

156 157 158 159 160
	/* Cursor options may come from caller or from DECLARE CURSOR stmt */
	if (parse->utilityStmt &&
		IsA(parse->utilityStmt, DeclareCursorStmt))
		cursorOptions |= ((DeclareCursorStmt *) parse->utilityStmt)->options;

161
	/*
162 163 164 165
	 * Set up global state for this planner invocation.  This data is needed
	 * across all levels of sub-Query that might exist in the given command,
	 * so we keep it in a separate struct that's linked to by each per-Query
	 * PlannerInfo.
166
	 */
167
	glob = makeNode(PlannerGlobal);
168

169
	glob->boundParams = boundParams;
170
	glob->subplans = NIL;
171
	glob->subroots = NIL;
172
	glob->rewindPlanIDs = NULL;
173
	glob->finalrtable = NIL;
174
	glob->finalrowmarks = NIL;
175
	glob->resultRelations = NIL;
176
	glob->relationOids = NIL;
177
	glob->invalItems = NIL;
178
	glob->nParamExec = 0;
179
	glob->lastPHId = 0;
180
	glob->lastRowMarkId = 0;
181
	glob->transientPlan = false;
182
	glob->hasRowSecurity = false;
183

184
	/* Determine what fraction of the plan is likely to be scanned */
185
	if (cursorOptions & CURSOR_OPT_FAST_PLAN)
186 187
	{
		/*
B
Bruce Momjian 已提交
188
		 * We have no real idea how many tuples the user will ultimately FETCH
189 190 191 192 193 194 195 196
		 * from a cursor, but it is often the case that he doesn't want 'em
		 * all, or would prefer a fast-start plan anyway so that he can
		 * process some of the tuples sooner.  Use a GUC parameter to decide
		 * what fraction to optimize for.
		 */
		tuple_fraction = cursor_tuple_fraction;

		/*
197
		 * We document cursor_tuple_fraction as simply being a fraction, which
B
Bruce Momjian 已提交
198
		 * means the edge cases 0 and 1 have to be treated specially here.  We
199
		 * convert 1 to 0 ("all the tuples") and 0 to a very small fraction.
200
		 */
201 202 203 204
		if (tuple_fraction >= 1.0)
			tuple_fraction = 0.0;
		else if (tuple_fraction <= 0.0)
			tuple_fraction = 1e-10;
205 206 207 208 209 210 211
	}
	else
	{
		/* Default assumption is we need all the tuples */
		tuple_fraction = 0.0;
	}

212
	/* primary planning entry point (may recurse for subqueries) */
213 214
	top_plan = subquery_planner(glob, parse, NULL,
								false, tuple_fraction, &root);
215

216
	/*
B
Bruce Momjian 已提交
217 218
	 * If creating a plan for a scrollable cursor, make sure it can run
	 * backwards on demand.  Add a Material node at the top at need.
219
	 */
220
	if (cursorOptions & CURSOR_OPT_SCROLL)
221
	{
222 223
		if (!ExecSupportsBackwardScan(top_plan))
			top_plan = materialize_finished_plan(top_plan);
224 225
	}

226
	/* final cleanup of the plan */
227
	Assert(glob->finalrtable == NIL);
228
	Assert(glob->finalrowmarks == NIL);
229
	Assert(glob->resultRelations == NIL);
230
	top_plan = set_plan_references(root, top_plan);
231
	/* ... and the subplans (both regular subplans and initplans) */
232 233
	Assert(list_length(glob->subplans) == list_length(glob->subroots));
	forboth(lp, glob->subplans, lr, glob->subroots)
234
	{
B
Bruce Momjian 已提交
235
		Plan	   *subplan = (Plan *) lfirst(lp);
236
		PlannerInfo *subroot = (PlannerInfo *) lfirst(lr);
237

238
		lfirst(lp) = set_plan_references(subroot, subplan);
239
	}
240 241 242 243 244

	/* build the PlannedStmt result */
	result = makeNode(PlannedStmt);

	result->commandType = parse->commandType;
245
	result->queryId = parse->queryId;
246
	result->hasReturning = (parse->returningList != NIL);
247
	result->hasModifyingCTE = parse->hasModifyingCTE;
248 249
	result->isUpsert =
		(parse->onConflict && parse->onConflict->action == ONCONFLICT_UPDATE);
250
	result->canSetTag = parse->canSetTag;
251
	result->transientPlan = glob->transientPlan;
252
	result->planTree = top_plan;
253
	result->rtable = glob->finalrtable;
254
	result->resultRelations = glob->resultRelations;
255
	result->utilityStmt = parse->utilityStmt;
256
	result->subplans = glob->subplans;
257
	result->rewindPlanIDs = glob->rewindPlanIDs;
258
	result->rowMarks = glob->finalrowmarks;
259
	result->relationOids = glob->relationOids;
260
	result->invalItems = glob->invalItems;
261
	result->nParamExec = glob->nParamExec;
262
	result->hasRowSecurity = glob->hasRowSecurity;
263 264

	return result;
265
}
266

267

268
/*--------------------
269 270 271
 * subquery_planner
 *	  Invokes the planner on a subquery.  We recurse to here for each
 *	  sub-SELECT found in the query tree.
272
 *
273
 * glob is the global state for the current planner run.
274
 * parse is the querytree produced by the parser & rewriter.
275 276
 * parent_root is the immediate parent Query's info (NULL at the top level).
 * hasRecursion is true if this is a recursive WITH query.
277
 * tuple_fraction is the fraction of tuples we expect will be retrieved.
278
 * tuple_fraction is interpreted as explained for grouping_planner, below.
279
 *
280 281
 * If subroot isn't NULL, we pass back the query's final PlannerInfo struct;
 * among other things this tells the output sort ordering of the plan.
282
 *
283
 * Basically, this routine does the stuff that should only be done once
284 285 286 287 288
 * per Query object.  It then calls grouping_planner.  At one time,
 * grouping_planner could be invoked recursively on the same Query object;
 * that's not currently true, but we keep the separation between the two
 * routines anyway, in case we need it again someday.
 *
289 290
 * subquery_planner will be called recursively to handle sub-Query nodes
 * found within the query's expressions and rangetable.
291
 *
292 293
 * Returns a query plan.
 *--------------------
294
 */
295
Plan *
296
subquery_planner(PlannerGlobal *glob, Query *parse,
297 298
				 PlannerInfo *parent_root,
				 bool hasRecursion, double tuple_fraction,
299
				 PlannerInfo **subroot)
300
{
301
	int			num_old_subplans = list_length(glob->subplans);
302
	PlannerInfo *root;
303
	Plan	   *plan;
304
	List	   *newWithCheckOptions;
305
	List	   *newHaving;
306
	bool		hasOuterJoins;
307
	ListCell   *l;
308

309 310 311
	/* Create a PlannerInfo data structure for this subquery */
	root = makeNode(PlannerInfo);
	root->parse = parse;
312
	root->glob = glob;
313 314
	root->query_level = parent_root ? parent_root->query_level + 1 : 1;
	root->parent_root = parent_root;
315
	root->plan_params = NIL;
316
	root->planner_cxt = CurrentMemoryContext;
317
	root->init_plans = NIL;
318
	root->cte_plan_ids = NIL;
319
	root->multiexpr_params = NIL;
320
	root->eq_classes = NIL;
321
	root->append_rel_list = NIL;
322
	root->rowMarks = NIL;
323
	root->hasInheritedTarget = false;
324

325 326
	root->hasRecursion = hasRecursion;
	if (hasRecursion)
327
		root->wt_param_id = SS_assign_special_param(root);
328 329 330 331 332
	else
		root->wt_param_id = -1;
	root->non_recursive_plan = NULL;

	/*
333 334
	 * If there is a WITH list, process each WITH query and build an initplan
	 * SubPlan structure for it.
335 336 337 338
	 */
	if (parse->cteList)
		SS_process_ctes(root);

339
	/*
340 341 342 343
	 * Look for ANY and EXISTS SubLinks in WHERE and JOIN/ON clauses, and try
	 * to transform them into joins.  Note that this step does not descend
	 * into subqueries; if we pull up any subqueries below, their SubLinks are
	 * processed just before pulling them up.
344 345
	 */
	if (parse->hasSubLinks)
346
		pull_up_sublinks(root);
347

348
	/*
349 350
	 * Scan the rangetable for set-returning functions, and inline them if
	 * possible (producing subqueries that might get pulled up next).
351
	 * Recursion issues here are handled in the same way as for SubLinks.
352 353 354
	 */
	inline_set_returning_functions(root);

355
	/*
356 357
	 * Check to see if any subqueries in the jointree can be merged into this
	 * query.
358
	 */
359
	pull_up_subqueries(root);
B
Bruce Momjian 已提交
360

361
	/*
362 363 364
	 * If this is a simple UNION ALL query, flatten it into an appendrel. We
	 * do this now because it requires applying pull_up_subqueries to the leaf
	 * queries of the UNION ALL, which weren't touched above because they
365 366 367 368 369
	 * weren't referenced by the jointree (they will be after we do this).
	 */
	if (parse->setOperations)
		flatten_simple_union_all(root);

370
	/*
B
Bruce Momjian 已提交
371 372
	 * Detect whether any rangetable entries are RTE_JOIN kind; if not, we can
	 * avoid the expense of doing flatten_join_alias_vars().  Also check for
373 374 375
	 * outer joins --- if none, we can skip reduce_outer_joins().  And check
	 * for LATERAL RTEs, too.  This must be done after we have done
	 * pull_up_subqueries(), of course.
376
	 */
377
	root->hasJoinRTEs = false;
378
	root->hasLateralRTEs = false;
379
	hasOuterJoins = false;
380
	foreach(l, parse->rtable)
381
	{
382
		RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
383 384 385

		if (rte->rtekind == RTE_JOIN)
		{
386
			root->hasJoinRTEs = true;
387
			if (IS_OUTER_JOIN(rte->jointype))
388
				hasOuterJoins = true;
389
		}
390 391
		if (rte->lateral)
			root->hasLateralRTEs = true;
392 393
	}

394
	/*
B
Bruce Momjian 已提交
395
	 * Preprocess RowMark information.  We need to do this after subquery
396 397 398
	 * pullup (so that all non-inherited RTEs are present) and before
	 * inheritance expansion (so that the info is available for
	 * expand_inherited_tables to examine and modify).
399
	 */
400
	preprocess_rowmarks(root);
401

402 403 404 405 406 407 408 409 410 411
	/*
	 * Expand any rangetable entries that are inheritance sets into "append
	 * relations".  This can add entries to the rangetable, but they must be
	 * plain base relations not joins, so it's OK (and marginally more
	 * efficient) to do it after checking for join RTEs.  We must do it after
	 * pulling up subqueries, else we'd fail to handle inherited tables in
	 * subqueries.
	 */
	expand_inherited_tables(root);

412 413
	/*
	 * Set hasHavingQual to remember if HAVING clause is present.  Needed
B
Bruce Momjian 已提交
414 415
	 * because preprocess_expression will reduce a constant-true condition to
	 * an empty qual list ... but "HAVING TRUE" is not a semantic no-op.
416
	 */
417
	root->hasHavingQual = (parse->havingQual != NULL);
418

419 420 421
	/* Clear this flag; might get set in distribute_qual_to_rels */
	root->hasPseudoConstantQuals = false;

422
	/*
423 424 425 426
	 * Do expression preprocessing on targetlist and quals, as well as other
	 * random expressions in the querytree.  Note that we do not need to
	 * handle sort/group expressions explicitly, because they are actually
	 * part of the targetlist.
427
	 */
428
	parse->targetList = (List *)
429
		preprocess_expression(root, (Node *) parse->targetList,
430 431
							  EXPRKIND_TARGET);

432 433 434 435 436 437 438 439 440 441 442 443
	newWithCheckOptions = NIL;
	foreach(l, parse->withCheckOptions)
	{
		WithCheckOption *wco = (WithCheckOption *) lfirst(l);

		wco->qual = preprocess_expression(root, wco->qual,
										  EXPRKIND_QUAL);
		if (wco->qual != NULL)
			newWithCheckOptions = lappend(newWithCheckOptions, wco);
	}
	parse->withCheckOptions = newWithCheckOptions;

444 445 446 447
	parse->returningList = (List *)
		preprocess_expression(root, (Node *) parse->returningList,
							  EXPRKIND_TARGET);

448
	preprocess_qual_conditions(root, (Node *) parse->jointree);
449

450
	parse->havingQual = preprocess_expression(root, parse->havingQual,
451 452
											  EXPRKIND_QUAL);

453 454 455 456 457 458 459 460 461 462 463
	foreach(l, parse->windowClause)
	{
		WindowClause *wc = (WindowClause *) lfirst(l);

		/* partitionClause/orderClause are sort/group expressions */
		wc->startOffset = preprocess_expression(root, wc->startOffset,
												EXPRKIND_LIMIT);
		wc->endOffset = preprocess_expression(root, wc->endOffset,
											  EXPRKIND_LIMIT);
	}

464
	parse->limitOffset = preprocess_expression(root, parse->limitOffset,
465
											   EXPRKIND_LIMIT);
466
	parse->limitCount = preprocess_expression(root, parse->limitCount,
467 468
											  EXPRKIND_LIMIT);

469 470 471 472 473 474 475 476 477 478 479
	if (parse->onConflict)
	{
		parse->onConflict->onConflictSet = (List *)
			preprocess_expression(root, (Node *) parse->onConflict->onConflictSet,
								  EXPRKIND_TARGET);

		parse->onConflict->onConflictWhere =
			preprocess_expression(root, (Node *) parse->onConflict->onConflictWhere,
								  EXPRKIND_QUAL);
	}

480 481
	root->append_rel_list = (List *)
		preprocess_expression(root, (Node *) root->append_rel_list,
482
							  EXPRKIND_APPINFO);
483

484
	/* Also need to preprocess expressions within RTEs */
485
	foreach(l, parse->rtable)
486
	{
487
		RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
488
		int			kind;
489

490 491 492 493 494 495 496 497 498 499 500 501 502
		if (rte->rtekind == RTE_RELATION)
		{
			if (rte->tablesample)
			{
				rte->tablesample->args = (List *)
					preprocess_expression(root, (Node *) rte->tablesample->args,
										  EXPRKIND_TABLESAMPLE);
				rte->tablesample->repeatable = (Node *)
					preprocess_expression(root, rte->tablesample->repeatable,
										  EXPRKIND_TABLESAMPLE);
			}
		}
		else if (rte->rtekind == RTE_SUBQUERY)
503 504 505 506 507 508 509 510 511 512 513 514 515 516
		{
			/*
			 * We don't want to do all preprocessing yet on the subquery's
			 * expressions, since that will happen when we plan it.  But if it
			 * contains any join aliases of our level, those have to get
			 * expanded now, because planning of the subquery won't do it.
			 * That's only possible if the subquery is LATERAL.
			 */
			if (rte->lateral && root->hasJoinRTEs)
				rte->subquery = (Query *)
					flatten_join_alias_vars(root, (Node *) rte->subquery);
		}
		else if (rte->rtekind == RTE_FUNCTION)
		{
517
			/* Preprocess the function expression(s) fully */
518
			kind = rte->lateral ? EXPRKIND_RTFUNC_LATERAL : EXPRKIND_RTFUNC;
519
			rte->functions = (List *) preprocess_expression(root, (Node *) rte->functions, kind);
520
		}
521
		else if (rte->rtekind == RTE_VALUES)
522 523 524
		{
			/* Preprocess the values lists fully */
			kind = rte->lateral ? EXPRKIND_VALUES_LATERAL : EXPRKIND_VALUES;
525
			rte->values_lists = (List *)
526 527
				preprocess_expression(root, (Node *) rte->values_lists, kind);
		}
528 529
	}

530
	/*
B
Bruce Momjian 已提交
531 532 533
	 * In some cases we may want to transfer a HAVING clause into WHERE. We
	 * cannot do so if the HAVING clause contains aggregates (obviously) or
	 * volatile functions (since a HAVING clause is supposed to be executed
534 535 536 537
	 * only once per group).  Also, it may be that the clause is so expensive
	 * to execute that we're better off doing it only once per group, despite
	 * the loss of selectivity.  This is hard to estimate short of doing the
	 * entire planning process twice, so we use a heuristic: clauses
B
Bruce Momjian 已提交
538
	 * containing subplans are left in HAVING.  Otherwise, we move or copy the
B
Bruce Momjian 已提交
539
	 * HAVING clause into WHERE, in hopes of eliminating tuples before
540 541
	 * aggregation instead of after.
	 *
542 543 544 545 546 547 548 549
	 * If the query has explicit grouping then we can simply move such a
	 * clause into WHERE; any group that fails the clause will not be in the
	 * output because none of its tuples will reach the grouping or
	 * aggregation stage.  Otherwise we must have a degenerate (variable-free)
	 * HAVING clause, which we put in WHERE so that query_planner() can use it
	 * in a gating Result node, but also keep in HAVING to ensure that we
	 * don't emit a bogus aggregated row. (This could be done better, but it
	 * seems not worth optimizing.)
550 551
	 *
	 * Note that both havingQual and parse->jointree->quals are in
B
Bruce Momjian 已提交
552 553
	 * implicitly-ANDed-list form at this point, even though they are declared
	 * as Node *.
554 555
	 */
	newHaving = NIL;
556
	foreach(l, (List *) parse->havingQual)
557
	{
558
		Node	   *havingclause = (Node *) lfirst(l);
559

560 561 562 563 564
		if (contain_agg_clause(havingclause) ||
			contain_volatile_functions(havingclause) ||
			contain_subplans(havingclause))
		{
			/* keep it in HAVING */
565
			newHaving = lappend(newHaving, havingclause);
566 567 568 569
		}
		else if (parse->groupClause)
		{
			/* move it to WHERE */
570 571
			parse->jointree->quals = (Node *)
				lappend((List *) parse->jointree->quals, havingclause);
572 573 574 575 576 577 578 579 580
		}
		else
		{
			/* put a copy in WHERE, keep it in HAVING */
			parse->jointree->quals = (Node *)
				lappend((List *) parse->jointree->quals,
						copyObject(havingclause));
			newHaving = lappend(newHaving, havingclause);
		}
581 582 583
	}
	parse->havingQual = (Node *) newHaving;

584
	/*
B
Bruce Momjian 已提交
585 586
	 * If we have any outer joins, try to reduce them to plain inner joins.
	 * This step is most easily done after we've done expression
B
Bruce Momjian 已提交
587
	 * preprocessing.
588
	 */
589
	if (hasOuterJoins)
590
		reduce_outer_joins(root);
591

592
	/*
B
Bruce Momjian 已提交
593 594
	 * Do the main planning.  If we have an inherited target relation, that
	 * needs special processing, else go straight to grouping_planner.
595
	 */
596
	if (parse->resultRelation &&
597 598
		rt_fetch(parse->resultRelation, parse->rtable)->inh)
		plan = inheritance_planner(root);
599
	else
600
	{
601
		plan = grouping_planner(root, tuple_fraction);
602 603 604
		/* If it's not SELECT, we need a ModifyTable node */
		if (parse->commandType != CMD_SELECT)
		{
605
			List	   *withCheckOptionLists;
B
Bruce Momjian 已提交
606 607
			List	   *returningLists;
			List	   *rowMarks;
608

609
			/*
610 611
			 * Set up the WITH CHECK OPTION and RETURNING lists-of-lists, if
			 * needed.
612
			 */
613 614 615 616 617
			if (parse->withCheckOptions)
				withCheckOptionLists = list_make1(parse->withCheckOptions);
			else
				withCheckOptionLists = NIL;

618
			if (parse->returningList)
619
				returningLists = list_make1(parse->returningList);
620 621 622
			else
				returningLists = NIL;

623
			/*
B
Bruce Momjian 已提交
624 625 626
			 * If there was a FOR [KEY] UPDATE/SHARE clause, the LockRows node
			 * will have dealt with fetching non-locked marked rows, else we
			 * need to have ModifyTable do that.
627 628 629 630 631 632
			 */
			if (parse->rowMarks)
				rowMarks = NIL;
			else
				rowMarks = root->rowMarks;

T
Tom Lane 已提交
633 634
			plan = (Plan *) make_modifytable(root,
											 parse->commandType,
635
											 parse->canSetTag,
636
											 parse->resultRelation,
637
									   list_make1_int(parse->resultRelation),
638
											 list_make1(plan),
639
											 withCheckOptionLists,
640 641
											 returningLists,
											 rowMarks,
642
											 parse->onConflict,
643
											 SS_assign_special_param(root));
644 645
		}
	}
646 647

	/*
648 649 650
	 * If any subplans were generated, or if there are any parameters to worry
	 * about, build initPlan list and extParam/allParam sets for plan nodes,
	 * and attach the initPlans to the top plan node.
651
	 */
652
	if (list_length(glob->subplans) != num_old_subplans ||
653
		root->glob->nParamExec > 0)
654
		SS_finalize_plan(root, plan, true);
B
Bruce Momjian 已提交
655

656 657 658
	/* Return internal info if caller wants it */
	if (subroot)
		*subroot = root;
659

660
	return plan;
661
}
662

663 664 665 666
/*
 * preprocess_expression
 *		Do subquery_planner's preprocessing work for an expression,
 *		which can be a targetlist, a WHERE clause (including JOIN/ON
667
 *		conditions), a HAVING clause, or a few other things.
668 669
 */
static Node *
670
preprocess_expression(PlannerInfo *root, Node *expr, int kind)
671
{
672
	/*
B
Bruce Momjian 已提交
673 674 675
	 * Fall out quickly if expression is empty.  This occurs often enough to
	 * be worth checking.  Note that null->null is the correct conversion for
	 * implicit-AND result format, too.
676 677 678 679
	 */
	if (expr == NULL)
		return NULL;

680 681
	/*
	 * If the query has any join RTEs, replace join alias variables with
682 683 684 685
	 * base-relation variables.  We must do this before sublink processing,
	 * else sublinks expanded out from join aliases would not get processed.
	 * We can skip it in non-lateral RTE functions and VALUES lists, however,
	 * since they can't contain any Vars of the current query level.
686
	 */
687 688
	if (root->hasJoinRTEs &&
		!(kind == EXPRKIND_RTFUNC || kind == EXPRKIND_VALUES))
689
		expr = flatten_join_alias_vars(root, expr);
690

691
	/*
692
	 * Simplify constant expressions.
693
	 *
694
	 * Note: an essential effect of this is to convert named-argument function
B
Bruce Momjian 已提交
695 696 697 698 699
	 * calls to positional notation and insert the current actual values of
	 * any default arguments for functions.  To ensure that happens, we *must*
	 * process all expressions here.  Previous PG versions sometimes skipped
	 * const-simplification if it didn't seem worth the trouble, but we can't
	 * do that anymore.
700
	 *
701 702 703 704 705
	 * Note: this also flattens nested AND and OR expressions into N-argument
	 * form.  All processing of a qual expression after this point must be
	 * careful to maintain AND/OR flatness --- that is, do not generate a tree
	 * with AND directly under AND, nor OR directly under OR.
	 */
706
	expr = eval_const_expressions(root, expr);
707 708 709

	/*
	 * If it's a qual or havingQual, canonicalize it.
710
	 */
711
	if (kind == EXPRKIND_QUAL)
712
	{
713
		expr = (Node *) canonicalize_qual((Expr *) expr);
714 715 716 717 718 719

#ifdef OPTIMIZER_DEBUG
		printf("After canonicalize_qual()\n");
		pprint(expr);
#endif
	}
720

721
	/* Expand SubLinks to SubPlans */
722
	if (root->parse->hasSubLinks)
723
		expr = SS_process_sublinks(root, expr, (kind == EXPRKIND_QUAL));
724

725
	/*
B
Bruce Momjian 已提交
726 727
	 * XXX do not insert anything here unless you have grokked the comments in
	 * SS_replace_correlation_vars ...
728 729
	 */

730
	/* Replace uplevel vars with Param nodes (this IS possible in VALUES) */
731 732
	if (root->query_level > 1)
		expr = SS_replace_correlation_vars(root, expr);
733

734
	/*
B
Bruce Momjian 已提交
735 736 737
	 * If it's a qual or havingQual, convert it to implicit-AND format. (We
	 * don't want to do this before eval_const_expressions, since the latter
	 * would be unable to simplify a top-level AND correctly. Also,
738
	 * SS_process_sublinks expects explicit-AND format.)
739 740 741 742
	 */
	if (kind == EXPRKIND_QUAL)
		expr = (Node *) make_ands_implicit((Expr *) expr);

743 744 745 746 747 748 749 750 751
	return expr;
}

/*
 * preprocess_qual_conditions
 *		Recursively scan the query's jointree and do subquery_planner's
 *		preprocessing work on each qual condition found therein.
 */
static void
752
preprocess_qual_conditions(PlannerInfo *root, Node *jtnode)
753 754 755 756 757 758 759 760 761 762
{
	if (jtnode == NULL)
		return;
	if (IsA(jtnode, RangeTblRef))
	{
		/* nothing to do here */
	}
	else if (IsA(jtnode, FromExpr))
	{
		FromExpr   *f = (FromExpr *) jtnode;
763
		ListCell   *l;
764

765
		foreach(l, f->fromlist)
766
			preprocess_qual_conditions(root, lfirst(l));
767

768
		f->quals = preprocess_expression(root, f->quals, EXPRKIND_QUAL);
769 770 771 772 773
	}
	else if (IsA(jtnode, JoinExpr))
	{
		JoinExpr   *j = (JoinExpr *) jtnode;

774 775
		preprocess_qual_conditions(root, j->larg);
		preprocess_qual_conditions(root, j->rarg);
776

777
		j->quals = preprocess_expression(root, j->quals, EXPRKIND_QUAL);
778 779
	}
	else
780 781
		elog(ERROR, "unrecognized node type: %d",
			 (int) nodeTag(jtnode));
782
}
783

784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
/*
 * preprocess_phv_expression
 *	  Do preprocessing on a PlaceHolderVar expression that's been pulled up.
 *
 * If a LATERAL subquery references an output of another subquery, and that
 * output must be wrapped in a PlaceHolderVar because of an intermediate outer
 * join, then we'll push the PlaceHolderVar expression down into the subquery
 * and later pull it back up during find_lateral_references, which runs after
 * subquery_planner has preprocessed all the expressions that were in the
 * current query level to start with.  So we need to preprocess it then.
 */
Expr *
preprocess_phv_expression(PlannerInfo *root, Expr *expr)
{
	return (Expr *) preprocess_expression(root, (Node *) expr, EXPRKIND_PHV);
}

801
/*
802 803 804 805
 * inheritance_planner
 *	  Generate a plan in the case where the result relation is an
 *	  inheritance set.
 *
806 807 808 809
 * We have to handle this case differently from cases where a source relation
 * is an inheritance set. Source inheritance is expanded at the bottom of the
 * plan tree (see allpaths.c), but target inheritance has to be expanded at
 * the top.  The reason is that for UPDATE, each target relation needs a
810
 * different targetlist matching its own column set.  Fortunately,
811 812
 * the UPDATE/DELETE target can never be the nullable side of an outer join,
 * so it's OK to generate the plan this way.
813 814 815 816
 *
 * Returns a query plan.
 */
static Plan *
817
inheritance_planner(PlannerInfo *root)
818
{
819
	Query	   *parse = root->parse;
820
	int			parentRTindex = parse->resultRelation;
821
	Bitmapset  *resultRTindexes = NULL;
822
	int			nominalRelation = -1;
823 824 825
	List	   *final_rtable = NIL;
	int			save_rel_array_size = 0;
	RelOptInfo **save_rel_array = NULL;
826
	List	   *subplans = NIL;
827
	List	   *resultRelations = NIL;
828
	List	   *withCheckOptionLists = NIL;
829
	List	   *returningLists = NIL;
830
	List	   *rowMarks;
831
	ListCell   *lc;
832

833 834
	Assert(parse->commandType != CMD_INSERT);

835 836 837 838 839 840 841 842 843 844 845 846 847 848
	/*
	 * We generate a modified instance of the original Query for each target
	 * relation, plan that, and put all the plans into a list that will be
	 * controlled by a single ModifyTable node.  All the instances share the
	 * same rangetable, but each instance must have its own set of subquery
	 * RTEs within the finished rangetable because (1) they are likely to get
	 * scribbled on during planning, and (2) it's not inconceivable that
	 * subqueries could get planned differently in different cases.  We need
	 * not create duplicate copies of other RTE kinds, in particular not the
	 * target relations, because they don't have either of those issues.  Not
	 * having to duplicate the target relations is important because doing so
	 * (1) would result in a rangetable of length O(N^2) for N targets, with
	 * at least O(N^3) work expended here; and (2) would greatly complicate
	 * management of the rowMarks list.
849 850 851 852 853
	 *
	 * Note that any RTEs with security barrier quals will be turned into
	 * subqueries during planning, and so we must create copies of them too,
	 * except where they are target relations, which will each only be used
	 * in a single plan.
854
	 */
855 856 857 858 859 860 861 862 863
	resultRTindexes = bms_add_member(resultRTindexes, parentRTindex);
	foreach(lc, root->append_rel_list)
	{
		AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(lc);
		if (appinfo->parent_relid == parentRTindex)
			resultRTindexes = bms_add_member(resultRTindexes,
											 appinfo->child_relid);
	}

864
	foreach(lc, root->append_rel_list)
865
	{
866 867
		AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(lc);
		PlannerInfo subroot;
B
Bruce Momjian 已提交
868
		Plan	   *subplan;
869
		Index		rti;
870

871 872 873 874
		/* append_rel_list contains all append rels; ignore others */
		if (appinfo->parent_relid != parentRTindex)
			continue;

875
		/*
876 877
		 * We need a working copy of the PlannerInfo so that we can control
		 * propagation of information back to the main copy.
878 879
		 */
		memcpy(&subroot, root, sizeof(PlannerInfo));
880 881 882 883 884 885 886

		/*
		 * Generate modified query with this rel as target.  We first apply
		 * adjust_appendrel_attrs, which copies the Query and changes
		 * references to the parent RTE to refer to the current child RTE,
		 * then fool around with subquery RTEs.
		 */
887
		subroot.parse = (Query *)
888 889
			adjust_appendrel_attrs(root,
								   (Node *) parse,
890
								   appinfo);
891 892 893

		/*
		 * The rowMarks list might contain references to subquery RTEs, so
894 895 896
		 * make a copy that we can apply ChangeVarNodes to.  (Fortunately, the
		 * executor doesn't need to see the modified copies --- we can just
		 * pass it the original rowMarks list.)
897 898 899
		 */
		subroot.rowMarks = (List *) copyObject(root->rowMarks);

900 901 902 903 904 905 906
		/*
		 * The append_rel_list likewise might contain references to subquery
		 * RTEs (if any subqueries were flattenable UNION ALLs).  So prepare
		 * to apply ChangeVarNodes to that, too.
		 */
		subroot.append_rel_list = (List *) copyObject(root->append_rel_list);

907 908 909 910 911 912 913 914 915 916 917 918
		/*
		 * Add placeholders to the child Query's rangetable list to fill the
		 * RT indexes already reserved for subqueries in previous children.
		 * These won't be referenced, so there's no need to make them very
		 * valid-looking.
		 */
		while (list_length(subroot.parse->rtable) < list_length(final_rtable))
			subroot.parse->rtable = lappend(subroot.parse->rtable,
											makeNode(RangeTblEntry));

		/*
		 * If this isn't the first child Query, generate duplicates of all
919 920 921 922 923
		 * subquery RTEs, and adjust Var numbering to reference the
		 * duplicates. To simplify the loop logic, we scan the original rtable
		 * not the copy just made by adjust_appendrel_attrs; that should be OK
		 * since subquery RTEs couldn't contain any references to the target
		 * rel.
924 925 926 927 928 929 930 931 932 933
		 */
		if (final_rtable != NIL)
		{
			ListCell   *lr;

			rti = 1;
			foreach(lr, parse->rtable)
			{
				RangeTblEntry *rte = (RangeTblEntry *) lfirst(lr);

934 935 936 937 938 939 940 941
				/*
				 * Copy subquery RTEs and RTEs with security barrier quals
				 * that will be turned into subqueries, except those that are
				 * target relations.
				 */
				if (rte->rtekind == RTE_SUBQUERY ||
					(rte->securityQuals != NIL &&
					 !bms_is_member(rti, resultRTindexes)))
942
				{
943
					Index		newrti;
944 945 946

					/*
					 * The RTE can't contain any references to its own RT
947 948 949
					 * index, except in the security barrier quals, so we can
					 * save a few cycles by applying ChangeVarNodes before we
					 * append the RTE to the rangetable.
950 951 952 953
					 */
					newrti = list_length(subroot.parse->rtable) + 1;
					ChangeVarNodes((Node *) subroot.parse, rti, newrti, 0);
					ChangeVarNodes((Node *) subroot.rowMarks, rti, newrti, 0);
954
					ChangeVarNodes((Node *) subroot.append_rel_list, rti, newrti, 0);
955
					rte = copyObject(rte);
956
					ChangeVarNodes((Node *) rte->securityQuals, rti, newrti, 0);
957 958 959 960 961 962 963
					subroot.parse->rtable = lappend(subroot.parse->rtable,
													rte);
				}
				rti++;
			}
		}

964
		/* There shouldn't be any OJ or LATERAL info to translate, as yet */
965
		Assert(subroot.join_info_list == NIL);
966
		Assert(subroot.lateral_info_list == NIL);
967 968
		/* and we haven't created PlaceHolderInfos, either */
		Assert(subroot.placeholder_list == NIL);
969 970
		/* hack to mark target relation as an inheritance partition */
		subroot.hasInheritedTarget = true;
971

972
		/* Generate plan */
973 974
		subplan = grouping_planner(&subroot, 0.0 /* retrieve all tuples */ );

975
		/*
B
Bruce Momjian 已提交
976 977
		 * Planning may have modified the query result relation (if there were
		 * security barrier quals on the result RTE).
978 979 980
		 */
		appinfo->child_relid = subroot.parse->resultRelation;

981 982 983 984 985 986 987 988 989 990 991 992 993 994
		/*
		 * We'll use the first child relation (even if it's excluded) as the
		 * nominal target relation of the ModifyTable node.  Because of the
		 * way expand_inherited_rtentry works, this should always be the RTE
		 * representing the parent table in its role as a simple member of the
		 * inheritance set.  (It would be logically cleaner to use the
		 * inheritance parent RTE as the nominal target; but since that RTE
		 * will not be otherwise referenced in the plan, doing so would give
		 * rise to confusing use of multiple aliases in EXPLAIN output for
		 * what the user will think is the "same" table.)
		 */
		if (nominalRelation < 0)
			nominalRelation = appinfo->child_relid;

995
		/*
B
Bruce Momjian 已提交
996
		 * If this child rel was excluded by constraint exclusion, exclude it
997
		 * from the result plan.
998 999 1000
		 */
		if (is_dummy_plan(subplan))
			continue;
B
Bruce Momjian 已提交
1001

1002 1003
		subplans = lappend(subplans, subplan);

1004 1005 1006 1007 1008 1009 1010 1011
		/*
		 * If this is the first non-excluded child, its post-planning rtable
		 * becomes the initial contents of final_rtable; otherwise, append
		 * just its modified subquery RTEs to final_rtable.
		 */
		if (final_rtable == NIL)
			final_rtable = subroot.parse->rtable;
		else
1012 1013
		{
			List	   *tmp_rtable = NIL;
B
Bruce Momjian 已提交
1014 1015
			ListCell   *cell1,
					   *cell2;
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043

			/*
			 * Check to see if any of the original RTEs were turned into
			 * subqueries during planning.  Currently, this should only ever
			 * happen due to securityQuals being involved which push a
			 * relation down under a subquery, to ensure that the security
			 * barrier quals are evaluated first.
			 *
			 * When this happens, we want to use the new subqueries in the
			 * final rtable.
			 */
			forboth(cell1, final_rtable, cell2, subroot.parse->rtable)
			{
				RangeTblEntry *rte1 = (RangeTblEntry *) lfirst(cell1);
				RangeTblEntry *rte2 = (RangeTblEntry *) lfirst(cell2);

				if (rte1->rtekind == RTE_RELATION &&
					rte2->rtekind == RTE_SUBQUERY)
				{
					/* Should only be when there are securityQuals today */
					Assert(rte1->securityQuals != NIL);
					tmp_rtable = lappend(tmp_rtable, rte2);
				}
				else
					tmp_rtable = lappend(tmp_rtable, rte1);
			}

			final_rtable = list_concat(tmp_rtable,
1044
									   list_copy_tail(subroot.parse->rtable,
1045
												 list_length(final_rtable)));
1046
		}
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065

		/*
		 * We need to collect all the RelOptInfos from all child plans into
		 * the main PlannerInfo, since setrefs.c will need them.  We use the
		 * last child's simple_rel_array (previous ones are too short), so we
		 * have to propagate forward the RelOptInfos that were already built
		 * in previous children.
		 */
		Assert(subroot.simple_rel_array_size >= save_rel_array_size);
		for (rti = 1; rti < save_rel_array_size; rti++)
		{
			RelOptInfo *brel = save_rel_array[rti];

			if (brel)
				subroot.simple_rel_array[rti] = brel;
		}
		save_rel_array_size = subroot.simple_rel_array_size;
		save_rel_array = subroot.simple_rel_array;

1066
		/* Make sure any initplans from this rel get into the outer list */
1067
		root->init_plans = subroot.init_plans;
1068

1069
		/* Build list of target-relation RT indexes */
1070 1071
		resultRelations = lappend_int(resultRelations, appinfo->child_relid);

1072 1073 1074 1075
		/* Build lists of per-relation WCO and RETURNING targetlists */
		if (parse->withCheckOptions)
			withCheckOptionLists = lappend(withCheckOptionLists,
										   subroot.parse->withCheckOptions);
1076
		if (parse->returningList)
1077 1078
			returningLists = lappend(returningLists,
									 subroot.parse->returningList);
1079 1080

		Assert(!parse->onConflict);
1081 1082
	}

1083 1084 1085 1086
	/* Mark result as unordered (probably unnecessary) */
	root->query_pathkeys = NIL;

	/*
B
Bruce Momjian 已提交
1087 1088
	 * If we managed to exclude every child rel, return a dummy plan; it
	 * doesn't even need a ModifyTable node.
1089 1090
	 */
	if (subplans == NIL)
1091 1092
	{
		/* although dummy, it must have a valid tlist for executor */
1093 1094
		List	   *tlist;

1095
		tlist = preprocess_targetlist(root, parse->targetList);
1096 1097
		return (Plan *) make_result(root,
									tlist,
1098 1099 1100
									(Node *) list_make1(makeBoolConst(false,
																	  false)),
									NULL);
1101
	}
1102

1103
	/*
1104
	 * Put back the final adjusted rtable into the master copy of the Query.
1105
	 */
1106 1107 1108
	parse->rtable = final_rtable;
	root->simple_rel_array_size = save_rel_array_size;
	root->simple_rel_array = save_rel_array;
1109

1110
	/*
B
Bruce Momjian 已提交
1111 1112
	 * If there was a FOR [KEY] UPDATE/SHARE clause, the LockRows node will
	 * have dealt with fetching non-locked marked rows, else we need to have
B
Bruce Momjian 已提交
1113
	 * ModifyTable do that.
1114 1115 1116 1117 1118 1119
	 */
	if (parse->rowMarks)
		rowMarks = NIL;
	else
		rowMarks = root->rowMarks;

1120
	/* And last, tack on a ModifyTable node to do the UPDATE/DELETE work */
T
Tom Lane 已提交
1121 1122
	return (Plan *) make_modifytable(root,
									 parse->commandType,
1123
									 parse->canSetTag,
1124
									 nominalRelation,
1125
									 resultRelations,
B
Bruce Momjian 已提交
1126
									 subplans,
1127
									 withCheckOptionLists,
1128 1129
									 returningLists,
									 rowMarks,
1130
									 NULL,
1131
									 SS_assign_special_param(root));
1132 1133 1134 1135 1136 1137 1138
}

/*--------------------
 * grouping_planner
 *	  Perform planning steps related to grouping, aggregation, etc.
 *	  This primarily means adding top-level processing to the basic
 *	  query plan produced by query_planner.
1139 1140 1141 1142
 *
 * tuple_fraction is the fraction of tuples we expect will be retrieved
 *
 * tuple_fraction is interpreted as follows:
1143
 *	  0: expect all tuples to be retrieved (normal case)
1144 1145 1146 1147 1148
 *	  0 < tuple_fraction < 1: expect the given fraction of tuples available
 *		from the plan to be retrieved
 *	  tuple_fraction >= 1: tuple_fraction is the absolute number of tuples
 *		expected to be retrieved (ie, a LIMIT specification)
 *
1149
 * Returns a query plan.  Also, root->query_pathkeys is returned as the
1150
 * actual output ordering of the plan (in pathkey format).
1151 1152
 *--------------------
 */
1153
static Plan *
1154
grouping_planner(PlannerInfo *root, double tuple_fraction)
1155
{
1156
	Query	   *parse = root->parse;
1157
	List	   *tlist = parse->targetList;
B
Bruce Momjian 已提交
1158 1159
	int64		offset_est = 0;
	int64		count_est = 0;
1160
	double		limit_tuples = -1.0;
1161 1162
	Plan	   *result_plan;
	List	   *current_pathkeys;
1163
	double		dNumGroups = 0;
1164 1165
	bool		use_hashed_distinct = false;
	bool		tested_hashed_distinct = false;
1166

1167 1168
	/* Tweak caller-supplied tuple_fraction if have LIMIT/OFFSET */
	if (parse->limitCount || parse->limitOffset)
1169
	{
1170 1171
		tuple_fraction = preprocess_limit(root, tuple_fraction,
										  &offset_est, &count_est);
B
Bruce Momjian 已提交
1172

1173
		/*
B
Bruce Momjian 已提交
1174 1175
		 * If we have a known LIMIT, and don't have an unknown OFFSET, we can
		 * estimate the effects of using a bounded sort.
1176 1177 1178 1179
		 */
		if (count_est > 0 && offset_est >= 0)
			limit_tuples = (double) count_est + (double) offset_est;
	}
1180

1181
	if (parse->setOperations)
B
Bruce Momjian 已提交
1182
	{
B
Bruce Momjian 已提交
1183
		List	   *set_sortclauses;
1184

1185
		/*
B
Bruce Momjian 已提交
1186
		 * If there's a top-level ORDER BY, assume we have to fetch all the
B
Bruce Momjian 已提交
1187
		 * tuples.  This might be too simplistic given all the hackery below
1188 1189
		 * to possibly avoid the sort; but the odds of accurate estimates here
		 * are pretty low anyway.
1190 1191 1192 1193
		 */
		if (parse->sortClause)
			tuple_fraction = 0.0;

1194
		/*
B
Bruce Momjian 已提交
1195
		 * Construct the plan for set operations.  The result will not need
1196 1197 1198
		 * any work except perhaps a top-level sort and/or LIMIT.  Note that
		 * any special work for recursive unions is the responsibility of
		 * plan_set_operations.
1199
		 */
1200
		result_plan = plan_set_operations(root, tuple_fraction,
1201 1202 1203
										  &set_sortclauses);

		/*
B
Bruce Momjian 已提交
1204 1205 1206
		 * Calculate pathkeys representing the sort order (if any) of the set
		 * operation's result.  We have to do this before overwriting the sort
		 * key information...
1207
		 */
1208 1209
		current_pathkeys = make_pathkeys_for_sortclauses(root,
														 set_sortclauses,
B
Bruce Momjian 已提交
1210
													result_plan->targetlist);
1211 1212

		/*
B
Bruce Momjian 已提交
1213
		 * We should not need to call preprocess_targetlist, since we must be
B
Bruce Momjian 已提交
1214
		 * in a SELECT query node.  Instead, use the targetlist returned by
B
Bruce Momjian 已提交
1215 1216 1217
		 * plan_set_operations (since this tells whether it returned any
		 * resjunk columns!), and transfer any sort key information from the
		 * original tlist.
1218 1219
		 */
		Assert(parse->commandType == CMD_SELECT);
1220

1221 1222
		tlist = postprocess_setop_tlist(copyObject(result_plan->targetlist),
										tlist);
1223

1224
		/*
B
Bruce Momjian 已提交
1225 1226
		 * Can't handle FOR [KEY] UPDATE/SHARE here (parser should have
		 * checked already, but let's make sure).
1227 1228
		 */
		if (parse->rowMarks)
1229 1230
			ereport(ERROR,
					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
B
Bruce Momjian 已提交
1231 1232
			/*------
			  translator: %s is a SQL row locking clause such as FOR UPDATE */
1233 1234
					 errmsg("%s is not allowed with UNION/INTERSECT/EXCEPT",
							LCS_asString(((RowMarkClause *)
B
Bruce Momjian 已提交
1235
									linitial(parse->rowMarks))->strength))));
1236

1237
		/*
1238
		 * Calculate pathkeys that represent result ordering requirements
1239
		 */
1240
		Assert(parse->distinctClause == NIL);
1241 1242
		root->sort_pathkeys = make_pathkeys_for_sortclauses(root,
															parse->sortClause,
1243
															tlist);
B
Bruce Momjian 已提交
1244
	}
1245
	else
1246
	{
1247
		/* No set operations, do regular planning */
B
Bruce Momjian 已提交
1248
		List	   *sub_tlist;
1249
		AttrNumber *groupColIdx = NULL;
1250
		bool		need_tlist_eval = true;
1251
		standard_qp_extra qp_extra;
1252
		RelOptInfo *final_rel;
1253 1254
		Path	   *cheapest_path;
		Path	   *sorted_path;
1255
		Path	   *best_path;
1256
		long		numGroups = 0;
1257
		AggClauseCosts agg_costs;
1258
		int			numGroupCols;
1259 1260
		double		path_rows;
		int			path_width;
1261
		bool		use_hashed_grouping = false;
T
Tom Lane 已提交
1262 1263
		WindowFuncLists *wflists = NULL;
		List	   *activeWindows = NIL;
1264
		OnConflictExpr *onconfl;
1265

1266
		MemSet(&agg_costs, 0, sizeof(AggClauseCosts));
1267

1268 1269 1270
		/* A recursive query should always have setOperations */
		Assert(!root->hasRecursion);

1271 1272 1273 1274 1275
		/* Preprocess GROUP BY clause, if any */
		if (parse->groupClause)
			preprocess_groupclause(root);
		numGroupCols = list_length(parse->groupClause);

1276
		/* Preprocess targetlist */
1277
		tlist = preprocess_targetlist(root, tlist);
B
Bruce Momjian 已提交
1278

1279 1280 1281 1282 1283 1284 1285
		onconfl = parse->onConflict;
		if (onconfl)
			onconfl->onConflictSet =
				preprocess_onconflict_targetlist(onconfl->onConflictSet,
												 parse->resultRelation,
												 parse->rtable);

1286 1287 1288 1289 1290
		/*
		 * Expand any rangetable entries that have security barrier quals.
		 * This may add new security barrier subquery RTEs to the rangetable.
		 */
		expand_security_quals(root, tlist);
1291
		root->glob->hasRowSecurity = parse->hasRowSecurity;
1292

T
Tom Lane 已提交
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
		/*
		 * Locate any window functions in the tlist.  (We don't need to look
		 * anywhere else, since expressions used in ORDER BY will be in there
		 * too.)  Note that they could all have been eliminated by constant
		 * folding, in which case we don't need to do any more work.
		 */
		if (parse->hasWindowFuncs)
		{
			wflists = find_window_functions((Node *) tlist,
											list_length(parse->windowClause));
			if (wflists->numWindowFuncs > 0)
				activeWindows = select_active_windows(root, wflists);
			else
				parse->hasWindowFuncs = false;
		}

1309
		/*
B
Bruce Momjian 已提交
1310 1311
		 * Generate appropriate target list for subplan; may be different from
		 * tlist if grouping or aggregation is needed.
1312
		 */
1313
		sub_tlist = make_subplanTargetList(root, tlist,
B
Bruce Momjian 已提交
1314
										   &groupColIdx, &need_tlist_eval);
1315

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
		/*
		 * Do aggregate preprocessing, if the query has any aggs.
		 *
		 * Note: think not that we can turn off hasAggs if we find no aggs. It
		 * is possible for constant-expression simplification to remove all
		 * explicit references to aggs, but we still have to follow the
		 * aggregate semantics (eg, producing only one output row).
		 */
		if (parse->hasAggs)
		{
			/*
B
Bruce Momjian 已提交
1327 1328
			 * Collect statistics about aggregates for estimating costs. Note:
			 * we do not attempt to detect duplicate aggregates here; a
1329
			 * somewhat-overestimated cost is okay for our present purposes.
1330
			 */
1331 1332
			count_agg_clauses(root, (Node *) tlist, &agg_costs);
			count_agg_clauses(root, parse->havingQual, &agg_costs);
1333 1334

			/*
1335 1336 1337 1338
			 * Preprocess MIN/MAX aggregates, if any.  Note: be careful about
			 * adding logic between here and the optimize_minmax_aggregates
			 * call.  Anything that is needed in MIN/MAX-optimizable cases
			 * will have to be duplicated in planagg.c.
1339 1340 1341 1342
			 */
			preprocess_minmax_aggregates(root, tlist);
		}

1343 1344 1345
		/* Make tuple_fraction accessible to lower-level routines */
		root->tuple_fraction = tuple_fraction;

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
		/*
		 * Figure out whether there's a hard limit on the number of rows that
		 * query_planner's result subplan needs to return.  Even if we know a
		 * hard limit overall, it doesn't apply if the query has any
		 * grouping/aggregation operations.
		 */
		if (parse->groupClause ||
			parse->distinctClause ||
			parse->hasAggs ||
			parse->hasWindowFuncs ||
			root->hasHavingQual)
1357
			root->limit_tuples = -1.0;
1358
		else
1359
			root->limit_tuples = limit_tuples;
1360

1361 1362 1363 1364
		/* Set up data needed by standard_qp_callback */
		qp_extra.tlist = tlist;
		qp_extra.activeWindows = activeWindows;

1365
		/*
B
Bruce Momjian 已提交
1366
		 * Generate the best unsorted and presorted paths for this Query (but
B
Bruce Momjian 已提交
1367
		 * note there may not be any presorted paths).  We also generate (in
1368
		 * standard_qp_callback) pathkey representations of the query's sort
1369
		 * clause, distinct clause, etc.
1370
		 */
1371 1372
		final_rel = query_planner(root, sub_tlist,
								  standard_qp_callback, &qp_extra);
1373

1374
		/*
1375
		 * Extract rowcount and width estimates for use below.
1376
		 */
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
		path_rows = final_rel->rows;
		path_width = final_rel->width;

		/*
		 * If there's grouping going on, estimate the number of result groups.
		 * We couldn't do this any earlier because it depends on relation size
		 * estimates that are created within query_planner().
		 *
		 * Then convert tuple_fraction to fractional form if it is absolute,
		 * and if grouping or aggregation is involved, adjust tuple_fraction
		 * to describe the fraction of the underlying un-aggregated tuples
		 * that will be fetched.
		 */
		dNumGroups = 1;			/* in case not grouping */

		if (parse->groupClause)
		{
			List	   *groupExprs;

			groupExprs = get_sortgrouplist_exprs(parse->groupClause,
												 parse->targetList);
			dNumGroups = estimate_num_groups(root, groupExprs, path_rows);

			/*
			 * In GROUP BY mode, an absolute LIMIT is relative to the number
B
Bruce Momjian 已提交
1402
			 * of groups not the number of tuples.  If the caller gave us a
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
			 * fraction, keep it as-is.  (In both cases, we are effectively
			 * assuming that all the groups are about the same size.)
			 */
			if (tuple_fraction >= 1.0)
				tuple_fraction /= dNumGroups;

			/*
			 * If both GROUP BY and ORDER BY are specified, we will need two
			 * levels of sort --- and, therefore, certainly need to read all
			 * the tuples --- unless ORDER BY is a subset of GROUP BY.
			 * Likewise if we have both DISTINCT and GROUP BY, or if we have a
			 * window specification not compatible with the GROUP BY.
			 */
			if (!pathkeys_contained_in(root->sort_pathkeys,
									   root->group_pathkeys) ||
				!pathkeys_contained_in(root->distinct_pathkeys,
									   root->group_pathkeys) ||
				!pathkeys_contained_in(root->window_pathkeys,
									   root->group_pathkeys))
				tuple_fraction = 0.0;
		}
		else if (parse->hasAggs || root->hasHavingQual)
1425
		{
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
			/*
			 * Ungrouped aggregate will certainly want to read all the tuples,
			 * and it will deliver a single result row (so leave dNumGroups
			 * set to 1).
			 */
			tuple_fraction = 0.0;
		}
		else if (parse->distinctClause)
		{
			/*
			 * Since there was no grouping or aggregation, it's reasonable to
			 * assume the UNIQUE filter has effects comparable to GROUP BY.
			 * (If DISTINCT is used with grouping, we ignore its effects for
			 * rowcount estimation purposes; this amounts to assuming the
			 * grouped rows are distinct already.)
			 */
			List	   *distinctExprs;

			distinctExprs = get_sortgrouplist_exprs(parse->distinctClause,
													parse->targetList);
			dNumGroups = estimate_num_groups(root, distinctExprs, path_rows);

			/*
			 * Adjust tuple_fraction the same way as for GROUP BY, too.
			 */
			if (tuple_fraction >= 1.0)
				tuple_fraction /= dNumGroups;
1453 1454
		}
		else
1455
		{
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
			/*
			 * Plain non-grouped, non-aggregated query: an absolute tuple
			 * fraction can be divided by the number of tuples.
			 */
			if (tuple_fraction >= 1.0)
				tuple_fraction /= path_rows;
		}

		/*
		 * Pick out the cheapest-total path as well as the cheapest presorted
		 * path for the requested pathkeys (if there is one).  We should take
		 * the tuple fraction into account when selecting the cheapest
		 * presorted path, but not when selecting the cheapest-total path,
		 * since if we have to sort then we'll have to fetch all the tuples.
		 * (But there's a special case: if query_pathkeys is NIL, meaning
		 * order doesn't matter, then the "cheapest presorted" path will be
		 * the cheapest overall for the tuple fraction.)
		 */
		cheapest_path = final_rel->cheapest_total_path;

		sorted_path =
			get_cheapest_fractional_path_for_pathkeys(final_rel->pathlist,
													  root->query_pathkeys,
													  NULL,
													  tuple_fraction);

		/* Don't consider same path in both guises; just wastes effort */
		if (sorted_path == cheapest_path)
			sorted_path = NULL;

		/*
		 * Forget about the presorted path if it would be cheaper to sort the
		 * cheapest-total path.  Here we need consider only the behavior at
		 * the tuple_fraction point.  Also, limit_tuples is only relevant if
		 * not grouping/aggregating, so use root->limit_tuples in the
		 * cost_sort call.
		 */
		if (sorted_path)
		{
			Path		sort_path;		/* dummy for result of cost_sort */

			if (root->query_pathkeys == NIL ||
				pathkeys_contained_in(root->query_pathkeys,
									  cheapest_path->pathkeys))
			{
				/* No sort needed for cheapest path */
				sort_path.startup_cost = cheapest_path->startup_cost;
				sort_path.total_cost = cheapest_path->total_cost;
			}
			else
			{
				/* Figure cost for sorting */
				cost_sort(&sort_path, root, root->query_pathkeys,
						  cheapest_path->total_cost,
						  path_rows, path_width,
						  0.0, work_mem, root->limit_tuples);
			}

			if (compare_fractional_path_costs(sorted_path, &sort_path,
											  tuple_fraction) > 0)
			{
				/* Presorted path is a loser */
				sorted_path = NULL;
			}
1520
		}
1521

1522 1523 1524
		/*
		 * Consider whether we want to use hashing instead of sorting.
		 */
1525 1526
		if (parse->groupClause)
		{
1527
			/*
1528
			 * If grouping, decide whether to use sorted or hashed grouping.
1529
			 */
1530 1531 1532 1533 1534
			use_hashed_grouping =
				choose_hashed_grouping(root,
									   tuple_fraction, limit_tuples,
									   path_rows, path_width,
									   cheapest_path, sorted_path,
1535
									   dNumGroups, &agg_costs);
1536 1537
			/* Also convert # groups to long int --- but 'ware overflow! */
			numGroups = (long) Min(dNumGroups, (double) LONG_MAX);
1538
		}
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
		else if (parse->distinctClause && sorted_path &&
				 !root->hasHavingQual && !parse->hasAggs && !activeWindows)
		{
			/*
			 * We'll reach the DISTINCT stage without any intermediate
			 * processing, so figure out whether we will want to hash or not
			 * so we can choose whether to use cheapest or sorted path.
			 */
			use_hashed_distinct =
				choose_hashed_distinct(root,
									   tuple_fraction, limit_tuples,
									   path_rows, path_width,
									   cheapest_path->startup_cost,
									   cheapest_path->total_cost,
									   sorted_path->startup_cost,
									   sorted_path->total_cost,
									   sorted_path->pathkeys,
									   dNumGroups);
			tested_hashed_distinct = true;
		}
1559

B
Bruce Momjian 已提交
1560
		/*
1561
		 * Select the best path.  If we are doing hashed grouping, we will
B
Bruce Momjian 已提交
1562
		 * always read all the input tuples, so use the cheapest-total path.
1563
		 * Otherwise, the comparison above is correct.
1564
		 */
1565
		if (use_hashed_grouping || use_hashed_distinct || !sorted_path)
1566
			best_path = cheapest_path;
1567
		else
1568
			best_path = sorted_path;
1569

1570
		/*
B
Bruce Momjian 已提交
1571 1572 1573 1574
		 * Check to see if it's possible to optimize MIN/MAX aggregates. If
		 * so, we will forget all the work we did so far to choose a "regular"
		 * path ... but we had to do it anyway to be able to tell which way is
		 * cheaper.
1575
		 */
1576
		result_plan = optimize_minmax_aggregates(root,
1577
												 tlist,
1578
												 &agg_costs,
1579 1580 1581 1582
												 best_path);
		if (result_plan != NULL)
		{
			/*
B
Bruce Momjian 已提交
1583 1584
			 * optimize_minmax_aggregates generated the full plan, with the
			 * right tlist, and it has no sort order.
1585 1586 1587 1588
			 */
			current_pathkeys = NIL;
		}
		else
1589
		{
1590
			/*
1591 1592
			 * Normal case --- create a plan according to query_planner's
			 * results.
1593
			 */
1594
			bool		need_sort_for_grouping = false;
1595

1596
			result_plan = create_plan(root, best_path);
1597 1598
			current_pathkeys = best_path->pathkeys;

1599 1600
			/* Detect if we'll need an explicit sort for grouping */
			if (parse->groupClause && !use_hashed_grouping &&
1601
			  !pathkeys_contained_in(root->group_pathkeys, current_pathkeys))
1602 1603
			{
				need_sort_for_grouping = true;
1604

1605
				/*
1606 1607
				 * Always override create_plan's tlist, so that we don't sort
				 * useless data from a "physical" tlist.
1608 1609 1610 1611
				 */
				need_tlist_eval = true;
			}

1612
			/*
1613 1614 1615 1616
			 * create_plan returns a plan with just a "flat" tlist of required
			 * Vars.  Usually we need to insert the sub_tlist as the tlist of
			 * the top plan node.  However, we can skip that if we determined
			 * that whatever create_plan chose to return will be good enough.
1617 1618
			 */
			if (need_tlist_eval)
1619
			{
1620 1621
				/*
				 * If the top-level plan node is one that cannot do expression
1622 1623
				 * evaluation and its existing target list isn't already what
				 * we need, we must insert a Result node to project the
1624 1625
				 * desired tlist.
				 */
1626 1627
				if (!is_projection_capable_plan(result_plan) &&
					!tlist_same_exprs(sub_tlist, result_plan->targetlist))
1628
				{
1629 1630 1631
					result_plan = (Plan *) make_result(root,
													   sub_tlist,
													   NULL,
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
													   result_plan);
				}
				else
				{
					/*
					 * Otherwise, just replace the subplan's flat tlist with
					 * the desired tlist.
					 */
					result_plan->targetlist = sub_tlist;
				}

				/*
				 * Also, account for the cost of evaluation of the sub_tlist.
1645
				 * See comments for add_tlist_costs_to_plan() for more info.
1646
				 */
1647
				add_tlist_costs_to_plan(root, result_plan, sub_tlist);
1648 1649 1650 1651
			}
			else
			{
				/*
1652
				 * Since we're using create_plan's tlist and not the one
1653 1654
				 * make_subplanTargetList calculated, we have to refigure any
				 * grouping-column indexes make_subplanTargetList computed.
1655
				 */
1656
				locate_grouping_columns(root, tlist, result_plan->targetlist,
1657
										groupColIdx);
1658
			}
B
Bruce Momjian 已提交
1659

1660
			/*
1661 1662
			 * Insert AGG or GROUP node if needed, plus an explicit sort step
			 * if necessary.
1663
			 *
1664
			 * HAVING clause, if any, becomes qual of the Agg or Group node.
1665
			 */
1666 1667 1668
			if (use_hashed_grouping)
			{
				/* Hashed aggregate plan --- no sort needed */
1669
				result_plan = (Plan *) make_agg(root,
1670 1671 1672
												tlist,
												(List *) parse->havingQual,
												AGG_HASHED,
1673
												&agg_costs,
1674 1675
												numGroupCols,
												groupColIdx,
1676
									extract_grouping_ops(parse->groupClause),
1677 1678 1679 1680 1681 1682 1683 1684 1685
												numGroups,
												result_plan);
				/* Hashed aggregation produces randomly-ordered results */
				current_pathkeys = NIL;
			}
			else if (parse->hasAggs)
			{
				/* Plain aggregate plan --- sort if needed */
				AggStrategy aggstrategy;
1686

1687 1688
				if (parse->groupClause)
				{
1689
					if (need_sort_for_grouping)
1690 1691
					{
						result_plan = (Plan *)
1692
							make_sort_from_groupcols(root,
1693 1694 1695
													 parse->groupClause,
													 groupColIdx,
													 result_plan);
1696
						current_pathkeys = root->group_pathkeys;
1697 1698
					}
					aggstrategy = AGG_SORTED;
1699

1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
					/*
					 * The AGG node will not change the sort ordering of its
					 * groups, so current_pathkeys describes the result too.
					 */
				}
				else
				{
					aggstrategy = AGG_PLAIN;
					/* Result will be only one row anyway; no sort order */
					current_pathkeys = NIL;
				}

1712
				result_plan = (Plan *) make_agg(root,
1713 1714 1715
												tlist,
												(List *) parse->havingQual,
												aggstrategy,
1716
												&agg_costs,
1717 1718
												numGroupCols,
												groupColIdx,
1719
									extract_grouping_ops(parse->groupClause),
1720 1721 1722 1723
												numGroups,
												result_plan);
			}
			else if (parse->groupClause)
1724
			{
1725 1726 1727 1728
				/*
				 * GROUP BY without aggregation, so insert a group node (plus
				 * the appropriate sort node, if necessary).
				 *
1729 1730
				 * Add an explicit sort if we couldn't make the path come out
				 * the way the GROUP node needs it.
1731
				 */
1732
				if (need_sort_for_grouping)
1733
				{
1734
					result_plan = (Plan *)
1735
						make_sort_from_groupcols(root,
1736 1737 1738
												 parse->groupClause,
												 groupColIdx,
												 result_plan);
1739
					current_pathkeys = root->group_pathkeys;
1740
				}
B
Bruce Momjian 已提交
1741

1742
				result_plan = (Plan *) make_group(root,
1743 1744 1745 1746
												  tlist,
												  (List *) parse->havingQual,
												  numGroupCols,
												  groupColIdx,
1747
									extract_grouping_ops(parse->groupClause),
1748 1749 1750
												  dNumGroups,
												  result_plan);
				/* The Group node won't change sort ordering */
1751
			}
1752
			else if (root->hasHavingQual)
1753
			{
1754 1755 1756 1757 1758
				/*
				 * No aggregates, and no GROUP BY, but we have a HAVING qual.
				 * This is a degenerate case in which we are supposed to emit
				 * either 0 or 1 row depending on whether HAVING succeeds.
				 * Furthermore, there cannot be any variables in either HAVING
B
Bruce Momjian 已提交
1759 1760
				 * or the targetlist, so we actually do not need the FROM
				 * table at all!  We can just throw away the plan-so-far and
B
Bruce Momjian 已提交
1761
				 * generate a Result node.  This is a sufficiently unusual
B
Bruce Momjian 已提交
1762 1763 1764
				 * corner case that it's not worth contorting the structure of
				 * this routine to avoid having to generate the plan in the
				 * first place.
1765
				 */
1766 1767
				result_plan = (Plan *) make_result(root,
												   tlist,
1768 1769
												   parse->havingQual,
												   NULL);
1770
			}
1771
		}						/* end of non-minmax-aggregate case */
T
Tom Lane 已提交
1772 1773

		/*
1774 1775 1776
		 * Since each window function could require a different sort order, we
		 * stack up a WindowAgg node for each window, with sort steps between
		 * them as needed.
T
Tom Lane 已提交
1777 1778 1779 1780 1781 1782 1783 1784
		 */
		if (activeWindows)
		{
			List	   *window_tlist;
			ListCell   *l;

			/*
			 * If the top-level plan node is one that cannot do expression
1785 1786
			 * evaluation, we must insert a Result node to project the desired
			 * tlist.  (In some cases this might not really be required, but
1787 1788 1789
			 * it's not worth trying to avoid it.  In particular, think not to
			 * skip adding the Result if the initial window_tlist matches the
			 * top-level plan node's output, because we might change the tlist
B
Bruce Momjian 已提交
1790
			 * inside the following loop.)	Note that on second and subsequent
1791 1792 1793
			 * passes through the following loop, the top-level node will be a
			 * WindowAgg which we know can project; so we only need to check
			 * once.
T
Tom Lane 已提交
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
			 */
			if (!is_projection_capable_plan(result_plan))
			{
				result_plan = (Plan *) make_result(root,
												   NIL,
												   NULL,
												   result_plan);
			}

			/*
1804
			 * The "base" targetlist for all steps of the windowing process is
B
Bruce Momjian 已提交
1805
			 * a flat tlist of all Vars and Aggs needed in the result.  (In
1806 1807 1808
			 * some cases we wouldn't need to propagate all of these all the
			 * way to the top, since they might only be needed as inputs to
			 * WindowFuncs.  It's probably not worth trying to optimize that
1809 1810 1811
			 * though.)  We also add window partitioning and sorting
			 * expressions to the base tlist, to ensure they're computed only
			 * once at the bottom of the stack (that's critical for volatile
B
Bruce Momjian 已提交
1812
			 * functions).  As we climb up the stack, we'll add outputs for
1813 1814 1815 1816 1817 1818 1819 1820
			 * the WindowFuncs computed at each level.
			 */
			window_tlist = make_windowInputTargetList(root,
													  tlist,
													  activeWindows);

			/*
			 * The copyObject steps here are needed to ensure that each plan
B
Bruce Momjian 已提交
1821
			 * node has a separately modifiable tlist.  (XXX wouldn't a
1822
			 * shallow list copy do for that?)
T
Tom Lane 已提交
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
			 */
			result_plan->targetlist = (List *) copyObject(window_tlist);

			foreach(l, activeWindows)
			{
				WindowClause *wc = (WindowClause *) lfirst(l);
				List	   *window_pathkeys;
				int			partNumCols;
				AttrNumber *partColIdx;
				Oid		   *partOperators;
				int			ordNumCols;
				AttrNumber *ordColIdx;
				Oid		   *ordOperators;

				window_pathkeys = make_pathkeys_for_window(root,
														   wc,
1839
														   tlist);
T
Tom Lane 已提交
1840 1841 1842 1843 1844 1845

				/*
				 * This is a bit tricky: we build a sort node even if we don't
				 * really have to sort.  Even when no explicit sort is needed,
				 * we need to have suitable resjunk items added to the input
				 * plan's tlist for any partitioning or ordering columns that
1846 1847
				 * aren't plain Vars.  (In theory, make_windowInputTargetList
				 * should have provided all such columns, but let's not assume
B
Bruce Momjian 已提交
1848
				 * that here.)	Furthermore, this way we can use existing
1849 1850
				 * infrastructure to identify which input columns are the
				 * interesting ones.
T
Tom Lane 已提交
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
				 */
				if (window_pathkeys)
				{
					Sort	   *sort_plan;

					sort_plan = make_sort_from_pathkeys(root,
														result_plan,
														window_pathkeys,
														-1.0);
					if (!pathkeys_contained_in(window_pathkeys,
											   current_pathkeys))
					{
						/* we do indeed need to sort */
						result_plan = (Plan *) sort_plan;
						current_pathkeys = window_pathkeys;
					}
					/* In either case, extract the per-column information */
					get_column_info_for_window(root, wc, tlist,
											   sort_plan->numCols,
											   sort_plan->sortColIdx,
											   &partNumCols,
											   &partColIdx,
											   &partOperators,
											   &ordNumCols,
											   &ordColIdx,
											   &ordOperators);
				}
				else
				{
					/* empty window specification, nothing to sort */
					partNumCols = 0;
					partColIdx = NULL;
					partOperators = NULL;
					ordNumCols = 0;
					ordColIdx = NULL;
					ordOperators = NULL;
				}

				if (lnext(l))
				{
					/* Add the current WindowFuncs to the running tlist */
					window_tlist = add_to_flat_tlist(window_tlist,
1893
										   wflists->windowFuncs[wc->winref]);
T
Tom Lane 已提交
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
				}
				else
				{
					/* Install the original tlist in the topmost WindowAgg */
					window_tlist = tlist;
				}

				/* ... and make the WindowAgg plan node */
				result_plan = (Plan *)
					make_windowagg(root,
								   (List *) copyObject(window_tlist),
1905
								   wflists->windowFuncs[wc->winref],
1906
								   wc->winref,
T
Tom Lane 已提交
1907 1908 1909 1910 1911 1912
								   partNumCols,
								   partColIdx,
								   partOperators,
								   ordNumCols,
								   ordColIdx,
								   ordOperators,
1913
								   wc->frameOptions,
1914 1915
								   wc->startOffset,
								   wc->endOffset,
T
Tom Lane 已提交
1916 1917 1918
								   result_plan);
			}
		}
B
Bruce Momjian 已提交
1919
	}							/* end of if (setOperations) */
1920

1921
	/*
1922
	 * If there is a DISTINCT clause, add the necessary node(s).
1923
	 */
1924
	if (parse->distinctClause)
1925
	{
1926 1927
		double		dNumDistinctRows;
		long		numDistinctRows;
1928 1929 1930 1931 1932

		/*
		 * If there was grouping or aggregation, use the current number of
		 * rows as the estimated number of DISTINCT rows (ie, assume the
		 * result was already mostly unique).  If not, use the number of
1933
		 * distinct-groups calculated previously.
1934 1935 1936 1937 1938 1939 1940 1941 1942
		 */
		if (parse->groupClause || root->hasHavingQual || parse->hasAggs)
			dNumDistinctRows = result_plan->plan_rows;
		else
			dNumDistinctRows = dNumGroups;

		/* Also convert to long int --- but 'ware overflow! */
		numDistinctRows = (long) Min(dNumDistinctRows, (double) LONG_MAX);

1943 1944
		/* Choose implementation method if we didn't already */
		if (!tested_hashed_distinct)
1945
		{
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
			/*
			 * At this point, either hashed or sorted grouping will have to
			 * work from result_plan, so we pass that as both "cheapest" and
			 * "sorted".
			 */
			use_hashed_distinct =
				choose_hashed_distinct(root,
									   tuple_fraction, limit_tuples,
									   result_plan->plan_rows,
									   result_plan->plan_width,
									   result_plan->startup_cost,
									   result_plan->total_cost,
									   result_plan->startup_cost,
									   result_plan->total_cost,
									   current_pathkeys,
									   dNumDistinctRows);
1962 1963 1964 1965 1966 1967 1968 1969 1970
		}

		if (use_hashed_distinct)
		{
			/* Hashed aggregate plan --- no sort needed */
			result_plan = (Plan *) make_agg(root,
											result_plan->targetlist,
											NIL,
											AGG_HASHED,
1971
											NULL,
1972 1973 1974 1975
										  list_length(parse->distinctClause),
								 extract_grouping_cols(parse->distinctClause,
													result_plan->targetlist),
								 extract_grouping_ops(parse->distinctClause),
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
											numDistinctRows,
											result_plan);
			/* Hashed aggregation produces randomly-ordered results */
			current_pathkeys = NIL;
		}
		else
		{
			/*
			 * Use a Unique node to implement DISTINCT.  Add an explicit sort
			 * if we couldn't make the path come out the way the Unique node
1986 1987 1988 1989
			 * needs it.  If we do have to sort, always sort by the more
			 * rigorous of DISTINCT and ORDER BY, to avoid a second sort
			 * below.  However, for regular DISTINCT, don't sort now if we
			 * don't have to --- sorting afterwards will likely be cheaper,
1990 1991 1992
			 * and also has the possibility of optimizing via LIMIT.  But for
			 * DISTINCT ON, we *must* force the final sort now, else it won't
			 * have the desired behavior.
1993
			 */
1994
			List	   *needed_pathkeys;
1995 1996 1997 1998 1999 2000 2001 2002 2003

			if (parse->hasDistinctOn &&
				list_length(root->distinct_pathkeys) <
				list_length(root->sort_pathkeys))
				needed_pathkeys = root->sort_pathkeys;
			else
				needed_pathkeys = root->distinct_pathkeys;

			if (!pathkeys_contained_in(needed_pathkeys, current_pathkeys))
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
			{
				if (list_length(root->distinct_pathkeys) >=
					list_length(root->sort_pathkeys))
					current_pathkeys = root->distinct_pathkeys;
				else
				{
					current_pathkeys = root->sort_pathkeys;
					/* Assert checks that parser didn't mess up... */
					Assert(pathkeys_contained_in(root->distinct_pathkeys,
												 current_pathkeys));
				}

				result_plan = (Plan *) make_sort_from_pathkeys(root,
															   result_plan,
2018
															current_pathkeys,
2019 2020 2021 2022 2023 2024 2025
															   -1.0);
			}

			result_plan = (Plan *) make_unique(result_plan,
											   parse->distinctClause);
			result_plan->plan_rows = dNumDistinctRows;
			/* The Unique node won't change sort ordering */
2026
		}
2027
	}
2028 2029

	/*
2030 2031
	 * If ORDER BY was given and we were not able to make the plan come out in
	 * the right order, add an explicit sort step.
2032
	 */
2033
	if (parse->sortClause)
2034
	{
2035 2036 2037 2038
		if (!pathkeys_contained_in(root->sort_pathkeys, current_pathkeys))
		{
			result_plan = (Plan *) make_sort_from_pathkeys(root,
														   result_plan,
2039
														 root->sort_pathkeys,
2040 2041 2042
														   limit_tuples);
			current_pathkeys = root->sort_pathkeys;
		}
2043
	}
2044

2045
	/*
B
Bruce Momjian 已提交
2046 2047 2048
	 * If there is a FOR [KEY] UPDATE/SHARE clause, add the LockRows node.
	 * (Note: we intentionally test parse->rowMarks not root->rowMarks here.
	 * If there are only non-locking rowmarks, they should be handled by the
B
Bruce Momjian 已提交
2049
	 * ModifyTable node instead.)
2050 2051 2052 2053
	 */
	if (parse->rowMarks)
	{
		result_plan = (Plan *) make_lockrows(result_plan,
2054 2055
											 root->rowMarks,
											 SS_assign_special_param(root));
B
Bruce Momjian 已提交
2056

2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
		/*
		 * The result can no longer be assumed sorted, since locking might
		 * cause the sort key columns to be replaced with new values.
		 */
		current_pathkeys = NIL;
	}

	/*
	 * Finally, if there is a LIMIT/OFFSET clause, add the LIMIT node.
	 */
2067
	if (limit_needed(parse))
2068 2069 2070 2071 2072 2073
	{
		result_plan = (Plan *) make_limit(result_plan,
										  parse->limitOffset,
										  parse->limitCount,
										  offset_est,
										  count_est);
2074 2075
	}

2076
	/*
B
Bruce Momjian 已提交
2077 2078
	 * Return the actual output ordering in query_pathkeys for possible use by
	 * an outer query level.
2079
	 */
2080
	root->query_pathkeys = current_pathkeys;
2081

2082
	return result_plan;
2083 2084
}

2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
/*
 * add_tlist_costs_to_plan
 *
 * Estimate the execution costs associated with evaluating the targetlist
 * expressions, and add them to the cost estimates for the Plan node.
 *
 * If the tlist contains set-returning functions, also inflate the Plan's cost
 * and plan_rows estimates accordingly.  (Hence, this must be called *after*
 * any logic that uses plan_rows to, eg, estimate qual evaluation costs.)
 *
 * Note: during initial stages of planning, we mostly consider plan nodes with
 * "flat" tlists, containing just Vars.  So their evaluation cost is zero
 * according to the model used by cost_qual_eval() (or if you prefer, the cost
 * is factored into cpu_tuple_cost).  Thus we can avoid accounting for tlist
 * cost throughout query_planner() and subroutines.  But once we apply a
 * tlist that might contain actual operators, sub-selects, etc, we'd better
 * account for its cost.  Any set-returning functions in the tlist must also
 * affect the estimated rowcount.
 *
 * Once grouping_planner() has applied a general tlist to the topmost
 * scan/join plan node, any tlist eval cost for added-on nodes should be
B
Bruce Momjian 已提交
2106
 * accounted for as we create those nodes.  Presently, of the node types we
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
 * can add on later, only Agg, WindowAgg, and Group project new tlists (the
 * rest just copy their input tuples) --- so make_agg(), make_windowagg() and
 * make_group() are responsible for calling this function to account for their
 * tlist costs.
 */
void
add_tlist_costs_to_plan(PlannerInfo *root, Plan *plan, List *tlist)
{
	QualCost	tlist_cost;
	double		tlist_rows;

	cost_qual_eval(&tlist_cost, tlist, root);
	plan->startup_cost += tlist_cost.startup;
	plan->total_cost += tlist_cost.startup +
		tlist_cost.per_tuple * plan->plan_rows;

	tlist_rows = tlist_returns_set_rows(tlist);
	if (tlist_rows > 1)
	{
		/*
		 * We assume that execution costs of the tlist proper were all
		 * accounted for by cost_qual_eval.  However, it still seems
		 * appropriate to charge something more for the executor's general
		 * costs of processing the added tuples.  The cost is probably less
		 * than cpu_tuple_cost, though, so we arbitrarily use half of that.
		 */
		plan->total_cost += plan->plan_rows * (tlist_rows - 1) *
			cpu_tuple_cost / 2;

		plan->plan_rows *= tlist_rows;
	}
}

2140 2141 2142 2143 2144
/*
 * Detect whether a plan node is a "dummy" plan created when a relation
 * is deemed not to need scanning due to constraint exclusion.
 *
 * Currently, such dummy plans are Result nodes with constant FALSE
2145 2146 2147
 * filter quals (see set_dummy_rel_pathlist and create_append_plan).
 *
 * XXX this probably ought to be somewhere else, but not clear where.
2148
 */
2149
bool
2150 2151 2152 2153
is_dummy_plan(Plan *plan)
{
	if (IsA(plan, Result))
	{
B
Bruce Momjian 已提交
2154
		List	   *rcqual = (List *) ((Result *) plan)->resconstantqual;
2155 2156 2157

		if (list_length(rcqual) == 1)
		{
B
Bruce Momjian 已提交
2158
			Const	   *constqual = (Const *) linitial(rcqual);
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170

			if (constqual && IsA(constqual, Const))
			{
				if (!constqual->constisnull &&
					!DatumGetBool(constqual->constvalue))
					return true;
			}
		}
	}
	return false;
}

2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
/*
 * Create a bitmapset of the RT indexes of live base relations
 *
 * Helper for preprocess_rowmarks ... at this point in the proceedings,
 * the only good way to distinguish baserels from appendrel children
 * is to see what is in the join tree.
 */
static Bitmapset *
get_base_rel_indexes(Node *jtnode)
{
	Bitmapset  *result;

	if (jtnode == NULL)
		return NULL;
	if (IsA(jtnode, RangeTblRef))
	{
		int			varno = ((RangeTblRef *) jtnode)->rtindex;

		result = bms_make_singleton(varno);
	}
	else if (IsA(jtnode, FromExpr))
	{
		FromExpr   *f = (FromExpr *) jtnode;
		ListCell   *l;

		result = NULL;
		foreach(l, f->fromlist)
			result = bms_join(result,
							  get_base_rel_indexes(lfirst(l)));
	}
	else if (IsA(jtnode, JoinExpr))
	{
		JoinExpr   *j = (JoinExpr *) jtnode;

		result = bms_join(get_base_rel_indexes(j->larg),
						  get_base_rel_indexes(j->rarg));
	}
	else
	{
		elog(ERROR, "unrecognized node type: %d",
			 (int) nodeTag(jtnode));
		result = NULL;			/* keep compiler quiet */
	}
	return result;
}

/*
 * preprocess_rowmarks - set up PlanRowMarks if needed
 */
static void
preprocess_rowmarks(PlannerInfo *root)
{
	Query	   *parse = root->parse;
	Bitmapset  *rels;
	List	   *prowmarks;
	ListCell   *l;
	int			i;

	if (parse->rowMarks)
	{
		/*
B
Bruce Momjian 已提交
2232 2233 2234
		 * We've got trouble if FOR [KEY] UPDATE/SHARE appears inside
		 * grouping, since grouping renders a reference to individual tuple
		 * CTIDs invalid.  This is also checked at parse time, but that's
2235 2236
		 * insufficient because of rule substitution, query pullup, etc.
		 */
2237
		CheckSelectLocking(parse, ((RowMarkClause *)
B
Bruce Momjian 已提交
2238
								   linitial(parse->rowMarks))->strength);
2239 2240 2241 2242
	}
	else
	{
		/*
B
Bruce Momjian 已提交
2243 2244
		 * We only need rowmarks for UPDATE, DELETE, or FOR [KEY]
		 * UPDATE/SHARE.
2245 2246 2247 2248 2249 2250 2251
		 */
		if (parse->commandType != CMD_UPDATE &&
			parse->commandType != CMD_DELETE)
			return;
	}

	/*
B
Bruce Momjian 已提交
2252 2253
	 * We need to have rowmarks for all base relations except the target. We
	 * make a bitmapset of all base rels and then remove the items we don't
2254
	 * need or have FOR [KEY] UPDATE/SHARE marks for.
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
	 */
	rels = get_base_rel_indexes((Node *) parse->jointree);
	if (parse->resultRelation)
		rels = bms_del_member(rels, parse->resultRelation);

	/*
	 * Convert RowMarkClauses to PlanRowMark representation.
	 */
	prowmarks = NIL;
	foreach(l, parse->rowMarks)
	{
		RowMarkClause *rc = (RowMarkClause *) lfirst(l);
2267 2268
		RangeTblEntry *rte = rt_fetch(rc->rti, parse->rtable);
		PlanRowMark *newrc;
2269

2270
		/*
2271
		 * Currently, it is syntactically impossible to have FOR UPDATE et al
B
Bruce Momjian 已提交
2272
		 * applied to an update/delete target rel.  If that ever becomes
2273 2274
		 * possible, we should drop the target from the PlanRowMark list.
		 */
2275
		Assert(rc->rti != parse->resultRelation);
2276 2277

		/*
B
Bruce Momjian 已提交
2278 2279 2280 2281
		 * Ignore RowMarkClauses for subqueries; they aren't real tables and
		 * can't support true locking.  Subqueries that got flattened into the
		 * main query should be ignored completely.  Any that didn't will get
		 * ROW_MARK_COPY items in the next loop.
2282 2283 2284 2285
		 */
		if (rte->rtekind != RTE_RELATION)
			continue;

2286 2287
		rels = bms_del_member(rels, rc->rti);

2288
		newrc = makeNode(PlanRowMark);
2289
		newrc->rti = newrc->prti = rc->rti;
2290
		newrc->rowmarkId = ++(root->glob->lastRowMarkId);
2291
		newrc->markType = select_rowmark_type(rte, rc->strength);
2292 2293
		newrc->allMarkTypes = (1 << newrc->markType);
		newrc->strength = rc->strength;
2294
		newrc->waitPolicy = rc->waitPolicy;
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
		newrc->isParent = false;

		prowmarks = lappend(prowmarks, newrc);
	}

	/*
	 * Now, add rowmarks for any non-target, non-locked base relations.
	 */
	i = 0;
	foreach(l, parse->rtable)
	{
		RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
		PlanRowMark *newrc;

		i++;
		if (!bms_is_member(i, rels))
			continue;

		newrc = makeNode(PlanRowMark);
		newrc->rti = newrc->prti = i;
2315
		newrc->rowmarkId = ++(root->glob->lastRowMarkId);
2316
		newrc->markType = select_rowmark_type(rte, LCS_NONE);
2317 2318
		newrc->allMarkTypes = (1 << newrc->markType);
		newrc->strength = LCS_NONE;
2319
		newrc->waitPolicy = LockWaitBlock;		/* doesn't matter */
2320 2321 2322 2323 2324 2325 2326 2327
		newrc->isParent = false;

		prowmarks = lappend(prowmarks, newrc);
	}

	root->rowMarks = prowmarks;
}

2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
/*
 * Select RowMarkType to use for a given table
 */
RowMarkType
select_rowmark_type(RangeTblEntry *rte, LockClauseStrength strength)
{
	if (rte->rtekind != RTE_RELATION)
	{
		/* If it's not a table at all, use ROW_MARK_COPY */
		return ROW_MARK_COPY;
	}
	else if (rte->relkind == RELKIND_FOREIGN_TABLE)
	{
2341 2342 2343 2344 2345 2346
		/* Let the FDW select the rowmark type, if it wants to */
		FdwRoutine *fdwroutine = GetFdwRoutineByRelId(rte->relid);

		if (fdwroutine->GetForeignRowMarkType != NULL)
			return fdwroutine->GetForeignRowMarkType(rte, strength);
		/* Otherwise, use ROW_MARK_COPY by default */
2347 2348 2349 2350 2351 2352 2353 2354
		return ROW_MARK_COPY;
	}
	else
	{
		/* Regular table, apply the appropriate lock type */
		switch (strength)
		{
			case LCS_NONE:
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
				/*
				 * We don't need a tuple lock, only the ability to re-fetch
				 * the row.  Regular tables support ROW_MARK_REFERENCE, but if
				 * this RTE has security barrier quals, it will be turned into
				 * a subquery during planning, so use ROW_MARK_COPY.
				 *
				 * This is only necessary for LCS_NONE, since real tuple locks
				 * on an RTE with security barrier quals are supported by
				 * pushing the lock down into the subquery --- see
				 * expand_security_qual.
				 */
				if (rte->securityQuals != NIL)
					return ROW_MARK_COPY;
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
				return ROW_MARK_REFERENCE;
				break;
			case LCS_FORKEYSHARE:
				return ROW_MARK_KEYSHARE;
				break;
			case LCS_FORSHARE:
				return ROW_MARK_SHARE;
				break;
			case LCS_FORNOKEYUPDATE:
				return ROW_MARK_NOKEYEXCLUSIVE;
				break;
			case LCS_FORUPDATE:
				return ROW_MARK_EXCLUSIVE;
				break;
		}
		elog(ERROR, "unrecognized LockClauseStrength %d", (int) strength);
		return ROW_MARK_EXCLUSIVE;		/* keep compiler quiet */
	}
}

2388
/*
2389
 * preprocess_limit - do pre-estimation for LIMIT and/or OFFSET clauses
2390
 *
2391
 * We try to estimate the values of the LIMIT/OFFSET clauses, and pass the
B
Bruce Momjian 已提交
2392
 * results back in *count_est and *offset_est.  These variables are set to
2393 2394 2395 2396 2397 2398 2399 2400
 * 0 if the corresponding clause is not present, and -1 if it's present
 * but we couldn't estimate the value for it.  (The "0" convention is OK
 * for OFFSET but a little bit bogus for LIMIT: effectively we estimate
 * LIMIT 0 as though it were LIMIT 1.  But this is in line with the planner's
 * usual practice of never estimating less than one row.)  These values will
 * be passed to make_limit, which see if you change this code.
 *
 * The return value is the suitably adjusted tuple_fraction to use for
B
Bruce Momjian 已提交
2401
 * planning the query.  This adjustment is not overridable, since it reflects
2402 2403
 * plan actions that grouping_planner() will certainly take, not assumptions
 * about context.
2404 2405
 */
static double
2406
preprocess_limit(PlannerInfo *root, double tuple_fraction,
B
Bruce Momjian 已提交
2407
				 int64 *offset_est, int64 *count_est)
2408 2409
{
	Query	   *parse = root->parse;
2410 2411
	Node	   *est;
	double		limit_fraction;
2412

2413 2414
	/* Should not be called unless LIMIT or OFFSET */
	Assert(parse->limitCount || parse->limitOffset);
2415 2416

	/*
2417 2418
	 * Try to obtain the clause values.  We use estimate_expression_value
	 * primarily because it can sometimes do something useful with Params.
2419
	 */
2420
	if (parse->limitCount)
2421
	{
2422
		est = estimate_expression_value(root, parse->limitCount);
2423
		if (est && IsA(est, Const))
2424
		{
2425
			if (((Const *) est)->constisnull)
2426
			{
2427
				/* NULL indicates LIMIT ALL, ie, no limit */
B
Bruce Momjian 已提交
2428
				*count_est = 0; /* treat as not present */
2429 2430 2431
			}
			else
			{
B
Bruce Momjian 已提交
2432
				*count_est = DatumGetInt64(((Const *) est)->constvalue);
2433 2434
				if (*count_est <= 0)
					*count_est = 1;		/* force to at least 1 */
2435 2436
			}
		}
2437 2438
		else
			*count_est = -1;	/* can't estimate */
2439 2440
	}
	else
2441 2442 2443
		*count_est = 0;			/* not present */

	if (parse->limitOffset)
2444
	{
2445
		est = estimate_expression_value(root, parse->limitOffset);
2446 2447 2448 2449 2450
		if (est && IsA(est, Const))
		{
			if (((Const *) est)->constisnull)
			{
				/* Treat NULL as no offset; the executor will too */
B
Bruce Momjian 已提交
2451
				*offset_est = 0;	/* treat as not present */
2452 2453 2454
			}
			else
			{
B
Bruce Momjian 已提交
2455
				*offset_est = DatumGetInt64(((Const *) est)->constvalue);
2456
				if (*offset_est < 0)
2457
					*offset_est = 0;	/* treat as not present */
2458 2459 2460 2461
			}
		}
		else
			*offset_est = -1;	/* can't estimate */
2462
	}
2463 2464
	else
		*offset_est = 0;		/* not present */
2465

2466
	if (*count_est != 0)
2467
	{
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
		/*
		 * A LIMIT clause limits the absolute number of tuples returned.
		 * However, if it's not a constant LIMIT then we have to guess; for
		 * lack of a better idea, assume 10% of the plan's result is wanted.
		 */
		if (*count_est < 0 || *offset_est < 0)
		{
			/* LIMIT or OFFSET is an expression ... punt ... */
			limit_fraction = 0.10;
		}
		else
		{
			/* LIMIT (plus OFFSET, if any) is max number of tuples needed */
			limit_fraction = (double) *count_est + (double) *offset_est;
		}

2484 2485
		/*
		 * If we have absolute limits from both caller and LIMIT, use the
2486 2487 2488 2489
		 * smaller value; likewise if they are both fractional.  If one is
		 * fractional and the other absolute, we can't easily determine which
		 * is smaller, but we use the heuristic that the absolute will usually
		 * be smaller.
2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
		 */
		if (tuple_fraction >= 1.0)
		{
			if (limit_fraction >= 1.0)
			{
				/* both absolute */
				tuple_fraction = Min(tuple_fraction, limit_fraction);
			}
			else
			{
2500
				/* caller absolute, limit fractional; use caller's value */
2501 2502 2503 2504 2505 2506
			}
		}
		else if (tuple_fraction > 0.0)
		{
			if (limit_fraction >= 1.0)
			{
2507 2508
				/* caller fractional, limit absolute; use limit */
				tuple_fraction = limit_fraction;
2509 2510 2511 2512
			}
			else
			{
				/* both fractional */
2513
				tuple_fraction = Min(tuple_fraction, limit_fraction);
2514 2515 2516 2517 2518 2519 2520 2521
			}
		}
		else
		{
			/* no info from caller, just use limit */
			tuple_fraction = limit_fraction;
		}
	}
2522 2523 2524
	else if (*offset_est != 0 && tuple_fraction > 0.0)
	{
		/*
B
Bruce Momjian 已提交
2525
		 * We have an OFFSET but no LIMIT.  This acts entirely differently
B
Bruce Momjian 已提交
2526 2527 2528 2529
		 * from the LIMIT case: here, we need to increase rather than decrease
		 * the caller's tuple_fraction, because the OFFSET acts to cause more
		 * tuples to be fetched instead of fewer.  This only matters if we got
		 * a tuple_fraction > 0, however.
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
		 *
		 * As above, use 10% if OFFSET is present but unestimatable.
		 */
		if (*offset_est < 0)
			limit_fraction = 0.10;
		else
			limit_fraction = (double) *offset_est;

		/*
		 * If we have absolute counts from both caller and OFFSET, add them
B
Bruce Momjian 已提交
2540
		 * together; likewise if they are both fractional.  If one is
B
Bruce Momjian 已提交
2541 2542
		 * fractional and the other absolute, we want to take the larger, and
		 * we heuristically assume that's the fractional one.
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
		 */
		if (tuple_fraction >= 1.0)
		{
			if (limit_fraction >= 1.0)
			{
				/* both absolute, so add them together */
				tuple_fraction += limit_fraction;
			}
			else
			{
				/* caller absolute, limit fractional; use limit */
				tuple_fraction = limit_fraction;
			}
		}
		else
		{
			if (limit_fraction >= 1.0)
			{
				/* caller fractional, limit absolute; use caller's value */
			}
			else
			{
				/* both fractional, so add them together */
				tuple_fraction += limit_fraction;
				if (tuple_fraction >= 1.0)
B
Bruce Momjian 已提交
2568
					tuple_fraction = 0.0;		/* assume fetch all */
2569 2570 2571
			}
		}
	}
2572 2573 2574 2575

	return tuple_fraction;
}

2576 2577 2578 2579 2580
/*
 * limit_needed - do we actually need a Limit plan node?
 *
 * If we have constant-zero OFFSET and constant-null LIMIT, we can skip adding
 * a Limit node.  This is worth checking for because "OFFSET 0" is a common
B
Bruce Momjian 已提交
2581
 * locution for an optimization fence.  (Because other places in the planner
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
 * merely check whether parse->limitOffset isn't NULL, it will still work as
 * an optimization fence --- we're just suppressing unnecessary run-time
 * overhead.)
 *
 * This might look like it could be merged into preprocess_limit, but there's
 * a key distinction: here we need hard constants in OFFSET/LIMIT, whereas
 * in preprocess_limit it's good enough to consider estimated values.
 */
static bool
limit_needed(Query *parse)
{
	Node	   *node;

	node = parse->limitCount;
	if (node)
	{
		if (IsA(node, Const))
		{
			/* NULL indicates LIMIT ALL, ie, no limit */
			if (!((Const *) node)->constisnull)
				return true;	/* LIMIT with a constant value */
		}
		else
			return true;		/* non-constant LIMIT */
	}

	node = parse->limitOffset;
	if (node)
	{
		if (IsA(node, Const))
		{
			/* Treat NULL as no offset; the executor would too */
			if (!((Const *) node)->constisnull)
			{
B
Bruce Momjian 已提交
2616
				int64		offset = DatumGetInt64(((Const *) node)->constvalue);
2617

2618 2619
				if (offset != 0)
					return true;	/* OFFSET with a nonzero value */
2620 2621 2622 2623 2624 2625 2626 2627 2628
			}
		}
		else
			return true;		/* non-constant OFFSET */
	}

	return false;				/* don't need a Limit plan node */
}

2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641

/*
 * preprocess_groupclause - do preparatory work on GROUP BY clause
 *
 * The idea here is to adjust the ordering of the GROUP BY elements
 * (which in itself is semantically insignificant) to match ORDER BY,
 * thereby allowing a single sort operation to both implement the ORDER BY
 * requirement and set up for a Unique step that implements GROUP BY.
 *
 * In principle it might be interesting to consider other orderings of the
 * GROUP BY elements, which could match the sort ordering of other
 * possible plans (eg an indexscan) and thereby reduce cost.  We don't
 * bother with that, though.  Hashed grouping will frequently win anyway.
2642 2643 2644
 *
 * Note: we need no comparable processing of the distinctClause because
 * the parser already enforced that that matches ORDER BY.
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
 */
static void
preprocess_groupclause(PlannerInfo *root)
{
	Query	   *parse = root->parse;
	List	   *new_groupclause;
	bool		partial_match;
	ListCell   *sl;
	ListCell   *gl;

2655
	/* If no ORDER BY, nothing useful to do here */
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
	if (parse->sortClause == NIL)
		return;

	/*
	 * Scan the ORDER BY clause and construct a list of matching GROUP BY
	 * items, but only as far as we can make a matching prefix.
	 *
	 * This code assumes that the sortClause contains no duplicate items.
	 */
	new_groupclause = NIL;
	foreach(sl, parse->sortClause)
	{
		SortGroupClause *sc = (SortGroupClause *) lfirst(sl);

		foreach(gl, parse->groupClause)
		{
			SortGroupClause *gc = (SortGroupClause *) lfirst(gl);

			if (equal(gc, sc))
			{
				new_groupclause = lappend(new_groupclause, gc);
				break;
			}
		}
		if (gl == NULL)
			break;				/* no match, so stop scanning */
	}

	/* Did we match all of the ORDER BY list, or just some of it? */
	partial_match = (sl != NULL);

	/* If no match at all, no point in reordering GROUP BY */
	if (new_groupclause == NIL)
		return;

	/*
2692 2693 2694 2695 2696 2697
	 * Add any remaining GROUP BY items to the new list, but only if we were
	 * able to make a complete match.  In other words, we only rearrange the
	 * GROUP BY list if the result is that one list is a prefix of the other
	 * --- otherwise there's no possibility of a common sort.  Also, give up
	 * if there are any non-sortable GROUP BY items, since then there's no
	 * hope anyway.
2698 2699 2700 2701 2702 2703 2704 2705 2706
	 */
	foreach(gl, parse->groupClause)
	{
		SortGroupClause *gc = (SortGroupClause *) lfirst(gl);

		if (list_member_ptr(new_groupclause, gc))
			continue;			/* it matched an ORDER BY item */
		if (partial_match)
			return;				/* give up, no common sort possible */
2707 2708
		if (!OidIsValid(gc->sortop))
			return;				/* give up, GROUP BY can't be sorted */
2709 2710 2711 2712 2713 2714 2715 2716
		new_groupclause = lappend(new_groupclause, gc);
	}

	/* Success --- install the rearranged GROUP BY list */
	Assert(list_length(parse->groupClause) == list_length(new_groupclause));
	parse->groupClause = new_groupclause;
}

2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
/*
 * Compute query_pathkeys and other pathkeys during plan generation
 */
static void
standard_qp_callback(PlannerInfo *root, void *extra)
{
	Query	   *parse = root->parse;
	standard_qp_extra *qp_extra = (standard_qp_extra *) extra;
	List	   *tlist = qp_extra->tlist;
	List	   *activeWindows = qp_extra->activeWindows;

	/*
	 * Calculate pathkeys that represent grouping/ordering requirements.  The
	 * sortClause is certainly sort-able, but GROUP BY and DISTINCT might not
	 * be, in which case we just leave their pathkeys empty.
	 */
	if (parse->groupClause &&
		grouping_is_sortable(parse->groupClause))
		root->group_pathkeys =
			make_pathkeys_for_sortclauses(root,
										  parse->groupClause,
										  tlist);
	else
		root->group_pathkeys = NIL;

	/* We consider only the first (bottom) window in pathkeys logic */
	if (activeWindows != NIL)
	{
		WindowClause *wc = (WindowClause *) linitial(activeWindows);

		root->window_pathkeys = make_pathkeys_for_window(root,
														 wc,
														 tlist);
	}
	else
		root->window_pathkeys = NIL;

	if (parse->distinctClause &&
		grouping_is_sortable(parse->distinctClause))
		root->distinct_pathkeys =
			make_pathkeys_for_sortclauses(root,
										  parse->distinctClause,
										  tlist);
	else
		root->distinct_pathkeys = NIL;

	root->sort_pathkeys =
		make_pathkeys_for_sortclauses(root,
									  parse->sortClause,
									  tlist);

	/*
	 * Figure out whether we want a sorted result from query_planner.
	 *
	 * If we have a sortable GROUP BY clause, then we want a result sorted
	 * properly for grouping.  Otherwise, if we have window functions to
	 * evaluate, we try to sort for the first window.  Otherwise, if there's a
	 * sortable DISTINCT clause that's more rigorous than the ORDER BY clause,
	 * we try to produce output that's sufficiently well sorted for the
	 * DISTINCT.  Otherwise, if there is an ORDER BY clause, we want to sort
	 * by the ORDER BY clause.
	 *
	 * Note: if we have both ORDER BY and GROUP BY, and ORDER BY is a superset
	 * of GROUP BY, it would be tempting to request sort by ORDER BY --- but
	 * that might just leave us failing to exploit an available sort order at
	 * all.  Needs more thought.  The choice for DISTINCT versus ORDER BY is
	 * much easier, since we know that the parser ensured that one is a
	 * superset of the other.
	 */
	if (root->group_pathkeys)
		root->query_pathkeys = root->group_pathkeys;
	else if (root->window_pathkeys)
		root->query_pathkeys = root->window_pathkeys;
	else if (list_length(root->distinct_pathkeys) >
			 list_length(root->sort_pathkeys))
		root->query_pathkeys = root->distinct_pathkeys;
	else if (root->sort_pathkeys)
		root->query_pathkeys = root->sort_pathkeys;
	else
		root->query_pathkeys = NIL;
}

2799 2800
/*
 * choose_hashed_grouping - should we use hashed grouping?
2801
 *
2802
 * Returns TRUE to select hashing, FALSE to select sorting.
2803 2804
 */
static bool
2805 2806
choose_hashed_grouping(PlannerInfo *root,
					   double tuple_fraction, double limit_tuples,
2807
					   double path_rows, int path_width,
2808
					   Path *cheapest_path, Path *sorted_path,
2809
					   double dNumGroups, AggClauseCosts *agg_costs)
2810
{
2811 2812 2813 2814
	Query	   *parse = root->parse;
	int			numGroupCols = list_length(parse->groupClause);
	bool		can_hash;
	bool		can_sort;
2815
	Size		hashentrysize;
2816
	List	   *target_pathkeys;
2817 2818 2819 2820
	List	   *current_pathkeys;
	Path		hashed_p;
	Path		sorted_p;

2821 2822
	/*
	 * Executor doesn't support hashed aggregation with DISTINCT or ORDER BY
B
Bruce Momjian 已提交
2823
	 * aggregates.  (Doing so would imply storing *all* the input values in
2824
	 * the hash table, and/or running many sorts in parallel, either of which
2825 2826 2827
	 * seems like a certain loser.)  We similarly don't support ordered-set
	 * aggregates in hashed aggregation, but that case is included in the
	 * numOrderedAggs count.
2828
	 */
2829
	can_hash = (agg_costs->numOrderedAggs == 0 &&
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
				grouping_is_hashable(parse->groupClause));
	can_sort = grouping_is_sortable(parse->groupClause);

	/* Quick out if only one choice is workable */
	if (!(can_hash && can_sort))
	{
		if (can_hash)
			return true;
		else if (can_sort)
			return false;
		else
			ereport(ERROR,
					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
					 errmsg("could not implement GROUP BY"),
					 errdetail("Some of the datatypes only support hashing, while others only support sorting.")));
	}

2847
	/* Prefer sorting when enable_hashagg is off */
2848 2849 2850 2851 2852 2853 2854 2855 2856
	if (!enable_hashagg)
		return false;

	/*
	 * Don't do it if it doesn't look like the hashtable will fit into
	 * work_mem.
	 */

	/* Estimate per-hash-entry space at tuple width... */
2857
	hashentrysize = MAXALIGN(path_width) + MAXALIGN(SizeofMinimalTupleHeader);
2858
	/* plus space for pass-by-ref transition values... */
2859
	hashentrysize += agg_costs->transitionSpace;
2860
	/* plus the per-hash-entry overhead */
2861
	hashentrysize += hash_agg_entry_size(agg_costs->numAggs);
2862 2863 2864 2865

	if (hashentrysize * dNumGroups > work_mem * 1024L)
		return false;

2866 2867
	/*
	 * When we have both GROUP BY and DISTINCT, use the more-rigorous of
2868 2869 2870 2871
	 * DISTINCT and ORDER BY as the assumed required output sort order. This
	 * is an oversimplification because the DISTINCT might get implemented via
	 * hashing, but it's not clear that the case is common enough (or that our
	 * estimates are good enough) to justify trying to solve it exactly.
2872 2873 2874 2875 2876 2877 2878
	 */
	if (list_length(root->distinct_pathkeys) >
		list_length(root->sort_pathkeys))
		target_pathkeys = root->distinct_pathkeys;
	else
		target_pathkeys = root->sort_pathkeys;

2879
	/*
B
Bruce Momjian 已提交
2880 2881 2882 2883
	 * See if the estimated cost is no more than doing it the other way. While
	 * avoiding the need for sorted input is usually a win, the fact that the
	 * output won't be sorted may be a loss; so we need to do an actual cost
	 * comparison.
2884
	 *
2885 2886 2887
	 * We need to consider cheapest_path + hashagg [+ final sort] versus
	 * either cheapest_path [+ sort] + group or agg [+ final sort] or
	 * presorted_path + group or agg [+ final sort] where brackets indicate a
2888 2889
	 * step that may not be needed.  We assume grouping_planner() will have
	 * passed us a presorted path only if it's a winner compared to
2890
	 * cheapest_path for this purpose.
2891
	 *
2892 2893
	 * These path variables are dummies that just hold cost fields; we don't
	 * make actual Paths for these steps.
2894
	 */
2895
	cost_agg(&hashed_p, root, AGG_HASHED, agg_costs,
2896 2897
			 numGroupCols, dNumGroups,
			 cheapest_path->startup_cost, cheapest_path->total_cost,
2898
			 path_rows);
2899
	/* Result of hashed agg is always unsorted */
2900 2901
	if (target_pathkeys)
		cost_sort(&hashed_p, root, target_pathkeys, hashed_p.total_cost,
2902 2903
				  dNumGroups, path_width,
				  0.0, work_mem, limit_tuples);
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916

	if (sorted_path)
	{
		sorted_p.startup_cost = sorted_path->startup_cost;
		sorted_p.total_cost = sorted_path->total_cost;
		current_pathkeys = sorted_path->pathkeys;
	}
	else
	{
		sorted_p.startup_cost = cheapest_path->startup_cost;
		sorted_p.total_cost = cheapest_path->total_cost;
		current_pathkeys = cheapest_path->pathkeys;
	}
2917
	if (!pathkeys_contained_in(root->group_pathkeys, current_pathkeys))
2918
	{
2919
		cost_sort(&sorted_p, root, root->group_pathkeys, sorted_p.total_cost,
2920 2921
				  path_rows, path_width,
				  0.0, work_mem, -1.0);
2922
		current_pathkeys = root->group_pathkeys;
2923 2924
	}

2925
	if (parse->hasAggs)
2926
		cost_agg(&sorted_p, root, AGG_SORTED, agg_costs,
2927 2928
				 numGroupCols, dNumGroups,
				 sorted_p.startup_cost, sorted_p.total_cost,
2929
				 path_rows);
2930
	else
2931
		cost_group(&sorted_p, root, numGroupCols, dNumGroups,
2932
				   sorted_p.startup_cost, sorted_p.total_cost,
2933
				   path_rows);
2934
	/* The Agg or Group node will preserve ordering */
2935 2936 2937
	if (target_pathkeys &&
		!pathkeys_contained_in(target_pathkeys, current_pathkeys))
		cost_sort(&sorted_p, root, target_pathkeys, sorted_p.total_cost,
2938 2939
				  dNumGroups, path_width,
				  0.0, work_mem, limit_tuples);
2940 2941

	/*
2942
	 * Now make the decision using the top-level tuple fraction.
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
	 */
	if (compare_fractional_path_costs(&hashed_p, &sorted_p,
									  tuple_fraction) < 0)
	{
		/* Hashed is cheaper, so use it */
		return true;
	}
	return false;
}

2953 2954 2955 2956 2957
/*
 * choose_hashed_distinct - should we use hashing for DISTINCT?
 *
 * This is fairly similar to choose_hashed_grouping, but there are enough
 * differences that it doesn't seem worth trying to unify the two functions.
2958 2959 2960
 * (One difference is that we sometimes apply this after forming a Plan,
 * so the input alternatives can't be represented as Paths --- instead we
 * pass in the costs as individual variables.)
2961 2962
 *
 * But note that making the two choices independently is a bit bogus in
B
Bruce Momjian 已提交
2963
 * itself.  If the two could be combined into a single choice operation
2964 2965 2966 2967 2968 2969
 * it'd probably be better, but that seems far too unwieldy to be practical,
 * especially considering that the combination of GROUP BY and DISTINCT
 * isn't very common in real queries.  By separating them, we are giving
 * extra preference to using a sorting implementation when a common sort key
 * is available ... and that's not necessarily wrong anyway.
 *
2970
 * Returns TRUE to select hashing, FALSE to select sorting.
2971 2972 2973 2974
 */
static bool
choose_hashed_distinct(PlannerInfo *root,
					   double tuple_fraction, double limit_tuples,
2975 2976 2977 2978
					   double path_rows, int path_width,
					   Cost cheapest_startup_cost, Cost cheapest_total_cost,
					   Cost sorted_startup_cost, Cost sorted_total_cost,
					   List *sorted_pathkeys,
2979 2980
					   double dNumDistinctRows)
{
2981 2982 2983 2984
	Query	   *parse = root->parse;
	int			numDistinctCols = list_length(parse->distinctClause);
	bool		can_sort;
	bool		can_hash;
2985 2986
	Size		hashentrysize;
	List	   *current_pathkeys;
2987
	List	   *needed_pathkeys;
2988 2989 2990
	Path		hashed_p;
	Path		sorted_p;

2991
	/*
B
Bruce Momjian 已提交
2992 2993
	 * If we have a sortable DISTINCT ON clause, we always use sorting. This
	 * enforces the expected behavior of DISTINCT ON.
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
	 */
	can_sort = grouping_is_sortable(parse->distinctClause);
	if (can_sort && parse->hasDistinctOn)
		return false;

	can_hash = grouping_is_hashable(parse->distinctClause);

	/* Quick out if only one choice is workable */
	if (!(can_hash && can_sort))
	{
		if (can_hash)
			return true;
		else if (can_sort)
			return false;
		else
			ereport(ERROR,
					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
					 errmsg("could not implement DISTINCT"),
					 errdetail("Some of the datatypes only support hashing, while others only support sorting.")));
	}

3015 3016 3017 3018 3019 3020 3021 3022
	/* Prefer sorting when enable_hashagg is off */
	if (!enable_hashagg)
		return false;

	/*
	 * Don't do it if it doesn't look like the hashtable will fit into
	 * work_mem.
	 */
3023 3024

	/* Estimate per-hash-entry space at tuple width... */
3025
	hashentrysize = MAXALIGN(path_width) + MAXALIGN(SizeofMinimalTupleHeader);
3026 3027
	/* plus the per-hash-entry overhead */
	hashentrysize += hash_agg_entry_size(0);
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037

	if (hashentrysize * dNumDistinctRows > work_mem * 1024L)
		return false;

	/*
	 * See if the estimated cost is no more than doing it the other way. While
	 * avoiding the need for sorted input is usually a win, the fact that the
	 * output won't be sorted may be a loss; so we need to do an actual cost
	 * comparison.
	 *
3038 3039
	 * We need to consider cheapest_path + hashagg [+ final sort] versus
	 * sorted_path [+ sort] + group [+ final sort] where brackets indicate a
3040
	 * step that may not be needed.
3041 3042 3043 3044
	 *
	 * These path variables are dummies that just hold cost fields; we don't
	 * make actual Paths for these steps.
	 */
3045
	cost_agg(&hashed_p, root, AGG_HASHED, NULL,
3046
			 numDistinctCols, dNumDistinctRows,
3047 3048
			 cheapest_startup_cost, cheapest_total_cost,
			 path_rows);
3049

3050
	/*
3051 3052
	 * Result of hashed agg is always unsorted, so if ORDER BY is present we
	 * need to charge for the final sort.
3053
	 */
3054
	if (parse->sortClause)
3055
		cost_sort(&hashed_p, root, root->sort_pathkeys, hashed_p.total_cost,
3056 3057
				  dNumDistinctRows, path_width,
				  0.0, work_mem, limit_tuples);
3058

3059
	/*
B
Bruce Momjian 已提交
3060
	 * Now for the GROUP case.  See comments in grouping_planner about the
3061 3062
	 * sorting choices here --- this code should match that code.
	 */
3063 3064 3065 3066
	sorted_p.startup_cost = sorted_startup_cost;
	sorted_p.total_cost = sorted_total_cost;
	current_pathkeys = sorted_pathkeys;
	if (parse->hasDistinctOn &&
3067 3068 3069 3070 3071 3072
		list_length(root->distinct_pathkeys) <
		list_length(root->sort_pathkeys))
		needed_pathkeys = root->sort_pathkeys;
	else
		needed_pathkeys = root->distinct_pathkeys;
	if (!pathkeys_contained_in(needed_pathkeys, current_pathkeys))
3073 3074 3075 3076 3077 3078 3079
	{
		if (list_length(root->distinct_pathkeys) >=
			list_length(root->sort_pathkeys))
			current_pathkeys = root->distinct_pathkeys;
		else
			current_pathkeys = root->sort_pathkeys;
		cost_sort(&sorted_p, root, current_pathkeys, sorted_p.total_cost,
3080 3081
				  path_rows, path_width,
				  0.0, work_mem, -1.0);
3082 3083 3084
	}
	cost_group(&sorted_p, root, numDistinctCols, dNumDistinctRows,
			   sorted_p.startup_cost, sorted_p.total_cost,
3085 3086
			   path_rows);
	if (parse->sortClause &&
3087 3088
		!pathkeys_contained_in(root->sort_pathkeys, current_pathkeys))
		cost_sort(&sorted_p, root, root->sort_pathkeys, sorted_p.total_cost,
3089 3090
				  dNumDistinctRows, path_width,
				  0.0, work_mem, limit_tuples);
3091 3092

	/*
3093
	 * Now make the decision using the top-level tuple fraction.
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
	 */
	if (compare_fractional_path_costs(&hashed_p, &sorted_p,
									  tuple_fraction) < 0)
	{
		/* Hashed is cheaper, so use it */
		return true;
	}
	return false;
}

3104
/*
3105
 * make_subplanTargetList
3106
 *	  Generate appropriate target list when grouping is required.
3107
 *
3108 3109 3110 3111 3112
 * When grouping_planner inserts grouping or aggregation plan nodes
 * above the scan/join plan constructed by query_planner+create_plan,
 * we typically want the scan/join plan to emit a different target list
 * than the outer plan nodes should have.  This routine generates the
 * correct target list for the scan/join subplan.
3113 3114 3115 3116
 *
 * The initial target list passed from the parser already contains entries
 * for all ORDER BY and GROUP BY expressions, but it will not have entries
 * for variables used only in HAVING clauses; so we need to add those
3117 3118 3119 3120
 * variables to the subplan target list.  Also, we flatten all expressions
 * except GROUP BY items into their component variables; the other expressions
 * will be computed by the inserted nodes rather than by the subplan.
 * For example, given a query like
3121 3122
 *		SELECT a+b,SUM(c+d) FROM table GROUP BY a+b;
 * we want to pass this targetlist to the subplan:
3123
 *		a+b,c,d
3124
 * where the a+b target will be used by the Sort/Group steps, and the
3125
 * other targets will be used for computing the final results.
3126
 *
3127 3128 3129
 * If we are grouping or aggregating, *and* there are no non-Var grouping
 * expressions, then the returned tlist is effectively dummy; we do not
 * need to force it to be evaluated, because all the Vars it contains
3130 3131 3132 3133
 * should be present in the "flat" tlist generated by create_plan, though
 * possibly in a different order.  In that case we'll use create_plan's tlist,
 * and the tlist made here is only needed as input to query_planner to tell
 * it which Vars are needed in the output of the scan/join plan.
3134
 *
3135
 * 'tlist' is the query's target list.
3136
 * 'groupColIdx' receives an array of column numbers for the GROUP BY
3137
 *			expressions (if there are any) in the returned target list.
3138
 * 'need_tlist_eval' is set true if we really need to evaluate the
3139 3140
 *			returned tlist as-is.  (Note: locate_grouping_columns assumes
 *			that if this is FALSE, all grouping columns are simple Vars.)
3141
 *
3142
 * The result is the targetlist to be passed to query_planner.
3143 3144
 */
static List *
3145
make_subplanTargetList(PlannerInfo *root,
3146
					   List *tlist,
3147 3148
					   AttrNumber **groupColIdx,
					   bool *need_tlist_eval)
3149
{
3150
	Query	   *parse = root->parse;
3151
	List	   *sub_tlist;
3152 3153
	List	   *non_group_cols;
	List	   *non_group_vars;
3154 3155 3156 3157
	int			numCols;

	*groupColIdx = NULL;

B
Bruce Momjian 已提交
3158
	/*
3159
	 * If we're not grouping or aggregating, there's nothing to do here;
3160 3161
	 * query_planner should receive the unmodified target list.
	 */
T
Tom Lane 已提交
3162 3163
	if (!parse->hasAggs && !parse->groupClause && !root->hasHavingQual &&
		!parse->hasWindowFuncs)
3164 3165
	{
		*need_tlist_eval = true;
3166
		return tlist;
3167
	}
3168

B
Bruce Momjian 已提交
3169
	/*
3170 3171
	 * Otherwise, we must build a tlist containing all grouping columns, plus
	 * any other Vars mentioned in the targetlist and HAVING qual.
3172
	 */
3173 3174
	sub_tlist = NIL;
	non_group_cols = NIL;
3175
	*need_tlist_eval = false;	/* only eval if not flat tlist */
3176

3177
	numCols = list_length(parse->groupClause);
3178
	if (numCols > 0)
3179
	{
3180 3181 3182 3183 3184 3185 3186
		/*
		 * If grouping, create sub_tlist entries for all GROUP BY columns, and
		 * make an array showing where the group columns are in the sub_tlist.
		 *
		 * Note: with this implementation, the array entries will always be
		 * 1..N, but we don't want callers to assume that.
		 */
3187
		AttrNumber *grpColIdx;
3188
		ListCell   *tl;
3189

3190
		grpColIdx = (AttrNumber *) palloc0(sizeof(AttrNumber) * numCols);
3191
		*groupColIdx = grpColIdx;
3192

3193
		foreach(tl, tlist)
3194
		{
3195 3196
			TargetEntry *tle = (TargetEntry *) lfirst(tl);
			int			colno;
3197

3198 3199 3200 3201 3202 3203 3204 3205
			colno = get_grouping_column_index(parse, tle);
			if (colno >= 0)
			{
				/*
				 * It's a grouping column, so add it to the result tlist and
				 * remember its resno in grpColIdx[].
				 */
				TargetEntry *newtle;
3206

3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
				newtle = makeTargetEntry(tle->expr,
										 list_length(sub_tlist) + 1,
										 NULL,
										 false);
				sub_tlist = lappend(sub_tlist, newtle);

				Assert(grpColIdx[colno] == 0);	/* no dups expected */
				grpColIdx[colno] = newtle->resno;

				if (!(newtle->expr && IsA(newtle->expr, Var)))
					*need_tlist_eval = true;	/* tlist contains non Vars */
			}
			else
3220
			{
3221
				/*
3222 3223
				 * Non-grouping column, so just remember the expression for
				 * later call to pull_var_clause.  There's no need for
3224 3225 3226
				 * pull_var_clause to examine the TargetEntry node itself.
				 */
				non_group_cols = lappend(non_group_cols, tle->expr);
3227 3228 3229
			}
		}
	}
3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
	else
	{
		/*
		 * With no grouping columns, just pass whole tlist to pull_var_clause.
		 * Need (shallow) copy to avoid damaging input tlist below.
		 */
		non_group_cols = list_copy(tlist);
	}

	/*
	 * If there's a HAVING clause, we'll need the Vars it uses, too.
	 */
	if (parse->havingQual)
		non_group_cols = lappend(non_group_cols, parse->havingQual);

	/*
	 * Pull out all the Vars mentioned in non-group cols (plus HAVING), and
	 * add them to the result tlist if not already present.  (A Var used
	 * directly as a GROUP BY item will be present already.)  Note this
	 * includes Vars used in resjunk items, so we are covering the needs of
B
Bruce Momjian 已提交
3250
	 * ORDER BY and window specifications.  Vars used within Aggrefs will be
3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
	 * pulled out here, too.
	 */
	non_group_vars = pull_var_clause((Node *) non_group_cols,
									 PVC_RECURSE_AGGREGATES,
									 PVC_INCLUDE_PLACEHOLDERS);
	sub_tlist = add_to_flat_tlist(sub_tlist, non_group_vars);

	/* clean up cruft */
	list_free(non_group_vars);
	list_free(non_group_cols);
3261 3262 3263 3264

	return sub_tlist;
}

3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
/*
 * get_grouping_column_index
 *		Get the GROUP BY column position, if any, of a targetlist entry.
 *
 * Returns the index (counting from 0) of the TLE in the GROUP BY list, or -1
 * if it's not a grouping column.  Note: the result is unique because the
 * parser won't make multiple groupClause entries for the same TLE.
 */
static int
get_grouping_column_index(Query *parse, TargetEntry *tle)
{
	int			colno = 0;
	Index		ressortgroupref = tle->ressortgroupref;
	ListCell   *gl;

	/* No need to search groupClause if TLE hasn't got a sortgroupref */
	if (ressortgroupref == 0)
		return -1;

	foreach(gl, parse->groupClause)
	{
		SortGroupClause *grpcl = (SortGroupClause *) lfirst(gl);

		if (grpcl->tleSortGroupRef == ressortgroupref)
			return colno;
		colno++;
	}

	return -1;
}

3296 3297
/*
 * locate_grouping_columns
3298
 *		Locate grouping columns in the tlist chosen by create_plan.
3299 3300
 *
 * This is only needed if we don't use the sub_tlist chosen by
B
Bruce Momjian 已提交
3301
 * make_subplanTargetList.  We have to forget the column indexes found
T
Tom Lane 已提交
3302
 * by that routine and re-locate the grouping exprs in the real sub_tlist.
3303
 * We assume the grouping exprs are just Vars (see make_subplanTargetList).
3304 3305
 */
static void
3306
locate_grouping_columns(PlannerInfo *root,
3307 3308 3309 3310 3311
						List *tlist,
						List *sub_tlist,
						AttrNumber *groupColIdx)
{
	int			keyno = 0;
3312
	ListCell   *gl;
3313 3314 3315 3316

	/*
	 * No work unless grouping.
	 */
3317
	if (!root->parse->groupClause)
3318 3319 3320 3321 3322 3323
	{
		Assert(groupColIdx == NULL);
		return;
	}
	Assert(groupColIdx != NULL);

3324
	foreach(gl, root->parse->groupClause)
3325
	{
3326
		SortGroupClause *grpcl = (SortGroupClause *) lfirst(gl);
3327 3328
		Var		   *groupexpr = (Var *) get_sortgroupclause_expr(grpcl, tlist);
		TargetEntry *te;
3329

3330 3331
		/*
		 * The grouping column returned by create_plan might not have the same
B
Bruce Momjian 已提交
3332
		 * typmod as the original Var.  (This can happen in cases where a
3333 3334 3335
		 * set-returning function has been inlined, so that we now have more
		 * knowledge about what it returns than we did when the original Var
		 * was created.)  So we can't use tlist_member() to search the tlist;
B
Bruce Momjian 已提交
3336
		 * instead use tlist_member_match_var.  For safety, still check that
3337 3338 3339 3340 3341
		 * the vartype matches.
		 */
		if (!(groupexpr && IsA(groupexpr, Var)))
			elog(ERROR, "grouping column is not a Var as expected");
		te = tlist_member_match_var(groupexpr, sub_tlist);
T
Tom Lane 已提交
3342
		if (!te)
3343
			elog(ERROR, "failed to locate grouping columns");
3344
		Assert(((Var *) te->expr)->vartype == groupexpr->vartype);
3345
		groupColIdx[keyno++] = te->resno;
3346 3347 3348
	}
}

3349 3350 3351 3352 3353 3354 3355
/*
 * postprocess_setop_tlist
 *	  Fix up targetlist returned by plan_set_operations().
 *
 * We need to transpose sort key info from the orig_tlist into new_tlist.
 * NOTE: this would not be good enough if we supported resjunk sort keys
 * for results of set operations --- then, we'd need to project a whole
3356
 * new tlist to evaluate the resjunk columns.  For now, just ereport if we
3357 3358 3359 3360 3361
 * find any resjunk columns in orig_tlist.
 */
static List *
postprocess_setop_tlist(List *new_tlist, List *orig_tlist)
{
3362 3363
	ListCell   *l;
	ListCell   *orig_tlist_item = list_head(orig_tlist);
3364 3365 3366 3367 3368 3369 3370

	foreach(l, new_tlist)
	{
		TargetEntry *new_tle = (TargetEntry *) lfirst(l);
		TargetEntry *orig_tle;

		/* ignore resjunk columns in setop result */
3371
		if (new_tle->resjunk)
3372 3373
			continue;

3374 3375 3376
		Assert(orig_tlist_item != NULL);
		orig_tle = (TargetEntry *) lfirst(orig_tlist_item);
		orig_tlist_item = lnext(orig_tlist_item);
B
Bruce Momjian 已提交
3377
		if (orig_tle->resjunk)	/* should not happen */
3378
			elog(ERROR, "resjunk output columns are not implemented");
3379 3380
		Assert(new_tle->resno == orig_tle->resno);
		new_tle->ressortgroupref = orig_tle->ressortgroupref;
3381
	}
3382
	if (orig_tlist_item != NULL)
3383
		elog(ERROR, "resjunk output columns are not implemented");
3384 3385
	return new_tlist;
}
T
Tom Lane 已提交
3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417

/*
 * select_active_windows
 *		Create a list of the "active" window clauses (ie, those referenced
 *		by non-deleted WindowFuncs) in the order they are to be executed.
 */
static List *
select_active_windows(PlannerInfo *root, WindowFuncLists *wflists)
{
	List	   *result;
	List	   *actives;
	ListCell   *lc;

	/* First, make a list of the active windows */
	actives = NIL;
	foreach(lc, root->parse->windowClause)
	{
		WindowClause *wc = (WindowClause *) lfirst(lc);

		/* It's only active if wflists shows some related WindowFuncs */
		Assert(wc->winref <= wflists->maxWinRef);
		if (wflists->windowFuncs[wc->winref] != NIL)
			actives = lappend(actives, wc);
	}

	/*
	 * Now, ensure that windows with identical partitioning/ordering clauses
	 * are adjacent in the list.  This is required by the SQL standard, which
	 * says that only one sort is to be used for such windows, even if they
	 * are otherwise distinct (eg, different names or framing clauses).
	 *
	 * There is room to be much smarter here, for example detecting whether
3418 3419 3420 3421
	 * one window's sort keys are a prefix of another's (so that sorting for
	 * the latter would do for the former), or putting windows first that
	 * match a sort order available for the underlying query.  For the moment
	 * we are content with meeting the spec.
T
Tom Lane 已提交
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
	 */
	result = NIL;
	while (actives != NIL)
	{
		WindowClause *wc = (WindowClause *) linitial(actives);
		ListCell   *prev;
		ListCell   *next;

		/* Move wc from actives to result */
		actives = list_delete_first(actives);
		result = lappend(result, wc);

		/* Now move any matching windows from actives to result */
		prev = NULL;
		for (lc = list_head(actives); lc; lc = next)
		{
			WindowClause *wc2 = (WindowClause *) lfirst(lc);

			next = lnext(lc);
3441
			/* framing options are NOT to be compared here! */
T
Tom Lane 已提交
3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
			if (equal(wc->partitionClause, wc2->partitionClause) &&
				equal(wc->orderClause, wc2->orderClause))
			{
				actives = list_delete_cell(actives, lc, prev);
				result = lappend(result, wc2);
			}
			else
				prev = lc;
		}
	}

	return result;
}

3456
/*
3457 3458 3459 3460 3461
 * make_windowInputTargetList
 *	  Generate appropriate target list for initial input to WindowAgg nodes.
 *
 * When grouping_planner inserts one or more WindowAgg nodes into the plan,
 * this function computes the initial target list to be computed by the node
B
Bruce Momjian 已提交
3462
 * just below the first WindowAgg.  This list must contain all values needed
3463 3464 3465 3466 3467 3468 3469
 * to evaluate the window functions, compute the final target list, and
 * perform any required final sort step.  If multiple WindowAggs are needed,
 * each intermediate one adds its window function results onto this tlist;
 * only the topmost WindowAgg computes the actual desired target list.
 *
 * This function is much like make_subplanTargetList, though not quite enough
 * like it to share code.  As in that function, we flatten most expressions
B
Bruce Momjian 已提交
3470
 * into their component variables.  But we do not want to flatten window
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
 * PARTITION BY/ORDER BY clauses, since that might result in multiple
 * evaluations of them, which would be bad (possibly even resulting in
 * inconsistent answers, if they contain volatile functions).  Also, we must
 * not flatten GROUP BY clauses that were left unflattened by
 * make_subplanTargetList, because we may no longer have access to the
 * individual Vars in them.
 *
 * Another key difference from make_subplanTargetList is that we don't flatten
 * Aggref expressions, since those are to be computed below the window
 * functions and just referenced like Vars above that.
 *
 * 'tlist' is the query's final target list.
 * 'activeWindows' is the list of active windows previously identified by
 *			select_active_windows.
 *
 * The result is the targetlist to be computed by the plan node immediately
 * below the first WindowAgg node.
3488 3489
 */
static List *
3490 3491 3492
make_windowInputTargetList(PlannerInfo *root,
						   List *tlist,
						   List *activeWindows)
3493
{
3494 3495 3496 3497 3498
	Query	   *parse = root->parse;
	Bitmapset  *sgrefs;
	List	   *new_tlist;
	List	   *flattenable_cols;
	List	   *flattenable_vars;
3499 3500
	ListCell   *lc;

3501 3502 3503 3504 3505 3506 3507
	Assert(parse->hasWindowFuncs);

	/*
	 * Collect the sortgroupref numbers of window PARTITION/ORDER BY clauses
	 * into a bitmapset for convenient reference below.
	 */
	sgrefs = NULL;
3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526
	foreach(lc, activeWindows)
	{
		WindowClause *wc = (WindowClause *) lfirst(lc);
		ListCell   *lc2;

		foreach(lc2, wc->partitionClause)
		{
			SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc2);

			sgrefs = bms_add_member(sgrefs, sortcl->tleSortGroupRef);
		}
		foreach(lc2, wc->orderClause)
		{
			SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc2);

			sgrefs = bms_add_member(sgrefs, sortcl->tleSortGroupRef);
		}
	}

3527 3528 3529 3530 3531 3532 3533 3534
	/* Add in sortgroupref numbers of GROUP BY clauses, too */
	foreach(lc, parse->groupClause)
	{
		SortGroupClause *grpcl = (SortGroupClause *) lfirst(lc);

		sgrefs = bms_add_member(sgrefs, grpcl->tleSortGroupRef);
	}

3535
	/*
3536 3537
	 * Construct a tlist containing all the non-flattenable tlist items, and
	 * save aside the others for a moment.
3538
	 */
3539 3540 3541
	new_tlist = NIL;
	flattenable_cols = NIL;

3542 3543 3544 3545
	foreach(lc, tlist)
	{
		TargetEntry *tle = (TargetEntry *) lfirst(lc);

3546 3547 3548 3549 3550
		/*
		 * Don't want to deconstruct window clauses or GROUP BY items.  (Note
		 * that such items can't contain window functions, so it's okay to
		 * compute them below the WindowAgg nodes.)
		 */
3551
		if (tle->ressortgroupref != 0 &&
3552
			bms_is_member(tle->ressortgroupref, sgrefs))
3553
		{
3554
			/* Don't want to deconstruct this value, so add to new_tlist */
3555 3556 3557
			TargetEntry *newtle;

			newtle = makeTargetEntry(tle->expr,
3558
									 list_length(new_tlist) + 1,
3559 3560
									 NULL,
									 false);
3561
			/* Preserve its sortgroupref marking, in case it's volatile */
3562
			newtle->ressortgroupref = tle->ressortgroupref;
3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
			new_tlist = lappend(new_tlist, newtle);
		}
		else
		{
			/*
			 * Column is to be flattened, so just remember the expression for
			 * later call to pull_var_clause.  There's no need for
			 * pull_var_clause to examine the TargetEntry node itself.
			 */
			flattenable_cols = lappend(flattenable_cols, tle->expr);
3573 3574 3575
		}
	}

3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
	/*
	 * Pull out all the Vars and Aggrefs mentioned in flattenable columns, and
	 * add them to the result tlist if not already present.  (Some might be
	 * there already because they're used directly as window/group clauses.)
	 *
	 * Note: it's essential to use PVC_INCLUDE_AGGREGATES here, so that the
	 * Aggrefs are placed in the Agg node's tlist and not left to be computed
	 * at higher levels.
	 */
	flattenable_vars = pull_var_clause((Node *) flattenable_cols,
									   PVC_INCLUDE_AGGREGATES,
									   PVC_INCLUDE_PLACEHOLDERS);
	new_tlist = add_to_flat_tlist(new_tlist, flattenable_vars);

	/* clean up cruft */
	list_free(flattenable_vars);
	list_free(flattenable_cols);

	return new_tlist;
3595 3596
}

T
Tom Lane 已提交
3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
/*
 * make_pathkeys_for_window
 *		Create a pathkeys list describing the required input ordering
 *		for the given WindowClause.
 *
 * The required ordering is first the PARTITION keys, then the ORDER keys.
 * In the future we might try to implement windowing using hashing, in which
 * case the ordering could be relaxed, but for now we always sort.
 */
static List *
make_pathkeys_for_window(PlannerInfo *root, WindowClause *wc,
3608
						 List *tlist)
T
Tom Lane 已提交
3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622
{
	List	   *window_pathkeys;
	List	   *window_sortclauses;

	/* Throw error if can't sort */
	if (!grouping_is_sortable(wc->partitionClause))
		ereport(ERROR,
				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
				 errmsg("could not implement window PARTITION BY"),
				 errdetail("Window partitioning columns must be of sortable datatypes.")));
	if (!grouping_is_sortable(wc->orderClause))
		ereport(ERROR,
				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
				 errmsg("could not implement window ORDER BY"),
3623
		errdetail("Window ordering columns must be of sortable datatypes.")));
T
Tom Lane 已提交
3624 3625 3626 3627 3628 3629

	/* Okay, make the combined pathkeys */
	window_sortclauses = list_concat(list_copy(wc->partitionClause),
									 list_copy(wc->orderClause));
	window_pathkeys = make_pathkeys_for_sortclauses(root,
													window_sortclauses,
3630
													tlist);
T
Tom Lane 已提交
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
	list_free(window_sortclauses);
	return window_pathkeys;
}

/*----------
 * get_column_info_for_window
 *		Get the partitioning/ordering column numbers and equality operators
 *		for a WindowAgg node.
 *
 * This depends on the behavior of make_pathkeys_for_window()!
 *
 * We are given the target WindowClause and an array of the input column
B
Bruce Momjian 已提交
3643
 * numbers associated with the resulting pathkeys.  In the easy case, there
T
Tom Lane 已提交
3644 3645 3646 3647 3648 3649 3650
 * are the same number of pathkey columns as partitioning + ordering columns
 * and we just have to copy some data around.  However, it's possible that
 * some of the original partitioning + ordering columns were eliminated as
 * redundant during the transformation to pathkeys.  (This can happen even
 * though the parser gets rid of obvious duplicates.  A typical scenario is a
 * window specification "PARTITION BY x ORDER BY y" coupled with a clause
 * "WHERE x = y" that causes the two sort columns to be recognized as
3651
 * redundant.)	In that unusual case, we have to work a lot harder to
T
Tom Lane 已提交
3652 3653 3654
 * determine which keys are significant.
 *
 * The method used here is a bit brute-force: add the sort columns to a list
B
Bruce Momjian 已提交
3655
 * one at a time and note when the resulting pathkey list gets longer.  But
T
Tom Lane 已提交
3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707
 * it's a sufficiently uncommon case that a faster way doesn't seem worth
 * the amount of code refactoring that'd be needed.
 *----------
 */
static void
get_column_info_for_window(PlannerInfo *root, WindowClause *wc, List *tlist,
						   int numSortCols, AttrNumber *sortColIdx,
						   int *partNumCols,
						   AttrNumber **partColIdx,
						   Oid **partOperators,
						   int *ordNumCols,
						   AttrNumber **ordColIdx,
						   Oid **ordOperators)
{
	int			numPart = list_length(wc->partitionClause);
	int			numOrder = list_length(wc->orderClause);

	if (numSortCols == numPart + numOrder)
	{
		/* easy case */
		*partNumCols = numPart;
		*partColIdx = sortColIdx;
		*partOperators = extract_grouping_ops(wc->partitionClause);
		*ordNumCols = numOrder;
		*ordColIdx = sortColIdx + numPart;
		*ordOperators = extract_grouping_ops(wc->orderClause);
	}
	else
	{
		List	   *sortclauses;
		List	   *pathkeys;
		int			scidx;
		ListCell   *lc;

		/* first, allocate what's certainly enough space for the arrays */
		*partNumCols = 0;
		*partColIdx = (AttrNumber *) palloc(numPart * sizeof(AttrNumber));
		*partOperators = (Oid *) palloc(numPart * sizeof(Oid));
		*ordNumCols = 0;
		*ordColIdx = (AttrNumber *) palloc(numOrder * sizeof(AttrNumber));
		*ordOperators = (Oid *) palloc(numOrder * sizeof(Oid));
		sortclauses = NIL;
		pathkeys = NIL;
		scidx = 0;
		foreach(lc, wc->partitionClause)
		{
			SortGroupClause *sgc = (SortGroupClause *) lfirst(lc);
			List	   *new_pathkeys;

			sortclauses = lappend(sortclauses, sgc);
			new_pathkeys = make_pathkeys_for_sortclauses(root,
														 sortclauses,
3708
														 tlist);
T
Tom Lane 已提交
3709 3710 3711
			if (list_length(new_pathkeys) > list_length(pathkeys))
			{
				/* this sort clause is actually significant */
3712 3713
				(*partColIdx)[*partNumCols] = sortColIdx[scidx++];
				(*partOperators)[*partNumCols] = sgc->eqop;
T
Tom Lane 已提交
3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
				(*partNumCols)++;
				pathkeys = new_pathkeys;
			}
		}
		foreach(lc, wc->orderClause)
		{
			SortGroupClause *sgc = (SortGroupClause *) lfirst(lc);
			List	   *new_pathkeys;

			sortclauses = lappend(sortclauses, sgc);
			new_pathkeys = make_pathkeys_for_sortclauses(root,
														 sortclauses,
3726
														 tlist);
T
Tom Lane 已提交
3727 3728 3729
			if (list_length(new_pathkeys) > list_length(pathkeys))
			{
				/* this sort clause is actually significant */
3730 3731
				(*ordColIdx)[*ordNumCols] = sortColIdx[scidx++];
				(*ordOperators)[*ordNumCols] = sgc->eqop;
T
Tom Lane 已提交
3732 3733 3734 3735 3736 3737 3738 3739 3740
				(*ordNumCols)++;
				pathkeys = new_pathkeys;
			}
		}
		/* complain if we didn't eat exactly the right number of sort cols */
		if (scidx != numSortCols)
			elog(ERROR, "failed to deconstruct sort operators into partitioning/ordering operators");
	}
}
3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754


/*
 * expression_planner
 *		Perform planner's transformations on a standalone expression.
 *
 * Various utility commands need to evaluate expressions that are not part
 * of a plannable query.  They can do so using the executor's regular
 * expression-execution machinery, but first the expression has to be fed
 * through here to transform it from parser output to something executable.
 *
 * Currently, we disallow sublinks in standalone expressions, so there's no
 * real "planning" involved here.  (That might not always be true though.)
 * What we must do is run eval_const_expressions to ensure that any function
3755 3756 3757 3758
 * calls are converted to positional notation and function default arguments
 * get inserted.  The fact that constant subexpressions get simplified is a
 * side-effect that is useful when the expression will get evaluated more than
 * once.  Also, we must fix operator function IDs.
3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
 *
 * Note: this must not make any damaging changes to the passed-in expression
 * tree.  (It would actually be okay to apply fix_opfuncids to it, but since
 * we first do an expression_tree_mutator-based walk, what is returned will
 * be a new node tree.)
 */
Expr *
expression_planner(Expr *expr)
{
	Node	   *result;

3770 3771 3772 3773
	/*
	 * Convert named-argument function calls, insert default arguments and
	 * simplify constant subexprs
	 */
3774 3775 3776 3777 3778 3779 3780
	result = eval_const_expressions(NULL, (Node *) expr);

	/* Fill in opfuncid values if missing */
	fix_opfuncids(result);

	return (Expr *) result;
}
3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826


/*
 * plan_cluster_use_sort
 *		Use the planner to decide how CLUSTER should implement sorting
 *
 * tableOid is the OID of a table to be clustered on its index indexOid
 * (which is already known to be a btree index).  Decide whether it's
 * cheaper to do an indexscan or a seqscan-plus-sort to execute the CLUSTER.
 * Return TRUE to use sorting, FALSE to use an indexscan.
 *
 * Note: caller had better already hold some type of lock on the table.
 */
bool
plan_cluster_use_sort(Oid tableOid, Oid indexOid)
{
	PlannerInfo *root;
	Query	   *query;
	PlannerGlobal *glob;
	RangeTblEntry *rte;
	RelOptInfo *rel;
	IndexOptInfo *indexInfo;
	QualCost	indexExprCost;
	Cost		comparisonCost;
	Path	   *seqScanPath;
	Path		seqScanAndSortPath;
	IndexPath  *indexScanPath;
	ListCell   *lc;

	/* Set up mostly-dummy planner state */
	query = makeNode(Query);
	query->commandType = CMD_SELECT;

	glob = makeNode(PlannerGlobal);

	root = makeNode(PlannerInfo);
	root->parse = query;
	root->glob = glob;
	root->query_level = 1;
	root->planner_cxt = CurrentMemoryContext;
	root->wt_param_id = -1;

	/* Build a minimal RTE for the rel */
	rte = makeNode(RangeTblEntry);
	rte->rtekind = RTE_RELATION;
	rte->relid = tableOid;
B
Bruce Momjian 已提交
3827
	rte->relkind = RELKIND_RELATION;	/* Don't be too picky. */
3828
	rte->lateral = false;
3829 3830 3831 3832
	rte->inh = false;
	rte->inFromCl = true;
	query->rtable = list_make1(rte);

3833 3834
	/* Set up RTE/RelOptInfo arrays */
	setup_simple_rel_arrays(root);
3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846

	/* Build RelOptInfo */
	rel = build_simple_rel(root, 1, RELOPT_BASEREL);

	/* Locate IndexOptInfo for the target index */
	indexInfo = NULL;
	foreach(lc, rel->indexlist)
	{
		indexInfo = (IndexOptInfo *) lfirst(lc);
		if (indexInfo->indexoid == indexOid)
			break;
	}
3847 3848 3849 3850 3851 3852 3853 3854

	/*
	 * It's possible that get_relation_info did not generate an IndexOptInfo
	 * for the desired index; this could happen if it's not yet reached its
	 * indcheckxmin usability horizon, or if it's a system index and we're
	 * ignoring system indexes.  In such cases we should tell CLUSTER to not
	 * trust the index contents but use seqscan-and-sort.
	 */
3855
	if (lc == NULL)				/* not in the list? */
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
		return true;			/* use sort */

	/*
	 * Rather than doing all the pushups that would be needed to use
	 * set_baserel_size_estimates, just do a quick hack for rows and width.
	 */
	rel->rows = rel->tuples;
	rel->width = get_relation_data_width(tableOid, NULL);

	root->total_table_pages = rel->pages;
3866 3867 3868

	/*
	 * Determine eval cost of the index expressions, if any.  We need to
3869 3870 3871
	 * charge twice that amount for each tuple comparison that happens during
	 * the sort, since tuplesort.c will have to re-evaluate the index
	 * expressions each time.  (XXX that's pretty inefficient...)
3872 3873 3874 3875 3876
	 */
	cost_qual_eval(&indexExprCost, indexInfo->indexprs, root);
	comparisonCost = 2.0 * (indexExprCost.startup + indexExprCost.per_tuple);

	/* Estimate the cost of seq scan + sort */
3877
	seqScanPath = create_seqscan_path(root, rel, NULL);
3878 3879 3880 3881 3882 3883
	cost_sort(&seqScanAndSortPath, root, NIL,
			  seqScanPath->total_cost, rel->tuples, rel->width,
			  comparisonCost, maintenance_work_mem, -1.0);

	/* Estimate the cost of index scan */
	indexScanPath = create_index_path(root, indexInfo,
3884
									  NIL, NIL, NIL, NIL, NIL,
3885 3886
									  ForwardScanDirection, false,
									  NULL, 1.0);
3887 3888 3889

	return (seqScanAndSortPath.total_cost < indexScanPath->path.total_cost);
}