planner.c 103.4 KB
Newer Older
1 2
/*-------------------------------------------------------------------------
 *
3
 * planner.c
4
 *	  The query optimizer external interface.
5
 *
6
 * Portions Copyright (c) 1996-2012, PostgreSQL Global Development Group
B
Add:  
Bruce Momjian 已提交
7
 * Portions Copyright (c) 1994, Regents of the University of California
8 9 10
 *
 *
 * IDENTIFICATION
11
 *	  src/backend/optimizer/plan/planner.c
12 13 14
 *
 *-------------------------------------------------------------------------
 */
M
Marc G. Fournier 已提交
15

16 17
#include "postgres.h"

18 19
#include <limits.h>

20
#include "executor/executor.h"
21
#include "executor/nodeAgg.h"
22
#include "miscadmin.h"
B
Bruce Momjian 已提交
23
#include "nodes/makefuncs.h"
24 25 26
#ifdef OPTIMIZER_DEBUG
#include "nodes/print.h"
#endif
B
Bruce Momjian 已提交
27
#include "optimizer/clauses.h"
28 29
#include "optimizer/cost.h"
#include "optimizer/pathnode.h"
30
#include "optimizer/paths.h"
31
#include "optimizer/plancat.h"
B
Bruce Momjian 已提交
32
#include "optimizer/planmain.h"
33 34
#include "optimizer/planner.h"
#include "optimizer/prep.h"
35
#include "optimizer/subselect.h"
36
#include "optimizer/tlist.h"
37
#include "parser/analyze.h"
38
#include "parser/parsetree.h"
39
#include "rewrite/rewriteManip.h"
40
#include "utils/rel.h"
41

42

43
/* GUC parameter */
44
double		cursor_tuple_fraction = DEFAULT_CURSOR_TUPLE_FRACTION;
45

46 47 48 49
/* Hook for plugins to get control in planner() */
planner_hook_type planner_hook = NULL;


50
/* Expression kind codes for preprocess_expression */
51 52 53
#define EXPRKIND_QUAL		0
#define EXPRKIND_TARGET		1
#define EXPRKIND_RTFUNC		2
54 55
#define EXPRKIND_VALUES		3
#define EXPRKIND_LIMIT		4
56
#define EXPRKIND_APPINFO	5
57 58


59 60
static Node *preprocess_expression(PlannerInfo *root, Node *expr, int kind);
static void preprocess_qual_conditions(PlannerInfo *root, Node *jtnode);
61
static Plan *inheritance_planner(PlannerInfo *root);
62
static Plan *grouping_planner(PlannerInfo *root, double tuple_fraction);
63
static void preprocess_rowmarks(PlannerInfo *root);
64
static double preprocess_limit(PlannerInfo *root,
B
Bruce Momjian 已提交
65
				 double tuple_fraction,
B
Bruce Momjian 已提交
66
				 int64 *offset_est, int64 *count_est);
67
static void preprocess_groupclause(PlannerInfo *root);
68 69
static bool choose_hashed_grouping(PlannerInfo *root,
					   double tuple_fraction, double limit_tuples,
70
					   double path_rows, int path_width,
71
					   Path *cheapest_path, Path *sorted_path,
72
					   double dNumGroups, AggClauseCosts *agg_costs);
73 74
static bool choose_hashed_distinct(PlannerInfo *root,
					   double tuple_fraction, double limit_tuples,
75 76 77 78
					   double path_rows, int path_width,
					   Cost cheapest_startup_cost, Cost cheapest_total_cost,
					   Cost sorted_startup_cost, Cost sorted_total_cost,
					   List *sorted_pathkeys,
79
					   double dNumDistinctRows);
80
static List *make_subplanTargetList(PlannerInfo *root, List *tlist,
81
					   AttrNumber **groupColIdx, bool *need_tlist_eval);
82
static int	get_grouping_column_index(Query *parse, TargetEntry *tle);
83
static void locate_grouping_columns(PlannerInfo *root,
B
Bruce Momjian 已提交
84 85 86
						List *tlist,
						List *sub_tlist,
						AttrNumber *groupColIdx);
87
static List *postprocess_setop_tlist(List *new_tlist, List *orig_tlist);
T
Tom Lane 已提交
88
static List *select_active_windows(PlannerInfo *root, WindowFuncLists *wflists);
89
static List *add_volatile_sort_exprs(List *window_tlist, List *tlist,
90
						List *activeWindows);
T
Tom Lane 已提交
91
static List *make_pathkeys_for_window(PlannerInfo *root, WindowClause *wc,
92
						 List *tlist, bool canonicalize);
T
Tom Lane 已提交
93
static void get_column_info_for_window(PlannerInfo *root, WindowClause *wc,
94 95 96 97 98 99 100 101
						   List *tlist,
						   int numSortCols, AttrNumber *sortColIdx,
						   int *partNumCols,
						   AttrNumber **partColIdx,
						   Oid **partOperators,
						   int *ordNumCols,
						   AttrNumber **ordColIdx,
						   Oid **ordOperators);
102

103 104 105

/*****************************************************************************
 *
106 107
 *	   Query optimizer entry point
 *
108 109 110 111 112 113 114 115
 * To support loadable plugins that monitor or modify planner behavior,
 * we provide a hook variable that lets a plugin get control before and
 * after the standard planning process.  The plugin would normally call
 * standard_planner().
 *
 * Note to plugin authors: standard_planner() scribbles on its Query input,
 * so you'd better copy that data structure if you want to plan more than once.
 *
116
 *****************************************************************************/
117
PlannedStmt *
118
planner(Query *parse, int cursorOptions, ParamListInfo boundParams)
119 120 121 122 123 124 125 126 127 128 129 130
{
	PlannedStmt *result;

	if (planner_hook)
		result = (*planner_hook) (parse, cursorOptions, boundParams);
	else
		result = standard_planner(parse, cursorOptions, boundParams);
	return result;
}

PlannedStmt *
standard_planner(Query *parse, int cursorOptions, ParamListInfo boundParams)
131
{
132
	PlannedStmt *result;
133
	PlannerGlobal *glob;
134
	double		tuple_fraction;
135 136
	PlannerInfo *root;
	Plan	   *top_plan;
137
	ListCell   *lp,
138
			   *lr;
139

140 141 142 143 144
	/* Cursor options may come from caller or from DECLARE CURSOR stmt */
	if (parse->utilityStmt &&
		IsA(parse->utilityStmt, DeclareCursorStmt))
		cursorOptions |= ((DeclareCursorStmt *) parse->utilityStmt)->options;

145
	/*
146 147 148 149
	 * Set up global state for this planner invocation.  This data is needed
	 * across all levels of sub-Query that might exist in the given command,
	 * so we keep it in a separate struct that's linked to by each per-Query
	 * PlannerInfo.
150
	 */
151
	glob = makeNode(PlannerGlobal);
152

153 154
	glob->boundParams = boundParams;
	glob->paramlist = NIL;
155
	glob->subplans = NIL;
156
	glob->subroots = NIL;
157
	glob->rewindPlanIDs = NULL;
158
	glob->finalrtable = NIL;
159
	glob->finalrowmarks = NIL;
160
	glob->resultRelations = NIL;
161
	glob->relationOids = NIL;
162
	glob->invalItems = NIL;
163
	glob->lastPHId = 0;
164
	glob->lastRowMarkId = 0;
165
	glob->transientPlan = false;
166

167
	/* Determine what fraction of the plan is likely to be scanned */
168
	if (cursorOptions & CURSOR_OPT_FAST_PLAN)
169 170
	{
		/*
B
Bruce Momjian 已提交
171
		 * We have no real idea how many tuples the user will ultimately FETCH
172 173 174 175 176 177 178 179
		 * from a cursor, but it is often the case that he doesn't want 'em
		 * all, or would prefer a fast-start plan anyway so that he can
		 * process some of the tuples sooner.  Use a GUC parameter to decide
		 * what fraction to optimize for.
		 */
		tuple_fraction = cursor_tuple_fraction;

		/*
180 181 182
		 * We document cursor_tuple_fraction as simply being a fraction, which
		 * means the edge cases 0 and 1 have to be treated specially here.	We
		 * convert 1 to 0 ("all the tuples") and 0 to a very small fraction.
183
		 */
184 185 186 187
		if (tuple_fraction >= 1.0)
			tuple_fraction = 0.0;
		else if (tuple_fraction <= 0.0)
			tuple_fraction = 1e-10;
188 189 190 191 192 193 194
	}
	else
	{
		/* Default assumption is we need all the tuples */
		tuple_fraction = 0.0;
	}

195
	/* primary planning entry point (may recurse for subqueries) */
196 197
	top_plan = subquery_planner(glob, parse, NULL,
								false, tuple_fraction, &root);
198

199
	/*
B
Bruce Momjian 已提交
200 201
	 * If creating a plan for a scrollable cursor, make sure it can run
	 * backwards on demand.  Add a Material node at the top at need.
202
	 */
203
	if (cursorOptions & CURSOR_OPT_SCROLL)
204
	{
205 206
		if (!ExecSupportsBackwardScan(top_plan))
			top_plan = materialize_finished_plan(top_plan);
207 208
	}

209
	/* final cleanup of the plan */
210
	Assert(glob->finalrtable == NIL);
211
	Assert(glob->finalrowmarks == NIL);
212
	Assert(glob->resultRelations == NIL);
213
	top_plan = set_plan_references(root, top_plan);
214
	/* ... and the subplans (both regular subplans and initplans) */
215 216
	Assert(list_length(glob->subplans) == list_length(glob->subroots));
	forboth(lp, glob->subplans, lr, glob->subroots)
217
	{
B
Bruce Momjian 已提交
218
		Plan	   *subplan = (Plan *) lfirst(lp);
219
		PlannerInfo *subroot = (PlannerInfo *) lfirst(lr);
220

221
		lfirst(lp) = set_plan_references(subroot, subplan);
222
	}
223 224 225 226 227

	/* build the PlannedStmt result */
	result = makeNode(PlannedStmt);

	result->commandType = parse->commandType;
228
	result->queryId = parse->queryId;
229
	result->hasReturning = (parse->returningList != NIL);
230
	result->hasModifyingCTE = parse->hasModifyingCTE;
231
	result->canSetTag = parse->canSetTag;
232
	result->transientPlan = glob->transientPlan;
233
	result->planTree = top_plan;
234
	result->rtable = glob->finalrtable;
235
	result->resultRelations = glob->resultRelations;
236
	result->utilityStmt = parse->utilityStmt;
237
	result->subplans = glob->subplans;
238
	result->rewindPlanIDs = glob->rewindPlanIDs;
239
	result->rowMarks = glob->finalrowmarks;
240
	result->relationOids = glob->relationOids;
241
	result->invalItems = glob->invalItems;
242 243 244
	result->nParamExec = list_length(glob->paramlist);

	return result;
245
}
246

247

248
/*--------------------
249 250 251
 * subquery_planner
 *	  Invokes the planner on a subquery.  We recurse to here for each
 *	  sub-SELECT found in the query tree.
252
 *
253
 * glob is the global state for the current planner run.
254
 * parse is the querytree produced by the parser & rewriter.
255 256
 * parent_root is the immediate parent Query's info (NULL at the top level).
 * hasRecursion is true if this is a recursive WITH query.
257
 * tuple_fraction is the fraction of tuples we expect will be retrieved.
258
 * tuple_fraction is interpreted as explained for grouping_planner, below.
259
 *
260 261
 * If subroot isn't NULL, we pass back the query's final PlannerInfo struct;
 * among other things this tells the output sort ordering of the plan.
262
 *
263
 * Basically, this routine does the stuff that should only be done once
264 265 266 267 268
 * per Query object.  It then calls grouping_planner.  At one time,
 * grouping_planner could be invoked recursively on the same Query object;
 * that's not currently true, but we keep the separation between the two
 * routines anyway, in case we need it again someday.
 *
269 270
 * subquery_planner will be called recursively to handle sub-Query nodes
 * found within the query's expressions and rangetable.
271
 *
272 273
 * Returns a query plan.
 *--------------------
274
 */
275
Plan *
276
subquery_planner(PlannerGlobal *glob, Query *parse,
277 278
				 PlannerInfo *parent_root,
				 bool hasRecursion, double tuple_fraction,
279
				 PlannerInfo **subroot)
280
{
281
	int			num_old_subplans = list_length(glob->subplans);
282
	PlannerInfo *root;
283
	Plan	   *plan;
284
	List	   *newHaving;
285
	bool		hasOuterJoins;
286
	ListCell   *l;
287

288 289 290
	/* Create a PlannerInfo data structure for this subquery */
	root = makeNode(PlannerInfo);
	root->parse = parse;
291
	root->glob = glob;
292 293
	root->query_level = parent_root ? parent_root->query_level + 1 : 1;
	root->parent_root = parent_root;
294
	root->planner_cxt = CurrentMemoryContext;
295
	root->init_plans = NIL;
296
	root->cte_plan_ids = NIL;
297
	root->eq_classes = NIL;
298
	root->append_rel_list = NIL;
299
	root->rowMarks = NIL;
300
	root->hasInheritedTarget = false;
301

302 303
	root->hasRecursion = hasRecursion;
	if (hasRecursion)
304
		root->wt_param_id = SS_assign_special_param(root);
305 306 307 308 309
	else
		root->wt_param_id = -1;
	root->non_recursive_plan = NULL;

	/*
310 311
	 * If there is a WITH list, process each WITH query and build an initplan
	 * SubPlan structure for it.
312 313 314 315
	 */
	if (parse->cteList)
		SS_process_ctes(root);

316
	/*
317 318 319 320
	 * Look for ANY and EXISTS SubLinks in WHERE and JOIN/ON clauses, and try
	 * to transform them into joins.  Note that this step does not descend
	 * into subqueries; if we pull up any subqueries below, their SubLinks are
	 * processed just before pulling them up.
321 322
	 */
	if (parse->hasSubLinks)
323
		pull_up_sublinks(root);
324

325
	/*
326 327
	 * Scan the rangetable for set-returning functions, and inline them if
	 * possible (producing subqueries that might get pulled up next).
328
	 * Recursion issues here are handled in the same way as for SubLinks.
329 330 331
	 */
	inline_set_returning_functions(root);

332
	/*
333 334
	 * Check to see if any subqueries in the jointree can be merged into this
	 * query.
335 336
	 */
	parse->jointree = (FromExpr *)
337
		pull_up_subqueries(root, (Node *) parse->jointree, NULL, NULL);
B
Bruce Momjian 已提交
338

339
	/*
340 341 342
	 * If this is a simple UNION ALL query, flatten it into an appendrel. We
	 * do this now because it requires applying pull_up_subqueries to the leaf
	 * queries of the UNION ALL, which weren't touched above because they
343 344 345 346 347
	 * weren't referenced by the jointree (they will be after we do this).
	 */
	if (parse->setOperations)
		flatten_simple_union_all(root);

348
	/*
B
Bruce Momjian 已提交
349 350
	 * Detect whether any rangetable entries are RTE_JOIN kind; if not, we can
	 * avoid the expense of doing flatten_join_alias_vars().  Also check for
351 352
	 * outer joins --- if none, we can skip reduce_outer_joins(). This must be
	 * done after we have done pull_up_subqueries, of course.
353
	 */
354
	root->hasJoinRTEs = false;
355
	hasOuterJoins = false;
356
	foreach(l, parse->rtable)
357
	{
358
		RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
359 360 361

		if (rte->rtekind == RTE_JOIN)
		{
362
			root->hasJoinRTEs = true;
363 364
			if (IS_OUTER_JOIN(rte->jointype))
			{
365
				hasOuterJoins = true;
366 367 368
				/* Can quit scanning once we find an outer join */
				break;
			}
369 370 371
		}
	}

372
	/*
B
Bruce Momjian 已提交
373
	 * Preprocess RowMark information.	We need to do this after subquery
374 375 376
	 * pullup (so that all non-inherited RTEs are present) and before
	 * inheritance expansion (so that the info is available for
	 * expand_inherited_tables to examine and modify).
377
	 */
378
	preprocess_rowmarks(root);
379

380 381 382 383 384 385 386 387 388 389
	/*
	 * Expand any rangetable entries that are inheritance sets into "append
	 * relations".  This can add entries to the rangetable, but they must be
	 * plain base relations not joins, so it's OK (and marginally more
	 * efficient) to do it after checking for join RTEs.  We must do it after
	 * pulling up subqueries, else we'd fail to handle inherited tables in
	 * subqueries.
	 */
	expand_inherited_tables(root);

390 391
	/*
	 * Set hasHavingQual to remember if HAVING clause is present.  Needed
B
Bruce Momjian 已提交
392 393
	 * because preprocess_expression will reduce a constant-true condition to
	 * an empty qual list ... but "HAVING TRUE" is not a semantic no-op.
394
	 */
395
	root->hasHavingQual = (parse->havingQual != NULL);
396

397 398 399
	/* Clear this flag; might get set in distribute_qual_to_rels */
	root->hasPseudoConstantQuals = false;

400
	/*
401 402 403 404
	 * Do expression preprocessing on targetlist and quals, as well as other
	 * random expressions in the querytree.  Note that we do not need to
	 * handle sort/group expressions explicitly, because they are actually
	 * part of the targetlist.
405
	 */
406
	parse->targetList = (List *)
407
		preprocess_expression(root, (Node *) parse->targetList,
408 409
							  EXPRKIND_TARGET);

410 411 412 413
	parse->returningList = (List *)
		preprocess_expression(root, (Node *) parse->returningList,
							  EXPRKIND_TARGET);

414
	preprocess_qual_conditions(root, (Node *) parse->jointree);
415

416
	parse->havingQual = preprocess_expression(root, parse->havingQual,
417 418
											  EXPRKIND_QUAL);

419 420 421 422 423 424 425 426 427 428 429
	foreach(l, parse->windowClause)
	{
		WindowClause *wc = (WindowClause *) lfirst(l);

		/* partitionClause/orderClause are sort/group expressions */
		wc->startOffset = preprocess_expression(root, wc->startOffset,
												EXPRKIND_LIMIT);
		wc->endOffset = preprocess_expression(root, wc->endOffset,
											  EXPRKIND_LIMIT);
	}

430
	parse->limitOffset = preprocess_expression(root, parse->limitOffset,
431
											   EXPRKIND_LIMIT);
432
	parse->limitCount = preprocess_expression(root, parse->limitCount,
433 434
											  EXPRKIND_LIMIT);

435 436
	root->append_rel_list = (List *)
		preprocess_expression(root, (Node *) root->append_rel_list,
437
							  EXPRKIND_APPINFO);
438

439
	/* Also need to preprocess expressions for function and values RTEs */
440
	foreach(l, parse->rtable)
441
	{
442
		RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
443 444

		if (rte->rtekind == RTE_FUNCTION)
445
			rte->funcexpr = preprocess_expression(root, rte->funcexpr,
446
												  EXPRKIND_RTFUNC);
447 448 449 450
		else if (rte->rtekind == RTE_VALUES)
			rte->values_lists = (List *)
				preprocess_expression(root, (Node *) rte->values_lists,
									  EXPRKIND_VALUES);
451 452
	}

453
	/*
B
Bruce Momjian 已提交
454 455 456
	 * In some cases we may want to transfer a HAVING clause into WHERE. We
	 * cannot do so if the HAVING clause contains aggregates (obviously) or
	 * volatile functions (since a HAVING clause is supposed to be executed
457 458 459 460
	 * only once per group).  Also, it may be that the clause is so expensive
	 * to execute that we're better off doing it only once per group, despite
	 * the loss of selectivity.  This is hard to estimate short of doing the
	 * entire planning process twice, so we use a heuristic: clauses
B
Bruce Momjian 已提交
461 462
	 * containing subplans are left in HAVING.	Otherwise, we move or copy the
	 * HAVING clause into WHERE, in hopes of eliminating tuples before
463 464
	 * aggregation instead of after.
	 *
465 466 467 468 469 470 471 472
	 * If the query has explicit grouping then we can simply move such a
	 * clause into WHERE; any group that fails the clause will not be in the
	 * output because none of its tuples will reach the grouping or
	 * aggregation stage.  Otherwise we must have a degenerate (variable-free)
	 * HAVING clause, which we put in WHERE so that query_planner() can use it
	 * in a gating Result node, but also keep in HAVING to ensure that we
	 * don't emit a bogus aggregated row. (This could be done better, but it
	 * seems not worth optimizing.)
473 474
	 *
	 * Note that both havingQual and parse->jointree->quals are in
B
Bruce Momjian 已提交
475 476
	 * implicitly-ANDed-list form at this point, even though they are declared
	 * as Node *.
477 478
	 */
	newHaving = NIL;
479
	foreach(l, (List *) parse->havingQual)
480
	{
481
		Node	   *havingclause = (Node *) lfirst(l);
482

483 484 485 486 487
		if (contain_agg_clause(havingclause) ||
			contain_volatile_functions(havingclause) ||
			contain_subplans(havingclause))
		{
			/* keep it in HAVING */
488
			newHaving = lappend(newHaving, havingclause);
489 490 491 492
		}
		else if (parse->groupClause)
		{
			/* move it to WHERE */
493 494
			parse->jointree->quals = (Node *)
				lappend((List *) parse->jointree->quals, havingclause);
495 496 497 498 499 500 501 502 503
		}
		else
		{
			/* put a copy in WHERE, keep it in HAVING */
			parse->jointree->quals = (Node *)
				lappend((List *) parse->jointree->quals,
						copyObject(havingclause));
			newHaving = lappend(newHaving, havingclause);
		}
504 505 506
	}
	parse->havingQual = (Node *) newHaving;

507
	/*
B
Bruce Momjian 已提交
508 509
	 * If we have any outer joins, try to reduce them to plain inner joins.
	 * This step is most easily done after we've done expression
B
Bruce Momjian 已提交
510
	 * preprocessing.
511
	 */
512
	if (hasOuterJoins)
513
		reduce_outer_joins(root);
514

515
	/*
B
Bruce Momjian 已提交
516 517
	 * Do the main planning.  If we have an inherited target relation, that
	 * needs special processing, else go straight to grouping_planner.
518
	 */
519
	if (parse->resultRelation &&
520 521
		rt_fetch(parse->resultRelation, parse->rtable)->inh)
		plan = inheritance_planner(root);
522
	else
523
	{
524
		plan = grouping_planner(root, tuple_fraction);
525 526 527
		/* If it's not SELECT, we need a ModifyTable node */
		if (parse->commandType != CMD_SELECT)
		{
B
Bruce Momjian 已提交
528 529
			List	   *returningLists;
			List	   *rowMarks;
530

531
			/*
532
			 * Set up the RETURNING list-of-lists, if needed.
533 534
			 */
			if (parse->returningList)
535
				returningLists = list_make1(parse->returningList);
536 537 538
			else
				returningLists = NIL;

539 540 541 542 543 544 545 546 547 548
			/*
			 * If there was a FOR UPDATE/SHARE clause, the LockRows node will
			 * have dealt with fetching non-locked marked rows, else we need
			 * to have ModifyTable do that.
			 */
			if (parse->rowMarks)
				rowMarks = NIL;
			else
				rowMarks = root->rowMarks;

549
			plan = (Plan *) make_modifytable(parse->commandType,
550
											 parse->canSetTag,
551
									   list_make1_int(parse->resultRelation),
552
											 list_make1(plan),
553 554 555
											 returningLists,
											 rowMarks,
											 SS_assign_special_param(root));
556 557
		}
	}
558 559

	/*
560 561 562
	 * If any subplans were generated, or if there are any parameters to worry
	 * about, build initPlan list and extParam/allParam sets for plan nodes,
	 * and attach the initPlans to the top plan node.
563
	 */
564
	if (list_length(glob->subplans) != num_old_subplans ||
565
		root->glob->paramlist != NIL)
566
		SS_finalize_plan(root, plan, true);
B
Bruce Momjian 已提交
567

568 569 570
	/* Return internal info if caller wants it */
	if (subroot)
		*subroot = root;
571

572
	return plan;
573
}
574

575 576 577 578 579 580 581
/*
 * preprocess_expression
 *		Do subquery_planner's preprocessing work for an expression,
 *		which can be a targetlist, a WHERE clause (including JOIN/ON
 *		conditions), or a HAVING clause.
 */
static Node *
582
preprocess_expression(PlannerInfo *root, Node *expr, int kind)
583
{
584
	/*
B
Bruce Momjian 已提交
585 586 587
	 * Fall out quickly if expression is empty.  This occurs often enough to
	 * be worth checking.  Note that null->null is the correct conversion for
	 * implicit-AND result format, too.
588 589 590 591
	 */
	if (expr == NULL)
		return NULL;

592 593 594
	/*
	 * If the query has any join RTEs, replace join alias variables with
	 * base-relation variables. We must do this before sublink processing,
B
Bruce Momjian 已提交
595 596 597
	 * else sublinks expanded out from join aliases wouldn't get processed. We
	 * can skip it in VALUES lists, however, since they can't contain any Vars
	 * at all.
598
	 */
599
	if (root->hasJoinRTEs && kind != EXPRKIND_VALUES)
600
		expr = flatten_join_alias_vars(root, expr);
601

602
	/*
603
	 * Simplify constant expressions.
604
	 *
605
	 * Note: an essential effect of this is to convert named-argument function
B
Bruce Momjian 已提交
606 607 608 609 610
	 * calls to positional notation and insert the current actual values of
	 * any default arguments for functions.  To ensure that happens, we *must*
	 * process all expressions here.  Previous PG versions sometimes skipped
	 * const-simplification if it didn't seem worth the trouble, but we can't
	 * do that anymore.
611
	 *
612 613 614 615 616
	 * Note: this also flattens nested AND and OR expressions into N-argument
	 * form.  All processing of a qual expression after this point must be
	 * careful to maintain AND/OR flatness --- that is, do not generate a tree
	 * with AND directly under AND, nor OR directly under OR.
	 */
617
	expr = eval_const_expressions(root, expr);
618 619 620

	/*
	 * If it's a qual or havingQual, canonicalize it.
621
	 */
622
	if (kind == EXPRKIND_QUAL)
623
	{
624
		expr = (Node *) canonicalize_qual((Expr *) expr);
625 626 627 628 629 630

#ifdef OPTIMIZER_DEBUG
		printf("After canonicalize_qual()\n");
		pprint(expr);
#endif
	}
631

632
	/* Expand SubLinks to SubPlans */
633
	if (root->parse->hasSubLinks)
634
		expr = SS_process_sublinks(root, expr, (kind == EXPRKIND_QUAL));
635

636
	/*
B
Bruce Momjian 已提交
637 638
	 * XXX do not insert anything here unless you have grokked the comments in
	 * SS_replace_correlation_vars ...
639 640
	 */

641
	/* Replace uplevel vars with Param nodes (this IS possible in VALUES) */
642 643
	if (root->query_level > 1)
		expr = SS_replace_correlation_vars(root, expr);
644

645
	/*
B
Bruce Momjian 已提交
646 647 648
	 * If it's a qual or havingQual, convert it to implicit-AND format. (We
	 * don't want to do this before eval_const_expressions, since the latter
	 * would be unable to simplify a top-level AND correctly. Also,
649
	 * SS_process_sublinks expects explicit-AND format.)
650 651 652 653
	 */
	if (kind == EXPRKIND_QUAL)
		expr = (Node *) make_ands_implicit((Expr *) expr);

654 655 656 657 658 659 660 661 662
	return expr;
}

/*
 * preprocess_qual_conditions
 *		Recursively scan the query's jointree and do subquery_planner's
 *		preprocessing work on each qual condition found therein.
 */
static void
663
preprocess_qual_conditions(PlannerInfo *root, Node *jtnode)
664 665 666 667 668 669 670 671 672 673
{
	if (jtnode == NULL)
		return;
	if (IsA(jtnode, RangeTblRef))
	{
		/* nothing to do here */
	}
	else if (IsA(jtnode, FromExpr))
	{
		FromExpr   *f = (FromExpr *) jtnode;
674
		ListCell   *l;
675

676
		foreach(l, f->fromlist)
677
			preprocess_qual_conditions(root, lfirst(l));
678

679
		f->quals = preprocess_expression(root, f->quals, EXPRKIND_QUAL);
680 681 682 683 684
	}
	else if (IsA(jtnode, JoinExpr))
	{
		JoinExpr   *j = (JoinExpr *) jtnode;

685 686
		preprocess_qual_conditions(root, j->larg);
		preprocess_qual_conditions(root, j->rarg);
687

688
		j->quals = preprocess_expression(root, j->quals, EXPRKIND_QUAL);
689 690
	}
	else
691 692
		elog(ERROR, "unrecognized node type: %d",
			 (int) nodeTag(jtnode));
693
}
694

695
/*
696 697 698 699
 * inheritance_planner
 *	  Generate a plan in the case where the result relation is an
 *	  inheritance set.
 *
700 701 702 703
 * We have to handle this case differently from cases where a source relation
 * is an inheritance set. Source inheritance is expanded at the bottom of the
 * plan tree (see allpaths.c), but target inheritance has to be expanded at
 * the top.  The reason is that for UPDATE, each target relation needs a
704
 * different targetlist matching its own column set.  Fortunately,
705 706
 * the UPDATE/DELETE target can never be the nullable side of an outer join,
 * so it's OK to generate the plan this way.
707 708 709 710
 *
 * Returns a query plan.
 */
static Plan *
711
inheritance_planner(PlannerInfo *root)
712
{
713
	Query	   *parse = root->parse;
714
	int			parentRTindex = parse->resultRelation;
715 716 717
	List	   *final_rtable = NIL;
	int			save_rel_array_size = 0;
	RelOptInfo **save_rel_array = NULL;
718
	List	   *subplans = NIL;
719 720
	List	   *resultRelations = NIL;
	List	   *returningLists = NIL;
721
	List	   *rowMarks;
722
	ListCell   *lc;
723

724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
	/*
	 * We generate a modified instance of the original Query for each target
	 * relation, plan that, and put all the plans into a list that will be
	 * controlled by a single ModifyTable node.  All the instances share the
	 * same rangetable, but each instance must have its own set of subquery
	 * RTEs within the finished rangetable because (1) they are likely to get
	 * scribbled on during planning, and (2) it's not inconceivable that
	 * subqueries could get planned differently in different cases.  We need
	 * not create duplicate copies of other RTE kinds, in particular not the
	 * target relations, because they don't have either of those issues.  Not
	 * having to duplicate the target relations is important because doing so
	 * (1) would result in a rangetable of length O(N^2) for N targets, with
	 * at least O(N^3) work expended here; and (2) would greatly complicate
	 * management of the rowMarks list.
	 */
	foreach(lc, root->append_rel_list)
740
	{
741 742
		AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(lc);
		PlannerInfo subroot;
B
Bruce Momjian 已提交
743
		Plan	   *subplan;
744
		Index		rti;
745

746 747 748 749
		/* append_rel_list contains all append rels; ignore others */
		if (appinfo->parent_relid != parentRTindex)
			continue;

750
		/*
751 752
		 * We need a working copy of the PlannerInfo so that we can control
		 * propagation of information back to the main copy.
753 754
		 */
		memcpy(&subroot, root, sizeof(PlannerInfo));
755 756 757 758 759 760 761

		/*
		 * Generate modified query with this rel as target.  We first apply
		 * adjust_appendrel_attrs, which copies the Query and changes
		 * references to the parent RTE to refer to the current child RTE,
		 * then fool around with subquery RTEs.
		 */
762
		subroot.parse = (Query *)
763 764
			adjust_appendrel_attrs(root,
								   (Node *) parse,
765
								   appinfo);
766 767 768

		/*
		 * The rowMarks list might contain references to subquery RTEs, so
769 770 771
		 * make a copy that we can apply ChangeVarNodes to.  (Fortunately, the
		 * executor doesn't need to see the modified copies --- we can just
		 * pass it the original rowMarks list.)
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
		 */
		subroot.rowMarks = (List *) copyObject(root->rowMarks);

		/*
		 * Add placeholders to the child Query's rangetable list to fill the
		 * RT indexes already reserved for subqueries in previous children.
		 * These won't be referenced, so there's no need to make them very
		 * valid-looking.
		 */
		while (list_length(subroot.parse->rtable) < list_length(final_rtable))
			subroot.parse->rtable = lappend(subroot.parse->rtable,
											makeNode(RangeTblEntry));

		/*
		 * If this isn't the first child Query, generate duplicates of all
787 788 789 790 791
		 * subquery RTEs, and adjust Var numbering to reference the
		 * duplicates. To simplify the loop logic, we scan the original rtable
		 * not the copy just made by adjust_appendrel_attrs; that should be OK
		 * since subquery RTEs couldn't contain any references to the target
		 * rel.
792 793 794 795 796 797 798 799 800 801 802 803
		 */
		if (final_rtable != NIL)
		{
			ListCell   *lr;

			rti = 1;
			foreach(lr, parse->rtable)
			{
				RangeTblEntry *rte = (RangeTblEntry *) lfirst(lr);

				if (rte->rtekind == RTE_SUBQUERY)
				{
804
					Index		newrti;
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822

					/*
					 * The RTE can't contain any references to its own RT
					 * index, so we can save a few cycles by applying
					 * ChangeVarNodes before we append the RTE to the
					 * rangetable.
					 */
					newrti = list_length(subroot.parse->rtable) + 1;
					ChangeVarNodes((Node *) subroot.parse, rti, newrti, 0);
					ChangeVarNodes((Node *) subroot.rowMarks, rti, newrti, 0);
					rte = copyObject(rte);
					subroot.parse->rtable = lappend(subroot.parse->rtable,
													rte);
				}
				rti++;
			}
		}

823
		/* We needn't modify the child's append_rel_list */
824
		/* There shouldn't be any OJ info to translate, as yet */
825
		Assert(subroot.join_info_list == NIL);
826 827
		/* and we haven't created PlaceHolderInfos, either */
		Assert(subroot.placeholder_list == NIL);
828 829
		/* hack to mark target relation as an inheritance partition */
		subroot.hasInheritedTarget = true;
830

831
		/* Generate plan */
832 833
		subplan = grouping_planner(&subroot, 0.0 /* retrieve all tuples */ );

834
		/*
B
Bruce Momjian 已提交
835
		 * If this child rel was excluded by constraint exclusion, exclude it
836
		 * from the result plan.
837 838 839
		 */
		if (is_dummy_plan(subplan))
			continue;
B
Bruce Momjian 已提交
840

841 842
		subplans = lappend(subplans, subplan);

843 844 845 846 847 848 849 850 851 852
		/*
		 * If this is the first non-excluded child, its post-planning rtable
		 * becomes the initial contents of final_rtable; otherwise, append
		 * just its modified subquery RTEs to final_rtable.
		 */
		if (final_rtable == NIL)
			final_rtable = subroot.parse->rtable;
		else
			final_rtable = list_concat(final_rtable,
									   list_copy_tail(subroot.parse->rtable,
853
												 list_length(final_rtable)));
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872

		/*
		 * We need to collect all the RelOptInfos from all child plans into
		 * the main PlannerInfo, since setrefs.c will need them.  We use the
		 * last child's simple_rel_array (previous ones are too short), so we
		 * have to propagate forward the RelOptInfos that were already built
		 * in previous children.
		 */
		Assert(subroot.simple_rel_array_size >= save_rel_array_size);
		for (rti = 1; rti < save_rel_array_size; rti++)
		{
			RelOptInfo *brel = save_rel_array[rti];

			if (brel)
				subroot.simple_rel_array[rti] = brel;
		}
		save_rel_array_size = subroot.simple_rel_array_size;
		save_rel_array = subroot.simple_rel_array;

873
		/* Make sure any initplans from this rel get into the outer list */
874
		root->init_plans = subroot.init_plans;
875

876
		/* Build list of target-relation RT indexes */
877 878 879 880
		resultRelations = lappend_int(resultRelations, appinfo->child_relid);

		/* Build list of per-relation RETURNING targetlists */
		if (parse->returningList)
881 882
			returningLists = lappend(returningLists,
									 subroot.parse->returningList);
883 884
	}

885 886 887 888
	/* Mark result as unordered (probably unnecessary) */
	root->query_pathkeys = NIL;

	/*
B
Bruce Momjian 已提交
889 890
	 * If we managed to exclude every child rel, return a dummy plan; it
	 * doesn't even need a ModifyTable node.
891 892
	 */
	if (subplans == NIL)
893 894
	{
		/* although dummy, it must have a valid tlist for executor */
895 896
		List	   *tlist;

897
		tlist = preprocess_targetlist(root, parse->targetList);
898 899
		return (Plan *) make_result(root,
									tlist,
900 901 902
									(Node *) list_make1(makeBoolConst(false,
																	  false)),
									NULL);
903
	}
904

905
	/*
906
	 * Put back the final adjusted rtable into the master copy of the Query.
907
	 */
908 909 910
	parse->rtable = final_rtable;
	root->simple_rel_array_size = save_rel_array_size;
	root->simple_rel_array = save_rel_array;
911

912
	/*
B
Bruce Momjian 已提交
913 914 915
	 * If there was a FOR UPDATE/SHARE clause, the LockRows node will have
	 * dealt with fetching non-locked marked rows, else we need to have
	 * ModifyTable do that.
916 917 918 919 920 921
	 */
	if (parse->rowMarks)
		rowMarks = NIL;
	else
		rowMarks = root->rowMarks;

922 923
	/* And last, tack on a ModifyTable node to do the UPDATE/DELETE work */
	return (Plan *) make_modifytable(parse->commandType,
924 925
									 parse->canSetTag,
									 resultRelations,
B
Bruce Momjian 已提交
926
									 subplans,
927 928 929
									 returningLists,
									 rowMarks,
									 SS_assign_special_param(root));
930 931 932 933 934 935 936
}

/*--------------------
 * grouping_planner
 *	  Perform planning steps related to grouping, aggregation, etc.
 *	  This primarily means adding top-level processing to the basic
 *	  query plan produced by query_planner.
937 938 939 940
 *
 * tuple_fraction is the fraction of tuples we expect will be retrieved
 *
 * tuple_fraction is interpreted as follows:
941
 *	  0: expect all tuples to be retrieved (normal case)
942 943 944 945 946
 *	  0 < tuple_fraction < 1: expect the given fraction of tuples available
 *		from the plan to be retrieved
 *	  tuple_fraction >= 1: tuple_fraction is the absolute number of tuples
 *		expected to be retrieved (ie, a LIMIT specification)
 *
947
 * Returns a query plan.  Also, root->query_pathkeys is returned as the
948
 * actual output ordering of the plan (in pathkey format).
949 950
 *--------------------
 */
951
static Plan *
952
grouping_planner(PlannerInfo *root, double tuple_fraction)
953
{
954
	Query	   *parse = root->parse;
955
	List	   *tlist = parse->targetList;
B
Bruce Momjian 已提交
956 957
	int64		offset_est = 0;
	int64		count_est = 0;
958
	double		limit_tuples = -1.0;
959 960
	Plan	   *result_plan;
	List	   *current_pathkeys;
961
	double		dNumGroups = 0;
962 963
	bool		use_hashed_distinct = false;
	bool		tested_hashed_distinct = false;
964

965 966
	/* Tweak caller-supplied tuple_fraction if have LIMIT/OFFSET */
	if (parse->limitCount || parse->limitOffset)
967
	{
968 969
		tuple_fraction = preprocess_limit(root, tuple_fraction,
										  &offset_est, &count_est);
B
Bruce Momjian 已提交
970

971
		/*
B
Bruce Momjian 已提交
972 973
		 * If we have a known LIMIT, and don't have an unknown OFFSET, we can
		 * estimate the effects of using a bounded sort.
974 975 976 977
		 */
		if (count_est > 0 && offset_est >= 0)
			limit_tuples = (double) count_est + (double) offset_est;
	}
978

979
	if (parse->setOperations)
B
Bruce Momjian 已提交
980
	{
B
Bruce Momjian 已提交
981
		List	   *set_sortclauses;
982

983
		/*
B
Bruce Momjian 已提交
984
		 * If there's a top-level ORDER BY, assume we have to fetch all the
985
		 * tuples.	This might be too simplistic given all the hackery below
986 987
		 * to possibly avoid the sort; but the odds of accurate estimates here
		 * are pretty low anyway.
988 989 990 991
		 */
		if (parse->sortClause)
			tuple_fraction = 0.0;

992
		/*
B
Bruce Momjian 已提交
993
		 * Construct the plan for set operations.  The result will not need
994 995 996
		 * any work except perhaps a top-level sort and/or LIMIT.  Note that
		 * any special work for recursive unions is the responsibility of
		 * plan_set_operations.
997
		 */
998
		result_plan = plan_set_operations(root, tuple_fraction,
999 1000 1001
										  &set_sortclauses);

		/*
B
Bruce Momjian 已提交
1002 1003 1004
		 * Calculate pathkeys representing the sort order (if any) of the set
		 * operation's result.  We have to do this before overwriting the sort
		 * key information...
1005
		 */
1006 1007
		current_pathkeys = make_pathkeys_for_sortclauses(root,
														 set_sortclauses,
B
Bruce Momjian 已提交
1008
													 result_plan->targetlist,
1009
														 true);
1010 1011

		/*
B
Bruce Momjian 已提交
1012 1013 1014 1015 1016
		 * We should not need to call preprocess_targetlist, since we must be
		 * in a SELECT query node.	Instead, use the targetlist returned by
		 * plan_set_operations (since this tells whether it returned any
		 * resjunk columns!), and transfer any sort key information from the
		 * original tlist.
1017 1018
		 */
		Assert(parse->commandType == CMD_SELECT);
1019

1020 1021
		tlist = postprocess_setop_tlist(copyObject(result_plan->targetlist),
										tlist);
1022

1023
		/*
1024
		 * Can't handle FOR UPDATE/SHARE here (parser should have checked
B
Bruce Momjian 已提交
1025
		 * already, but let's make sure).
1026 1027
		 */
		if (parse->rowMarks)
1028 1029
			ereport(ERROR,
					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1030
					 errmsg("SELECT FOR UPDATE/SHARE is not allowed with UNION/INTERSECT/EXCEPT")));
1031

1032
		/*
1033
		 * Calculate pathkeys that represent result ordering requirements
1034
		 */
1035
		Assert(parse->distinctClause == NIL);
1036 1037 1038 1039
		root->sort_pathkeys = make_pathkeys_for_sortclauses(root,
															parse->sortClause,
															tlist,
															true);
B
Bruce Momjian 已提交
1040
	}
1041
	else
1042
	{
1043
		/* No set operations, do regular planning */
B
Bruce Momjian 已提交
1044
		List	   *sub_tlist;
1045
		double		sub_limit_tuples;
1046
		AttrNumber *groupColIdx = NULL;
1047
		bool		need_tlist_eval = true;
1048 1049
		Path	   *cheapest_path;
		Path	   *sorted_path;
1050
		Path	   *best_path;
1051
		long		numGroups = 0;
1052
		AggClauseCosts agg_costs;
1053
		int			numGroupCols;
1054 1055
		double		path_rows;
		int			path_width;
1056
		bool		use_hashed_grouping = false;
T
Tom Lane 已提交
1057 1058
		WindowFuncLists *wflists = NULL;
		List	   *activeWindows = NIL;
1059

1060
		MemSet(&agg_costs, 0, sizeof(AggClauseCosts));
1061

1062 1063 1064
		/* A recursive query should always have setOperations */
		Assert(!root->hasRecursion);

1065 1066 1067 1068 1069
		/* Preprocess GROUP BY clause, if any */
		if (parse->groupClause)
			preprocess_groupclause(root);
		numGroupCols = list_length(parse->groupClause);

1070
		/* Preprocess targetlist */
1071
		tlist = preprocess_targetlist(root, tlist);
B
Bruce Momjian 已提交
1072

T
Tom Lane 已提交
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
		/*
		 * Locate any window functions in the tlist.  (We don't need to look
		 * anywhere else, since expressions used in ORDER BY will be in there
		 * too.)  Note that they could all have been eliminated by constant
		 * folding, in which case we don't need to do any more work.
		 */
		if (parse->hasWindowFuncs)
		{
			wflists = find_window_functions((Node *) tlist,
											list_length(parse->windowClause));
			if (wflists->numWindowFuncs > 0)
				activeWindows = select_active_windows(root, wflists);
			else
				parse->hasWindowFuncs = false;
		}

1089
		/*
B
Bruce Momjian 已提交
1090 1091
		 * Generate appropriate target list for subplan; may be different from
		 * tlist if grouping or aggregation is needed.
1092
		 */
1093
		sub_tlist = make_subplanTargetList(root, tlist,
B
Bruce Momjian 已提交
1094
										   &groupColIdx, &need_tlist_eval);
1095

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
		/*
		 * Do aggregate preprocessing, if the query has any aggs.
		 *
		 * Note: think not that we can turn off hasAggs if we find no aggs. It
		 * is possible for constant-expression simplification to remove all
		 * explicit references to aggs, but we still have to follow the
		 * aggregate semantics (eg, producing only one output row).
		 */
		if (parse->hasAggs)
		{
			/*
B
Bruce Momjian 已提交
1107 1108
			 * Collect statistics about aggregates for estimating costs. Note:
			 * we do not attempt to detect duplicate aggregates here; a
1109
			 * somewhat-overestimated cost is okay for our present purposes.
1110
			 */
1111 1112
			count_agg_clauses(root, (Node *) tlist, &agg_costs);
			count_agg_clauses(root, parse->havingQual, &agg_costs);
1113 1114

			/*
1115 1116 1117 1118
			 * Preprocess MIN/MAX aggregates, if any.  Note: be careful about
			 * adding logic between here and the optimize_minmax_aggregates
			 * call.  Anything that is needed in MIN/MAX-optimizable cases
			 * will have to be duplicated in planagg.c.
1119 1120 1121 1122
			 */
			preprocess_minmax_aggregates(root, tlist);
		}

1123
		/*
1124 1125
		 * Calculate pathkeys that represent grouping/ordering requirements.
		 * Stash them in PlannerInfo so that query_planner can canonicalize
1126 1127 1128
		 * them after EquivalenceClasses have been formed.	The sortClause is
		 * certainly sort-able, but GROUP BY and DISTINCT might not be, in
		 * which case we just leave their pathkeys empty.
1129
		 */
1130 1131
		if (parse->groupClause &&
			grouping_is_sortable(parse->groupClause))
1132 1133 1134 1135 1136 1137 1138 1139
			root->group_pathkeys =
				make_pathkeys_for_sortclauses(root,
											  parse->groupClause,
											  tlist,
											  false);
		else
			root->group_pathkeys = NIL;

T
Tom Lane 已提交
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
		/* We consider only the first (bottom) window in pathkeys logic */
		if (activeWindows != NIL)
		{
			WindowClause *wc = (WindowClause *) linitial(activeWindows);

			root->window_pathkeys = make_pathkeys_for_window(root,
															 wc,
															 tlist,
															 false);
		}
		else
			root->window_pathkeys = NIL;

1153 1154 1155
		if (parse->distinctClause &&
			grouping_is_sortable(parse->distinctClause))
			root->distinct_pathkeys =
1156 1157 1158 1159 1160
				make_pathkeys_for_sortclauses(root,
											  parse->distinctClause,
											  tlist,
											  false);
		else
1161 1162 1163 1164 1165 1166 1167
			root->distinct_pathkeys = NIL;

		root->sort_pathkeys =
			make_pathkeys_for_sortclauses(root,
										  parse->sortClause,
										  tlist,
										  false);
1168

1169
		/*
1170
		 * Figure out whether we want a sorted result from query_planner.
1171
		 *
1172
		 * If we have a sortable GROUP BY clause, then we want a result sorted
T
Tom Lane 已提交
1173 1174 1175 1176 1177 1178
		 * properly for grouping.  Otherwise, if we have window functions to
		 * evaluate, we try to sort for the first window.  Otherwise, if
		 * there's a sortable DISTINCT clause that's more rigorous than the
		 * ORDER BY clause, we try to produce output that's sufficiently well
		 * sorted for the DISTINCT.  Otherwise, if there is an ORDER BY
		 * clause, we want to sort by the ORDER BY clause.
1179 1180 1181 1182
		 *
		 * Note: if we have both ORDER BY and GROUP BY, and ORDER BY is a
		 * superset of GROUP BY, it would be tempting to request sort by ORDER
		 * BY --- but that might just leave us failing to exploit an available
1183
		 * sort order at all.  Needs more thought.	The choice for DISTINCT
1184 1185
		 * versus ORDER BY is much easier, since we know that the parser
		 * ensured that one is a superset of the other.
1186
		 */
1187
		if (root->group_pathkeys)
1188
			root->query_pathkeys = root->group_pathkeys;
T
Tom Lane 已提交
1189 1190
		else if (root->window_pathkeys)
			root->query_pathkeys = root->window_pathkeys;
1191 1192 1193
		else if (list_length(root->distinct_pathkeys) >
				 list_length(root->sort_pathkeys))
			root->query_pathkeys = root->distinct_pathkeys;
1194
		else if (root->sort_pathkeys)
1195
			root->query_pathkeys = root->sort_pathkeys;
1196
		else
1197
			root->query_pathkeys = NIL;
1198

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
		/*
		 * Figure out whether there's a hard limit on the number of rows that
		 * query_planner's result subplan needs to return.  Even if we know a
		 * hard limit overall, it doesn't apply if the query has any
		 * grouping/aggregation operations.
		 */
		if (parse->groupClause ||
			parse->distinctClause ||
			parse->hasAggs ||
			parse->hasWindowFuncs ||
			root->hasHavingQual)
			sub_limit_tuples = -1.0;
		else
			sub_limit_tuples = limit_tuples;

1214
		/*
B
Bruce Momjian 已提交
1215 1216 1217 1218
		 * Generate the best unsorted and presorted paths for this Query (but
		 * note there may not be any presorted path).  query_planner will also
		 * estimate the number of groups in the query, and canonicalize all
		 * the pathkeys.
1219
		 */
1220
		query_planner(root, sub_tlist, tuple_fraction, sub_limit_tuples,
1221
					  &cheapest_path, &sorted_path, &dNumGroups);
1222

1223
		/*
1224 1225 1226
		 * Extract rowcount and width estimates for possible use in grouping
		 * decisions.  Beware here of the possibility that
		 * cheapest_path->parent is NULL (ie, there is no FROM clause).
1227
		 */
1228 1229 1230 1231 1232 1233
		if (cheapest_path->parent)
		{
			path_rows = cheapest_path->parent->rows;
			path_width = cheapest_path->parent->width;
		}
		else
1234
		{
B
Bruce Momjian 已提交
1235 1236
			path_rows = 1;		/* assume non-set result */
			path_width = 100;	/* arbitrary */
1237
		}
1238

1239 1240
		if (parse->groupClause)
		{
1241
			/*
1242
			 * If grouping, decide whether to use sorted or hashed grouping.
1243
			 */
1244 1245 1246 1247 1248
			use_hashed_grouping =
				choose_hashed_grouping(root,
									   tuple_fraction, limit_tuples,
									   path_rows, path_width,
									   cheapest_path, sorted_path,
1249
									   dNumGroups, &agg_costs);
1250 1251
			/* Also convert # groups to long int --- but 'ware overflow! */
			numGroups = (long) Min(dNumGroups, (double) LONG_MAX);
1252
		}
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
		else if (parse->distinctClause && sorted_path &&
				 !root->hasHavingQual && !parse->hasAggs && !activeWindows)
		{
			/*
			 * We'll reach the DISTINCT stage without any intermediate
			 * processing, so figure out whether we will want to hash or not
			 * so we can choose whether to use cheapest or sorted path.
			 */
			use_hashed_distinct =
				choose_hashed_distinct(root,
									   tuple_fraction, limit_tuples,
									   path_rows, path_width,
									   cheapest_path->startup_cost,
									   cheapest_path->total_cost,
									   sorted_path->startup_cost,
									   sorted_path->total_cost,
									   sorted_path->pathkeys,
									   dNumGroups);
			tested_hashed_distinct = true;
		}
1273

B
Bruce Momjian 已提交
1274
		/*
1275
		 * Select the best path.  If we are doing hashed grouping, we will
B
Bruce Momjian 已提交
1276 1277
		 * always read all the input tuples, so use the cheapest-total path.
		 * Otherwise, trust query_planner's decision about which to use.
1278
		 */
1279
		if (use_hashed_grouping || use_hashed_distinct || !sorted_path)
1280
			best_path = cheapest_path;
1281
		else
1282
			best_path = sorted_path;
1283

1284
		/*
B
Bruce Momjian 已提交
1285 1286 1287 1288
		 * Check to see if it's possible to optimize MIN/MAX aggregates. If
		 * so, we will forget all the work we did so far to choose a "regular"
		 * path ... but we had to do it anyway to be able to tell which way is
		 * cheaper.
1289
		 */
1290
		result_plan = optimize_minmax_aggregates(root,
1291
												 tlist,
1292
												 &agg_costs,
1293 1294 1295 1296
												 best_path);
		if (result_plan != NULL)
		{
			/*
B
Bruce Momjian 已提交
1297 1298
			 * optimize_minmax_aggregates generated the full plan, with the
			 * right tlist, and it has no sort order.
1299 1300 1301 1302
			 */
			current_pathkeys = NIL;
		}
		else
1303
		{
1304
			/*
1305 1306
			 * Normal case --- create a plan according to query_planner's
			 * results.
1307
			 */
1308
			bool		need_sort_for_grouping = false;
1309

1310
			result_plan = create_plan(root, best_path);
1311 1312
			current_pathkeys = best_path->pathkeys;

1313 1314
			/* Detect if we'll need an explicit sort for grouping */
			if (parse->groupClause && !use_hashed_grouping &&
1315
			  !pathkeys_contained_in(root->group_pathkeys, current_pathkeys))
1316 1317
			{
				need_sort_for_grouping = true;
1318

1319
				/*
1320 1321
				 * Always override create_plan's tlist, so that we don't sort
				 * useless data from a "physical" tlist.
1322 1323 1324 1325
				 */
				need_tlist_eval = true;
			}

1326
			/*
1327 1328 1329 1330
			 * create_plan returns a plan with just a "flat" tlist of required
			 * Vars.  Usually we need to insert the sub_tlist as the tlist of
			 * the top plan node.  However, we can skip that if we determined
			 * that whatever create_plan chose to return will be good enough.
1331 1332
			 */
			if (need_tlist_eval)
1333
			{
1334 1335 1336 1337 1338 1339 1340
				/*
				 * If the top-level plan node is one that cannot do expression
				 * evaluation, we must insert a Result node to project the
				 * desired tlist.
				 */
				if (!is_projection_capable_plan(result_plan))
				{
1341 1342 1343
					result_plan = (Plan *) make_result(root,
													   sub_tlist,
													   NULL,
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
													   result_plan);
				}
				else
				{
					/*
					 * Otherwise, just replace the subplan's flat tlist with
					 * the desired tlist.
					 */
					result_plan->targetlist = sub_tlist;
				}

				/*
				 * Also, account for the cost of evaluation of the sub_tlist.
1357
				 * See comments for add_tlist_costs_to_plan() for more info.
1358
				 */
1359
				add_tlist_costs_to_plan(root, result_plan, sub_tlist);
1360 1361 1362 1363
			}
			else
			{
				/*
1364
				 * Since we're using create_plan's tlist and not the one
1365 1366
				 * make_subplanTargetList calculated, we have to refigure any
				 * grouping-column indexes make_subplanTargetList computed.
1367
				 */
1368
				locate_grouping_columns(root, tlist, result_plan->targetlist,
1369
										groupColIdx);
1370
			}
B
Bruce Momjian 已提交
1371

1372
			/*
1373 1374
			 * Insert AGG or GROUP node if needed, plus an explicit sort step
			 * if necessary.
1375
			 *
1376
			 * HAVING clause, if any, becomes qual of the Agg or Group node.
1377
			 */
1378 1379 1380
			if (use_hashed_grouping)
			{
				/* Hashed aggregate plan --- no sort needed */
1381
				result_plan = (Plan *) make_agg(root,
1382 1383 1384
												tlist,
												(List *) parse->havingQual,
												AGG_HASHED,
1385
												&agg_costs,
1386 1387
												numGroupCols,
												groupColIdx,
1388
									extract_grouping_ops(parse->groupClause),
1389 1390 1391 1392 1393 1394 1395 1396 1397
												numGroups,
												result_plan);
				/* Hashed aggregation produces randomly-ordered results */
				current_pathkeys = NIL;
			}
			else if (parse->hasAggs)
			{
				/* Plain aggregate plan --- sort if needed */
				AggStrategy aggstrategy;
1398

1399 1400
				if (parse->groupClause)
				{
1401
					if (need_sort_for_grouping)
1402 1403
					{
						result_plan = (Plan *)
1404
							make_sort_from_groupcols(root,
1405 1406 1407
													 parse->groupClause,
													 groupColIdx,
													 result_plan);
1408
						current_pathkeys = root->group_pathkeys;
1409 1410
					}
					aggstrategy = AGG_SORTED;
1411

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
					/*
					 * The AGG node will not change the sort ordering of its
					 * groups, so current_pathkeys describes the result too.
					 */
				}
				else
				{
					aggstrategy = AGG_PLAIN;
					/* Result will be only one row anyway; no sort order */
					current_pathkeys = NIL;
				}

1424
				result_plan = (Plan *) make_agg(root,
1425 1426 1427
												tlist,
												(List *) parse->havingQual,
												aggstrategy,
1428
												&agg_costs,
1429 1430
												numGroupCols,
												groupColIdx,
1431
									extract_grouping_ops(parse->groupClause),
1432 1433 1434 1435
												numGroups,
												result_plan);
			}
			else if (parse->groupClause)
1436
			{
1437 1438 1439 1440
				/*
				 * GROUP BY without aggregation, so insert a group node (plus
				 * the appropriate sort node, if necessary).
				 *
1441 1442
				 * Add an explicit sort if we couldn't make the path come out
				 * the way the GROUP node needs it.
1443
				 */
1444
				if (need_sort_for_grouping)
1445
				{
1446
					result_plan = (Plan *)
1447
						make_sort_from_groupcols(root,
1448 1449 1450
												 parse->groupClause,
												 groupColIdx,
												 result_plan);
1451
					current_pathkeys = root->group_pathkeys;
1452
				}
B
Bruce Momjian 已提交
1453

1454
				result_plan = (Plan *) make_group(root,
1455 1456 1457 1458
												  tlist,
												  (List *) parse->havingQual,
												  numGroupCols,
												  groupColIdx,
1459
									extract_grouping_ops(parse->groupClause),
1460 1461 1462
												  dNumGroups,
												  result_plan);
				/* The Group node won't change sort ordering */
1463
			}
1464
			else if (root->hasHavingQual)
1465
			{
1466 1467 1468 1469 1470
				/*
				 * No aggregates, and no GROUP BY, but we have a HAVING qual.
				 * This is a degenerate case in which we are supposed to emit
				 * either 0 or 1 row depending on whether HAVING succeeds.
				 * Furthermore, there cannot be any variables in either HAVING
B
Bruce Momjian 已提交
1471 1472 1473 1474 1475 1476
				 * or the targetlist, so we actually do not need the FROM
				 * table at all!  We can just throw away the plan-so-far and
				 * generate a Result node.	This is a sufficiently unusual
				 * corner case that it's not worth contorting the structure of
				 * this routine to avoid having to generate the plan in the
				 * first place.
1477
				 */
1478 1479
				result_plan = (Plan *) make_result(root,
												   tlist,
1480 1481
												   parse->havingQual,
												   NULL);
1482
			}
1483
		}						/* end of non-minmax-aggregate case */
T
Tom Lane 已提交
1484 1485

		/*
1486 1487 1488
		 * Since each window function could require a different sort order, we
		 * stack up a WindowAgg node for each window, with sort steps between
		 * them as needed.
T
Tom Lane 已提交
1489 1490 1491 1492 1493 1494 1495 1496
		 */
		if (activeWindows)
		{
			List	   *window_tlist;
			ListCell   *l;

			/*
			 * If the top-level plan node is one that cannot do expression
1497 1498 1499 1500 1501 1502
			 * evaluation, we must insert a Result node to project the desired
			 * tlist.  (In some cases this might not really be required, but
			 * it's not worth trying to avoid it.)  Note that on second and
			 * subsequent passes through the following loop, the top-level
			 * node will be a WindowAgg which we know can project; so we only
			 * need to check once.
T
Tom Lane 已提交
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
			 */
			if (!is_projection_capable_plan(result_plan))
			{
				result_plan = (Plan *) make_result(root,
												   NIL,
												   NULL,
												   result_plan);
			}

			/*
1513 1514 1515 1516 1517 1518 1519
			 * The "base" targetlist for all steps of the windowing process is
			 * a flat tlist of all Vars and Aggs needed in the result. (In
			 * some cases we wouldn't need to propagate all of these all the
			 * way to the top, since they might only be needed as inputs to
			 * WindowFuncs.  It's probably not worth trying to optimize that
			 * though.)  We also need any volatile sort expressions, because
			 * make_sort_from_pathkeys won't add those on its own, and anyway
B
Bruce Momjian 已提交
1520 1521
			 * we want them evaluated only once at the bottom of the stack. As
			 * we climb up the stack, we add outputs for the WindowFuncs
1522 1523 1524 1525 1526
			 * computed at each level.	Also, each input tlist has to present
			 * all the columns needed to sort the data for the next WindowAgg
			 * step.  That's handled internally by make_sort_from_pathkeys,
			 * but we need the copyObject steps here to ensure that each plan
			 * node has a separately modifiable tlist.
1527 1528 1529
			 *
			 * Note: it's essential here to use PVC_INCLUDE_AGGREGATES so that
			 * Vars mentioned only in aggregate expressions aren't pulled out
1530
			 * as separate targetlist entries.	Otherwise we could be putting
1531 1532
			 * ungrouped Vars directly into an Agg node's tlist, resulting in
			 * undefined behavior.
T
Tom Lane 已提交
1533
			 */
1534 1535 1536
			window_tlist = flatten_tlist(tlist,
										 PVC_INCLUDE_AGGREGATES,
										 PVC_INCLUDE_PLACEHOLDERS);
1537 1538
			window_tlist = add_volatile_sort_exprs(window_tlist, tlist,
												   activeWindows);
T
Tom Lane 已提交
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
			result_plan->targetlist = (List *) copyObject(window_tlist);

			foreach(l, activeWindows)
			{
				WindowClause *wc = (WindowClause *) lfirst(l);
				List	   *window_pathkeys;
				int			partNumCols;
				AttrNumber *partColIdx;
				Oid		   *partOperators;
				int			ordNumCols;
				AttrNumber *ordColIdx;
				Oid		   *ordOperators;

				window_pathkeys = make_pathkeys_for_window(root,
														   wc,
														   tlist,
														   true);

				/*
				 * This is a bit tricky: we build a sort node even if we don't
				 * really have to sort.  Even when no explicit sort is needed,
				 * we need to have suitable resjunk items added to the input
				 * plan's tlist for any partitioning or ordering columns that
				 * aren't plain Vars.  Furthermore, this way we can use
				 * existing infrastructure to identify which input columns are
				 * the interesting ones.
				 */
				if (window_pathkeys)
				{
					Sort	   *sort_plan;

					sort_plan = make_sort_from_pathkeys(root,
														result_plan,
														window_pathkeys,
														-1.0);
					if (!pathkeys_contained_in(window_pathkeys,
											   current_pathkeys))
					{
						/* we do indeed need to sort */
						result_plan = (Plan *) sort_plan;
						current_pathkeys = window_pathkeys;
					}
					/* In either case, extract the per-column information */
					get_column_info_for_window(root, wc, tlist,
											   sort_plan->numCols,
											   sort_plan->sortColIdx,
											   &partNumCols,
											   &partColIdx,
											   &partOperators,
											   &ordNumCols,
											   &ordColIdx,
											   &ordOperators);
				}
				else
				{
					/* empty window specification, nothing to sort */
					partNumCols = 0;
					partColIdx = NULL;
					partOperators = NULL;
					ordNumCols = 0;
					ordColIdx = NULL;
					ordOperators = NULL;
				}

				if (lnext(l))
				{
					/* Add the current WindowFuncs to the running tlist */
					window_tlist = add_to_flat_tlist(window_tlist,
1607
										   wflists->windowFuncs[wc->winref]);
T
Tom Lane 已提交
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
				}
				else
				{
					/* Install the original tlist in the topmost WindowAgg */
					window_tlist = tlist;
				}

				/* ... and make the WindowAgg plan node */
				result_plan = (Plan *)
					make_windowagg(root,
								   (List *) copyObject(window_tlist),
1619
								   wflists->windowFuncs[wc->winref],
1620
								   wc->winref,
T
Tom Lane 已提交
1621 1622 1623 1624 1625 1626
								   partNumCols,
								   partColIdx,
								   partOperators,
								   ordNumCols,
								   ordColIdx,
								   ordOperators,
1627
								   wc->frameOptions,
1628 1629
								   wc->startOffset,
								   wc->endOffset,
T
Tom Lane 已提交
1630 1631 1632
								   result_plan);
			}
		}
B
Bruce Momjian 已提交
1633
	}							/* end of if (setOperations) */
1634

1635
	/*
1636
	 * If there is a DISTINCT clause, add the necessary node(s).
1637
	 */
1638
	if (parse->distinctClause)
1639
	{
1640 1641
		double		dNumDistinctRows;
		long		numDistinctRows;
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656

		/*
		 * If there was grouping or aggregation, use the current number of
		 * rows as the estimated number of DISTINCT rows (ie, assume the
		 * result was already mostly unique).  If not, use the number of
		 * distinct-groups calculated by query_planner.
		 */
		if (parse->groupClause || root->hasHavingQual || parse->hasAggs)
			dNumDistinctRows = result_plan->plan_rows;
		else
			dNumDistinctRows = dNumGroups;

		/* Also convert to long int --- but 'ware overflow! */
		numDistinctRows = (long) Min(dNumDistinctRows, (double) LONG_MAX);

1657 1658
		/* Choose implementation method if we didn't already */
		if (!tested_hashed_distinct)
1659
		{
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
			/*
			 * At this point, either hashed or sorted grouping will have to
			 * work from result_plan, so we pass that as both "cheapest" and
			 * "sorted".
			 */
			use_hashed_distinct =
				choose_hashed_distinct(root,
									   tuple_fraction, limit_tuples,
									   result_plan->plan_rows,
									   result_plan->plan_width,
									   result_plan->startup_cost,
									   result_plan->total_cost,
									   result_plan->startup_cost,
									   result_plan->total_cost,
									   current_pathkeys,
									   dNumDistinctRows);
1676 1677 1678 1679 1680 1681 1682 1683 1684
		}

		if (use_hashed_distinct)
		{
			/* Hashed aggregate plan --- no sort needed */
			result_plan = (Plan *) make_agg(root,
											result_plan->targetlist,
											NIL,
											AGG_HASHED,
1685
											NULL,
1686 1687 1688 1689
										  list_length(parse->distinctClause),
								 extract_grouping_cols(parse->distinctClause,
													result_plan->targetlist),
								 extract_grouping_ops(parse->distinctClause),
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
											numDistinctRows,
											result_plan);
			/* Hashed aggregation produces randomly-ordered results */
			current_pathkeys = NIL;
		}
		else
		{
			/*
			 * Use a Unique node to implement DISTINCT.  Add an explicit sort
			 * if we couldn't make the path come out the way the Unique node
1700 1701 1702 1703
			 * needs it.  If we do have to sort, always sort by the more
			 * rigorous of DISTINCT and ORDER BY, to avoid a second sort
			 * below.  However, for regular DISTINCT, don't sort now if we
			 * don't have to --- sorting afterwards will likely be cheaper,
1704 1705 1706
			 * and also has the possibility of optimizing via LIMIT.  But for
			 * DISTINCT ON, we *must* force the final sort now, else it won't
			 * have the desired behavior.
1707
			 */
1708
			List	   *needed_pathkeys;
1709 1710 1711 1712 1713 1714 1715 1716 1717

			if (parse->hasDistinctOn &&
				list_length(root->distinct_pathkeys) <
				list_length(root->sort_pathkeys))
				needed_pathkeys = root->sort_pathkeys;
			else
				needed_pathkeys = root->distinct_pathkeys;

			if (!pathkeys_contained_in(needed_pathkeys, current_pathkeys))
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
			{
				if (list_length(root->distinct_pathkeys) >=
					list_length(root->sort_pathkeys))
					current_pathkeys = root->distinct_pathkeys;
				else
				{
					current_pathkeys = root->sort_pathkeys;
					/* Assert checks that parser didn't mess up... */
					Assert(pathkeys_contained_in(root->distinct_pathkeys,
												 current_pathkeys));
				}

				result_plan = (Plan *) make_sort_from_pathkeys(root,
															   result_plan,
1732
															current_pathkeys,
1733 1734 1735 1736 1737 1738 1739
															   -1.0);
			}

			result_plan = (Plan *) make_unique(result_plan,
											   parse->distinctClause);
			result_plan->plan_rows = dNumDistinctRows;
			/* The Unique node won't change sort ordering */
1740
		}
1741
	}
1742 1743

	/*
1744 1745
	 * If ORDER BY was given and we were not able to make the plan come out in
	 * the right order, add an explicit sort step.
1746
	 */
1747
	if (parse->sortClause)
1748
	{
1749 1750 1751 1752
		if (!pathkeys_contained_in(root->sort_pathkeys, current_pathkeys))
		{
			result_plan = (Plan *) make_sort_from_pathkeys(root,
														   result_plan,
1753
														 root->sort_pathkeys,
1754 1755 1756
														   limit_tuples);
			current_pathkeys = root->sort_pathkeys;
		}
1757
	}
1758

1759
	/*
B
Bruce Momjian 已提交
1760 1761 1762 1763
	 * If there is a FOR UPDATE/SHARE clause, add the LockRows node. (Note: we
	 * intentionally test parse->rowMarks not root->rowMarks here. If there
	 * are only non-locking rowmarks, they should be handled by the
	 * ModifyTable node instead.)
1764 1765 1766 1767
	 */
	if (parse->rowMarks)
	{
		result_plan = (Plan *) make_lockrows(result_plan,
1768 1769
											 root->rowMarks,
											 SS_assign_special_param(root));
B
Bruce Momjian 已提交
1770

1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
		/*
		 * The result can no longer be assumed sorted, since locking might
		 * cause the sort key columns to be replaced with new values.
		 */
		current_pathkeys = NIL;
	}

	/*
	 * Finally, if there is a LIMIT/OFFSET clause, add the LIMIT node.
	 */
	if (parse->limitCount || parse->limitOffset)
	{
		result_plan = (Plan *) make_limit(result_plan,
										  parse->limitOffset,
										  parse->limitCount,
										  offset_est,
										  count_est);
1788 1789
	}

1790
	/*
B
Bruce Momjian 已提交
1791 1792
	 * Return the actual output ordering in query_pathkeys for possible use by
	 * an outer query level.
1793
	 */
1794
	root->query_pathkeys = current_pathkeys;
1795

1796
	return result_plan;
1797 1798
}

1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
/*
 * add_tlist_costs_to_plan
 *
 * Estimate the execution costs associated with evaluating the targetlist
 * expressions, and add them to the cost estimates for the Plan node.
 *
 * If the tlist contains set-returning functions, also inflate the Plan's cost
 * and plan_rows estimates accordingly.  (Hence, this must be called *after*
 * any logic that uses plan_rows to, eg, estimate qual evaluation costs.)
 *
 * Note: during initial stages of planning, we mostly consider plan nodes with
 * "flat" tlists, containing just Vars.  So their evaluation cost is zero
 * according to the model used by cost_qual_eval() (or if you prefer, the cost
 * is factored into cpu_tuple_cost).  Thus we can avoid accounting for tlist
 * cost throughout query_planner() and subroutines.  But once we apply a
 * tlist that might contain actual operators, sub-selects, etc, we'd better
 * account for its cost.  Any set-returning functions in the tlist must also
 * affect the estimated rowcount.
 *
 * Once grouping_planner() has applied a general tlist to the topmost
 * scan/join plan node, any tlist eval cost for added-on nodes should be
1820
 * accounted for as we create those nodes.	Presently, of the node types we
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
 * can add on later, only Agg, WindowAgg, and Group project new tlists (the
 * rest just copy their input tuples) --- so make_agg(), make_windowagg() and
 * make_group() are responsible for calling this function to account for their
 * tlist costs.
 */
void
add_tlist_costs_to_plan(PlannerInfo *root, Plan *plan, List *tlist)
{
	QualCost	tlist_cost;
	double		tlist_rows;

	cost_qual_eval(&tlist_cost, tlist, root);
	plan->startup_cost += tlist_cost.startup;
	plan->total_cost += tlist_cost.startup +
		tlist_cost.per_tuple * plan->plan_rows;

	tlist_rows = tlist_returns_set_rows(tlist);
	if (tlist_rows > 1)
	{
		/*
		 * We assume that execution costs of the tlist proper were all
		 * accounted for by cost_qual_eval.  However, it still seems
		 * appropriate to charge something more for the executor's general
		 * costs of processing the added tuples.  The cost is probably less
		 * than cpu_tuple_cost, though, so we arbitrarily use half of that.
		 */
		plan->total_cost += plan->plan_rows * (tlist_rows - 1) *
			cpu_tuple_cost / 2;

		plan->plan_rows *= tlist_rows;
	}
}

1854 1855 1856 1857 1858
/*
 * Detect whether a plan node is a "dummy" plan created when a relation
 * is deemed not to need scanning due to constraint exclusion.
 *
 * Currently, such dummy plans are Result nodes with constant FALSE
1859 1860 1861
 * filter quals (see set_dummy_rel_pathlist and create_append_plan).
 *
 * XXX this probably ought to be somewhere else, but not clear where.
1862
 */
1863
bool
1864 1865 1866 1867
is_dummy_plan(Plan *plan)
{
	if (IsA(plan, Result))
	{
B
Bruce Momjian 已提交
1868
		List	   *rcqual = (List *) ((Result *) plan)->resconstantqual;
1869 1870 1871

		if (list_length(rcqual) == 1)
		{
B
Bruce Momjian 已提交
1872
			Const	   *constqual = (Const *) linitial(rcqual);
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884

			if (constqual && IsA(constqual, Const))
			{
				if (!constqual->constisnull &&
					!DatumGetBool(constqual->constvalue))
					return true;
			}
		}
	}
	return false;
}

1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
/*
 * Create a bitmapset of the RT indexes of live base relations
 *
 * Helper for preprocess_rowmarks ... at this point in the proceedings,
 * the only good way to distinguish baserels from appendrel children
 * is to see what is in the join tree.
 */
static Bitmapset *
get_base_rel_indexes(Node *jtnode)
{
	Bitmapset  *result;

	if (jtnode == NULL)
		return NULL;
	if (IsA(jtnode, RangeTblRef))
	{
		int			varno = ((RangeTblRef *) jtnode)->rtindex;

		result = bms_make_singleton(varno);
	}
	else if (IsA(jtnode, FromExpr))
	{
		FromExpr   *f = (FromExpr *) jtnode;
		ListCell   *l;

		result = NULL;
		foreach(l, f->fromlist)
			result = bms_join(result,
							  get_base_rel_indexes(lfirst(l)));
	}
	else if (IsA(jtnode, JoinExpr))
	{
		JoinExpr   *j = (JoinExpr *) jtnode;

		result = bms_join(get_base_rel_indexes(j->larg),
						  get_base_rel_indexes(j->rarg));
	}
	else
	{
		elog(ERROR, "unrecognized node type: %d",
			 (int) nodeTag(jtnode));
		result = NULL;			/* keep compiler quiet */
	}
	return result;
}

/*
 * preprocess_rowmarks - set up PlanRowMarks if needed
 */
static void
preprocess_rowmarks(PlannerInfo *root)
{
	Query	   *parse = root->parse;
	Bitmapset  *rels;
	List	   *prowmarks;
	ListCell   *l;
	int			i;

	if (parse->rowMarks)
	{
		/*
		 * We've got trouble if FOR UPDATE/SHARE appears inside grouping,
		 * since grouping renders a reference to individual tuple CTIDs
		 * invalid.  This is also checked at parse time, but that's
		 * insufficient because of rule substitution, query pullup, etc.
		 */
		CheckSelectLocking(parse);
	}
	else
	{
		/*
		 * We only need rowmarks for UPDATE, DELETE, or FOR UPDATE/SHARE.
		 */
		if (parse->commandType != CMD_UPDATE &&
			parse->commandType != CMD_DELETE)
			return;
	}

	/*
B
Bruce Momjian 已提交
1964 1965 1966
	 * We need to have rowmarks for all base relations except the target. We
	 * make a bitmapset of all base rels and then remove the items we don't
	 * need or have FOR UPDATE/SHARE marks for.
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
	 */
	rels = get_base_rel_indexes((Node *) parse->jointree);
	if (parse->resultRelation)
		rels = bms_del_member(rels, parse->resultRelation);

	/*
	 * Convert RowMarkClauses to PlanRowMark representation.
	 */
	prowmarks = NIL;
	foreach(l, parse->rowMarks)
	{
		RowMarkClause *rc = (RowMarkClause *) lfirst(l);
1979 1980
		RangeTblEntry *rte = rt_fetch(rc->rti, parse->rtable);
		PlanRowMark *newrc;
1981

1982 1983
		/*
		 * Currently, it is syntactically impossible to have FOR UPDATE
B
Bruce Momjian 已提交
1984
		 * applied to an update/delete target rel.	If that ever becomes
1985 1986
		 * possible, we should drop the target from the PlanRowMark list.
		 */
1987
		Assert(rc->rti != parse->resultRelation);
1988 1989

		/*
B
Bruce Momjian 已提交
1990 1991 1992 1993
		 * Ignore RowMarkClauses for subqueries; they aren't real tables and
		 * can't support true locking.  Subqueries that got flattened into the
		 * main query should be ignored completely.  Any that didn't will get
		 * ROW_MARK_COPY items in the next loop.
1994 1995 1996 1997
		 */
		if (rte->rtekind != RTE_RELATION)
			continue;

1998 1999
		rels = bms_del_member(rels, rc->rti);

2000
		newrc = makeNode(PlanRowMark);
2001
		newrc->rti = newrc->prti = rc->rti;
2002
		newrc->rowmarkId = ++(root->glob->lastRowMarkId);
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
		if (rc->forUpdate)
			newrc->markType = ROW_MARK_EXCLUSIVE;
		else
			newrc->markType = ROW_MARK_SHARE;
		newrc->noWait = rc->noWait;
		newrc->isParent = false;

		prowmarks = lappend(prowmarks, newrc);
	}

	/*
	 * Now, add rowmarks for any non-target, non-locked base relations.
	 */
	i = 0;
	foreach(l, parse->rtable)
	{
		RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
		PlanRowMark *newrc;

		i++;
		if (!bms_is_member(i, rels))
			continue;

		newrc = makeNode(PlanRowMark);
		newrc->rti = newrc->prti = i;
2028
		newrc->rowmarkId = ++(root->glob->lastRowMarkId);
2029
		/* real tables support REFERENCE, anything else needs COPY */
2030
		if (rte->rtekind == RTE_RELATION &&
2031
			rte->relkind != RELKIND_FOREIGN_TABLE)
2032 2033 2034
			newrc->markType = ROW_MARK_REFERENCE;
		else
			newrc->markType = ROW_MARK_COPY;
B
Bruce Momjian 已提交
2035
		newrc->noWait = false;	/* doesn't matter */
2036 2037 2038 2039 2040 2041 2042 2043
		newrc->isParent = false;

		prowmarks = lappend(prowmarks, newrc);
	}

	root->rowMarks = prowmarks;
}

2044
/*
2045
 * preprocess_limit - do pre-estimation for LIMIT and/or OFFSET clauses
2046
 *
2047
 * We try to estimate the values of the LIMIT/OFFSET clauses, and pass the
B
Bruce Momjian 已提交
2048
 * results back in *count_est and *offset_est.	These variables are set to
2049 2050 2051 2052 2053 2054 2055 2056
 * 0 if the corresponding clause is not present, and -1 if it's present
 * but we couldn't estimate the value for it.  (The "0" convention is OK
 * for OFFSET but a little bit bogus for LIMIT: effectively we estimate
 * LIMIT 0 as though it were LIMIT 1.  But this is in line with the planner's
 * usual practice of never estimating less than one row.)  These values will
 * be passed to make_limit, which see if you change this code.
 *
 * The return value is the suitably adjusted tuple_fraction to use for
B
Bruce Momjian 已提交
2057
 * planning the query.	This adjustment is not overridable, since it reflects
2058 2059
 * plan actions that grouping_planner() will certainly take, not assumptions
 * about context.
2060 2061
 */
static double
2062
preprocess_limit(PlannerInfo *root, double tuple_fraction,
B
Bruce Momjian 已提交
2063
				 int64 *offset_est, int64 *count_est)
2064 2065
{
	Query	   *parse = root->parse;
2066 2067
	Node	   *est;
	double		limit_fraction;
2068

2069 2070
	/* Should not be called unless LIMIT or OFFSET */
	Assert(parse->limitCount || parse->limitOffset);
2071 2072

	/*
2073 2074
	 * Try to obtain the clause values.  We use estimate_expression_value
	 * primarily because it can sometimes do something useful with Params.
2075
	 */
2076
	if (parse->limitCount)
2077
	{
2078
		est = estimate_expression_value(root, parse->limitCount);
2079
		if (est && IsA(est, Const))
2080
		{
2081
			if (((Const *) est)->constisnull)
2082
			{
2083
				/* NULL indicates LIMIT ALL, ie, no limit */
B
Bruce Momjian 已提交
2084
				*count_est = 0; /* treat as not present */
2085 2086 2087
			}
			else
			{
B
Bruce Momjian 已提交
2088
				*count_est = DatumGetInt64(((Const *) est)->constvalue);
2089 2090
				if (*count_est <= 0)
					*count_est = 1;		/* force to at least 1 */
2091 2092
			}
		}
2093 2094
		else
			*count_est = -1;	/* can't estimate */
2095 2096
	}
	else
2097 2098 2099
		*count_est = 0;			/* not present */

	if (parse->limitOffset)
2100
	{
2101
		est = estimate_expression_value(root, parse->limitOffset);
2102 2103 2104 2105 2106
		if (est && IsA(est, Const))
		{
			if (((Const *) est)->constisnull)
			{
				/* Treat NULL as no offset; the executor will too */
B
Bruce Momjian 已提交
2107
				*offset_est = 0;	/* treat as not present */
2108 2109 2110
			}
			else
			{
B
Bruce Momjian 已提交
2111
				*offset_est = DatumGetInt64(((Const *) est)->constvalue);
2112 2113 2114 2115 2116 2117
				if (*offset_est < 0)
					*offset_est = 0;	/* less than 0 is same as 0 */
			}
		}
		else
			*offset_est = -1;	/* can't estimate */
2118
	}
2119 2120
	else
		*offset_est = 0;		/* not present */
2121

2122
	if (*count_est != 0)
2123
	{
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
		/*
		 * A LIMIT clause limits the absolute number of tuples returned.
		 * However, if it's not a constant LIMIT then we have to guess; for
		 * lack of a better idea, assume 10% of the plan's result is wanted.
		 */
		if (*count_est < 0 || *offset_est < 0)
		{
			/* LIMIT or OFFSET is an expression ... punt ... */
			limit_fraction = 0.10;
		}
		else
		{
			/* LIMIT (plus OFFSET, if any) is max number of tuples needed */
			limit_fraction = (double) *count_est + (double) *offset_est;
		}

2140 2141
		/*
		 * If we have absolute limits from both caller and LIMIT, use the
2142 2143 2144 2145
		 * smaller value; likewise if they are both fractional.  If one is
		 * fractional and the other absolute, we can't easily determine which
		 * is smaller, but we use the heuristic that the absolute will usually
		 * be smaller.
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
		 */
		if (tuple_fraction >= 1.0)
		{
			if (limit_fraction >= 1.0)
			{
				/* both absolute */
				tuple_fraction = Min(tuple_fraction, limit_fraction);
			}
			else
			{
2156
				/* caller absolute, limit fractional; use caller's value */
2157 2158 2159 2160 2161 2162
			}
		}
		else if (tuple_fraction > 0.0)
		{
			if (limit_fraction >= 1.0)
			{
2163 2164
				/* caller fractional, limit absolute; use limit */
				tuple_fraction = limit_fraction;
2165 2166 2167 2168
			}
			else
			{
				/* both fractional */
2169
				tuple_fraction = Min(tuple_fraction, limit_fraction);
2170 2171 2172 2173 2174 2175 2176 2177
			}
		}
		else
		{
			/* no info from caller, just use limit */
			tuple_fraction = limit_fraction;
		}
	}
2178 2179 2180
	else if (*offset_est != 0 && tuple_fraction > 0.0)
	{
		/*
B
Bruce Momjian 已提交
2181 2182 2183 2184 2185
		 * We have an OFFSET but no LIMIT.	This acts entirely differently
		 * from the LIMIT case: here, we need to increase rather than decrease
		 * the caller's tuple_fraction, because the OFFSET acts to cause more
		 * tuples to be fetched instead of fewer.  This only matters if we got
		 * a tuple_fraction > 0, however.
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
		 *
		 * As above, use 10% if OFFSET is present but unestimatable.
		 */
		if (*offset_est < 0)
			limit_fraction = 0.10;
		else
			limit_fraction = (double) *offset_est;

		/*
		 * If we have absolute counts from both caller and OFFSET, add them
B
Bruce Momjian 已提交
2196 2197 2198
		 * together; likewise if they are both fractional.	If one is
		 * fractional and the other absolute, we want to take the larger, and
		 * we heuristically assume that's the fractional one.
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
		 */
		if (tuple_fraction >= 1.0)
		{
			if (limit_fraction >= 1.0)
			{
				/* both absolute, so add them together */
				tuple_fraction += limit_fraction;
			}
			else
			{
				/* caller absolute, limit fractional; use limit */
				tuple_fraction = limit_fraction;
			}
		}
		else
		{
			if (limit_fraction >= 1.0)
			{
				/* caller fractional, limit absolute; use caller's value */
			}
			else
			{
				/* both fractional, so add them together */
				tuple_fraction += limit_fraction;
				if (tuple_fraction >= 1.0)
B
Bruce Momjian 已提交
2224
					tuple_fraction = 0.0;		/* assume fetch all */
2225 2226 2227
			}
		}
	}
2228 2229 2230 2231

	return tuple_fraction;
}

2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244

/*
 * preprocess_groupclause - do preparatory work on GROUP BY clause
 *
 * The idea here is to adjust the ordering of the GROUP BY elements
 * (which in itself is semantically insignificant) to match ORDER BY,
 * thereby allowing a single sort operation to both implement the ORDER BY
 * requirement and set up for a Unique step that implements GROUP BY.
 *
 * In principle it might be interesting to consider other orderings of the
 * GROUP BY elements, which could match the sort ordering of other
 * possible plans (eg an indexscan) and thereby reduce cost.  We don't
 * bother with that, though.  Hashed grouping will frequently win anyway.
2245 2246 2247
 *
 * Note: we need no comparable processing of the distinctClause because
 * the parser already enforced that that matches ORDER BY.
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
 */
static void
preprocess_groupclause(PlannerInfo *root)
{
	Query	   *parse = root->parse;
	List	   *new_groupclause;
	bool		partial_match;
	ListCell   *sl;
	ListCell   *gl;

2258
	/* If no ORDER BY, nothing useful to do here */
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
	if (parse->sortClause == NIL)
		return;

	/*
	 * Scan the ORDER BY clause and construct a list of matching GROUP BY
	 * items, but only as far as we can make a matching prefix.
	 *
	 * This code assumes that the sortClause contains no duplicate items.
	 */
	new_groupclause = NIL;
	foreach(sl, parse->sortClause)
	{
		SortGroupClause *sc = (SortGroupClause *) lfirst(sl);

		foreach(gl, parse->groupClause)
		{
			SortGroupClause *gc = (SortGroupClause *) lfirst(gl);

			if (equal(gc, sc))
			{
				new_groupclause = lappend(new_groupclause, gc);
				break;
			}
		}
		if (gl == NULL)
			break;				/* no match, so stop scanning */
	}

	/* Did we match all of the ORDER BY list, or just some of it? */
	partial_match = (sl != NULL);

	/* If no match at all, no point in reordering GROUP BY */
	if (new_groupclause == NIL)
		return;

	/*
2295 2296 2297 2298 2299 2300
	 * Add any remaining GROUP BY items to the new list, but only if we were
	 * able to make a complete match.  In other words, we only rearrange the
	 * GROUP BY list if the result is that one list is a prefix of the other
	 * --- otherwise there's no possibility of a common sort.  Also, give up
	 * if there are any non-sortable GROUP BY items, since then there's no
	 * hope anyway.
2301 2302 2303 2304 2305 2306 2307 2308 2309
	 */
	foreach(gl, parse->groupClause)
	{
		SortGroupClause *gc = (SortGroupClause *) lfirst(gl);

		if (list_member_ptr(new_groupclause, gc))
			continue;			/* it matched an ORDER BY item */
		if (partial_match)
			return;				/* give up, no common sort possible */
2310 2311
		if (!OidIsValid(gc->sortop))
			return;				/* give up, GROUP BY can't be sorted */
2312 2313 2314 2315 2316 2317 2318 2319
		new_groupclause = lappend(new_groupclause, gc);
	}

	/* Success --- install the rearranged GROUP BY list */
	Assert(list_length(parse->groupClause) == list_length(new_groupclause));
	parse->groupClause = new_groupclause;
}

2320 2321
/*
 * choose_hashed_grouping - should we use hashed grouping?
2322
 *
2323
 * Returns TRUE to select hashing, FALSE to select sorting.
2324 2325
 */
static bool
2326 2327
choose_hashed_grouping(PlannerInfo *root,
					   double tuple_fraction, double limit_tuples,
2328
					   double path_rows, int path_width,
2329
					   Path *cheapest_path, Path *sorted_path,
2330
					   double dNumGroups, AggClauseCosts *agg_costs)
2331
{
2332 2333 2334 2335
	Query	   *parse = root->parse;
	int			numGroupCols = list_length(parse->groupClause);
	bool		can_hash;
	bool		can_sort;
2336
	Size		hashentrysize;
2337
	List	   *target_pathkeys;
2338 2339 2340 2341
	List	   *current_pathkeys;
	Path		hashed_p;
	Path		sorted_p;

2342 2343
	/*
	 * Executor doesn't support hashed aggregation with DISTINCT or ORDER BY
B
Bruce Momjian 已提交
2344
	 * aggregates.	(Doing so would imply storing *all* the input values in
2345 2346 2347
	 * the hash table, and/or running many sorts in parallel, either of which
	 * seems like a certain loser.)
	 */
2348
	can_hash = (agg_costs->numOrderedAggs == 0 &&
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
				grouping_is_hashable(parse->groupClause));
	can_sort = grouping_is_sortable(parse->groupClause);

	/* Quick out if only one choice is workable */
	if (!(can_hash && can_sort))
	{
		if (can_hash)
			return true;
		else if (can_sort)
			return false;
		else
			ereport(ERROR,
					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
					 errmsg("could not implement GROUP BY"),
					 errdetail("Some of the datatypes only support hashing, while others only support sorting.")));
	}

2366
	/* Prefer sorting when enable_hashagg is off */
2367 2368 2369 2370 2371 2372 2373 2374 2375
	if (!enable_hashagg)
		return false;

	/*
	 * Don't do it if it doesn't look like the hashtable will fit into
	 * work_mem.
	 */

	/* Estimate per-hash-entry space at tuple width... */
2376
	hashentrysize = MAXALIGN(path_width) + MAXALIGN(sizeof(MinimalTupleData));
2377
	/* plus space for pass-by-ref transition values... */
2378
	hashentrysize += agg_costs->transitionSpace;
2379
	/* plus the per-hash-entry overhead */
2380
	hashentrysize += hash_agg_entry_size(agg_costs->numAggs);
2381 2382 2383 2384

	if (hashentrysize * dNumGroups > work_mem * 1024L)
		return false;

2385 2386
	/*
	 * When we have both GROUP BY and DISTINCT, use the more-rigorous of
2387 2388 2389 2390
	 * DISTINCT and ORDER BY as the assumed required output sort order. This
	 * is an oversimplification because the DISTINCT might get implemented via
	 * hashing, but it's not clear that the case is common enough (or that our
	 * estimates are good enough) to justify trying to solve it exactly.
2391 2392 2393 2394 2395 2396 2397
	 */
	if (list_length(root->distinct_pathkeys) >
		list_length(root->sort_pathkeys))
		target_pathkeys = root->distinct_pathkeys;
	else
		target_pathkeys = root->sort_pathkeys;

2398
	/*
B
Bruce Momjian 已提交
2399 2400 2401 2402
	 * See if the estimated cost is no more than doing it the other way. While
	 * avoiding the need for sorted input is usually a win, the fact that the
	 * output won't be sorted may be a loss; so we need to do an actual cost
	 * comparison.
2403
	 *
2404 2405 2406 2407 2408 2409
	 * We need to consider cheapest_path + hashagg [+ final sort] versus
	 * either cheapest_path [+ sort] + group or agg [+ final sort] or
	 * presorted_path + group or agg [+ final sort] where brackets indicate a
	 * step that may not be needed. We assume query_planner() will have
	 * returned a presorted path only if it's a winner compared to
	 * cheapest_path for this purpose.
2410
	 *
2411 2412
	 * These path variables are dummies that just hold cost fields; we don't
	 * make actual Paths for these steps.
2413
	 */
2414
	cost_agg(&hashed_p, root, AGG_HASHED, agg_costs,
2415 2416
			 numGroupCols, dNumGroups,
			 cheapest_path->startup_cost, cheapest_path->total_cost,
2417
			 path_rows);
2418
	/* Result of hashed agg is always unsorted */
2419 2420
	if (target_pathkeys)
		cost_sort(&hashed_p, root, target_pathkeys, hashed_p.total_cost,
2421 2422
				  dNumGroups, path_width,
				  0.0, work_mem, limit_tuples);
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435

	if (sorted_path)
	{
		sorted_p.startup_cost = sorted_path->startup_cost;
		sorted_p.total_cost = sorted_path->total_cost;
		current_pathkeys = sorted_path->pathkeys;
	}
	else
	{
		sorted_p.startup_cost = cheapest_path->startup_cost;
		sorted_p.total_cost = cheapest_path->total_cost;
		current_pathkeys = cheapest_path->pathkeys;
	}
2436
	if (!pathkeys_contained_in(root->group_pathkeys, current_pathkeys))
2437
	{
2438
		cost_sort(&sorted_p, root, root->group_pathkeys, sorted_p.total_cost,
2439 2440
				  path_rows, path_width,
				  0.0, work_mem, -1.0);
2441
		current_pathkeys = root->group_pathkeys;
2442 2443
	}

2444
	if (parse->hasAggs)
2445
		cost_agg(&sorted_p, root, AGG_SORTED, agg_costs,
2446 2447
				 numGroupCols, dNumGroups,
				 sorted_p.startup_cost, sorted_p.total_cost,
2448
				 path_rows);
2449
	else
2450
		cost_group(&sorted_p, root, numGroupCols, dNumGroups,
2451
				   sorted_p.startup_cost, sorted_p.total_cost,
2452
				   path_rows);
2453
	/* The Agg or Group node will preserve ordering */
2454 2455 2456
	if (target_pathkeys &&
		!pathkeys_contained_in(target_pathkeys, current_pathkeys))
		cost_sort(&sorted_p, root, target_pathkeys, sorted_p.total_cost,
2457 2458
				  dNumGroups, path_width,
				  0.0, work_mem, limit_tuples);
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475

	/*
	 * Now make the decision using the top-level tuple fraction.  First we
	 * have to convert an absolute count (LIMIT) into fractional form.
	 */
	if (tuple_fraction >= 1.0)
		tuple_fraction /= dNumGroups;

	if (compare_fractional_path_costs(&hashed_p, &sorted_p,
									  tuple_fraction) < 0)
	{
		/* Hashed is cheaper, so use it */
		return true;
	}
	return false;
}

2476 2477 2478 2479 2480
/*
 * choose_hashed_distinct - should we use hashing for DISTINCT?
 *
 * This is fairly similar to choose_hashed_grouping, but there are enough
 * differences that it doesn't seem worth trying to unify the two functions.
2481 2482 2483
 * (One difference is that we sometimes apply this after forming a Plan,
 * so the input alternatives can't be represented as Paths --- instead we
 * pass in the costs as individual variables.)
2484 2485
 *
 * But note that making the two choices independently is a bit bogus in
2486
 * itself.	If the two could be combined into a single choice operation
2487 2488 2489 2490 2491 2492
 * it'd probably be better, but that seems far too unwieldy to be practical,
 * especially considering that the combination of GROUP BY and DISTINCT
 * isn't very common in real queries.  By separating them, we are giving
 * extra preference to using a sorting implementation when a common sort key
 * is available ... and that's not necessarily wrong anyway.
 *
2493
 * Returns TRUE to select hashing, FALSE to select sorting.
2494 2495 2496 2497
 */
static bool
choose_hashed_distinct(PlannerInfo *root,
					   double tuple_fraction, double limit_tuples,
2498 2499 2500 2501
					   double path_rows, int path_width,
					   Cost cheapest_startup_cost, Cost cheapest_total_cost,
					   Cost sorted_startup_cost, Cost sorted_total_cost,
					   List *sorted_pathkeys,
2502 2503
					   double dNumDistinctRows)
{
2504 2505 2506 2507
	Query	   *parse = root->parse;
	int			numDistinctCols = list_length(parse->distinctClause);
	bool		can_sort;
	bool		can_hash;
2508 2509
	Size		hashentrysize;
	List	   *current_pathkeys;
2510
	List	   *needed_pathkeys;
2511 2512 2513
	Path		hashed_p;
	Path		sorted_p;

2514
	/*
B
Bruce Momjian 已提交
2515 2516
	 * If we have a sortable DISTINCT ON clause, we always use sorting. This
	 * enforces the expected behavior of DISTINCT ON.
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
	 */
	can_sort = grouping_is_sortable(parse->distinctClause);
	if (can_sort && parse->hasDistinctOn)
		return false;

	can_hash = grouping_is_hashable(parse->distinctClause);

	/* Quick out if only one choice is workable */
	if (!(can_hash && can_sort))
	{
		if (can_hash)
			return true;
		else if (can_sort)
			return false;
		else
			ereport(ERROR,
					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
					 errmsg("could not implement DISTINCT"),
					 errdetail("Some of the datatypes only support hashing, while others only support sorting.")));
	}

2538 2539 2540 2541 2542 2543 2544 2545
	/* Prefer sorting when enable_hashagg is off */
	if (!enable_hashagg)
		return false;

	/*
	 * Don't do it if it doesn't look like the hashtable will fit into
	 * work_mem.
	 */
2546
	hashentrysize = MAXALIGN(path_width) + MAXALIGN(sizeof(MinimalTupleData));
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556

	if (hashentrysize * dNumDistinctRows > work_mem * 1024L)
		return false;

	/*
	 * See if the estimated cost is no more than doing it the other way. While
	 * avoiding the need for sorted input is usually a win, the fact that the
	 * output won't be sorted may be a loss; so we need to do an actual cost
	 * comparison.
	 *
2557 2558
	 * We need to consider cheapest_path + hashagg [+ final sort] versus
	 * sorted_path [+ sort] + group [+ final sort] where brackets indicate a
2559
	 * step that may not be needed.
2560 2561 2562 2563
	 *
	 * These path variables are dummies that just hold cost fields; we don't
	 * make actual Paths for these steps.
	 */
2564
	cost_agg(&hashed_p, root, AGG_HASHED, NULL,
2565
			 numDistinctCols, dNumDistinctRows,
2566 2567
			 cheapest_startup_cost, cheapest_total_cost,
			 path_rows);
2568

2569
	/*
2570 2571
	 * Result of hashed agg is always unsorted, so if ORDER BY is present we
	 * need to charge for the final sort.
2572
	 */
2573
	if (parse->sortClause)
2574
		cost_sort(&hashed_p, root, root->sort_pathkeys, hashed_p.total_cost,
2575 2576
				  dNumDistinctRows, path_width,
				  0.0, work_mem, limit_tuples);
2577

2578
	/*
2579
	 * Now for the GROUP case.	See comments in grouping_planner about the
2580 2581
	 * sorting choices here --- this code should match that code.
	 */
2582 2583 2584 2585
	sorted_p.startup_cost = sorted_startup_cost;
	sorted_p.total_cost = sorted_total_cost;
	current_pathkeys = sorted_pathkeys;
	if (parse->hasDistinctOn &&
2586 2587 2588 2589 2590 2591
		list_length(root->distinct_pathkeys) <
		list_length(root->sort_pathkeys))
		needed_pathkeys = root->sort_pathkeys;
	else
		needed_pathkeys = root->distinct_pathkeys;
	if (!pathkeys_contained_in(needed_pathkeys, current_pathkeys))
2592 2593 2594 2595 2596 2597 2598
	{
		if (list_length(root->distinct_pathkeys) >=
			list_length(root->sort_pathkeys))
			current_pathkeys = root->distinct_pathkeys;
		else
			current_pathkeys = root->sort_pathkeys;
		cost_sort(&sorted_p, root, current_pathkeys, sorted_p.total_cost,
2599 2600
				  path_rows, path_width,
				  0.0, work_mem, -1.0);
2601 2602 2603
	}
	cost_group(&sorted_p, root, numDistinctCols, dNumDistinctRows,
			   sorted_p.startup_cost, sorted_p.total_cost,
2604 2605
			   path_rows);
	if (parse->sortClause &&
2606 2607
		!pathkeys_contained_in(root->sort_pathkeys, current_pathkeys))
		cost_sort(&sorted_p, root, root->sort_pathkeys, sorted_p.total_cost,
2608 2609
				  dNumDistinctRows, path_width,
				  0.0, work_mem, limit_tuples);
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626

	/*
	 * Now make the decision using the top-level tuple fraction.  First we
	 * have to convert an absolute count (LIMIT) into fractional form.
	 */
	if (tuple_fraction >= 1.0)
		tuple_fraction /= dNumDistinctRows;

	if (compare_fractional_path_costs(&hashed_p, &sorted_p,
									  tuple_fraction) < 0)
	{
		/* Hashed is cheaper, so use it */
		return true;
	}
	return false;
}

2627
/*
2628
 * make_subplanTargetList
2629
 *	  Generate appropriate target list when grouping is required.
2630
 *
2631 2632 2633 2634 2635
 * When grouping_planner inserts grouping or aggregation plan nodes
 * above the scan/join plan constructed by query_planner+create_plan,
 * we typically want the scan/join plan to emit a different target list
 * than the outer plan nodes should have.  This routine generates the
 * correct target list for the scan/join subplan.
2636 2637 2638 2639
 *
 * The initial target list passed from the parser already contains entries
 * for all ORDER BY and GROUP BY expressions, but it will not have entries
 * for variables used only in HAVING clauses; so we need to add those
2640 2641 2642 2643
 * variables to the subplan target list.  Also, we flatten all expressions
 * except GROUP BY items into their component variables; the other expressions
 * will be computed by the inserted nodes rather than by the subplan.
 * For example, given a query like
2644 2645
 *		SELECT a+b,SUM(c+d) FROM table GROUP BY a+b;
 * we want to pass this targetlist to the subplan:
2646
 *		a+b,c,d
2647
 * where the a+b target will be used by the Sort/Group steps, and the
2648
 * other targets will be used for computing the final results.
2649
 *
2650 2651 2652
 * If we are grouping or aggregating, *and* there are no non-Var grouping
 * expressions, then the returned tlist is effectively dummy; we do not
 * need to force it to be evaluated, because all the Vars it contains
2653 2654 2655 2656
 * should be present in the "flat" tlist generated by create_plan, though
 * possibly in a different order.  In that case we'll use create_plan's tlist,
 * and the tlist made here is only needed as input to query_planner to tell
 * it which Vars are needed in the output of the scan/join plan.
2657
 *
2658
 * 'tlist' is the query's target list.
2659
 * 'groupColIdx' receives an array of column numbers for the GROUP BY
2660
 *			expressions (if there are any) in the returned target list.
2661
 * 'need_tlist_eval' is set true if we really need to evaluate the
2662
 *			returned tlist as-is.
2663
 *
2664
 * The result is the targetlist to be passed to query_planner.
2665 2666
 */
static List *
2667
make_subplanTargetList(PlannerInfo *root,
2668
					   List *tlist,
2669 2670
					   AttrNumber **groupColIdx,
					   bool *need_tlist_eval)
2671
{
2672
	Query	   *parse = root->parse;
2673
	List	   *sub_tlist;
2674 2675
	List	   *non_group_cols;
	List	   *non_group_vars;
2676 2677 2678 2679
	int			numCols;

	*groupColIdx = NULL;

B
Bruce Momjian 已提交
2680
	/*
2681
	 * If we're not grouping or aggregating, there's nothing to do here;
2682 2683
	 * query_planner should receive the unmodified target list.
	 */
T
Tom Lane 已提交
2684 2685
	if (!parse->hasAggs && !parse->groupClause && !root->hasHavingQual &&
		!parse->hasWindowFuncs)
2686 2687
	{
		*need_tlist_eval = true;
2688
		return tlist;
2689
	}
2690

B
Bruce Momjian 已提交
2691
	/*
2692 2693
	 * Otherwise, we must build a tlist containing all grouping columns, plus
	 * any other Vars mentioned in the targetlist and HAVING qual.
2694
	 */
2695 2696
	sub_tlist = NIL;
	non_group_cols = NIL;
2697
	*need_tlist_eval = false;	/* only eval if not flat tlist */
2698

2699
	numCols = list_length(parse->groupClause);
2700
	if (numCols > 0)
2701
	{
2702 2703 2704 2705 2706 2707 2708
		/*
		 * If grouping, create sub_tlist entries for all GROUP BY columns, and
		 * make an array showing where the group columns are in the sub_tlist.
		 *
		 * Note: with this implementation, the array entries will always be
		 * 1..N, but we don't want callers to assume that.
		 */
2709
		AttrNumber *grpColIdx;
2710
		ListCell   *tl;
2711

2712
		grpColIdx = (AttrNumber *) palloc0(sizeof(AttrNumber) * numCols);
2713
		*groupColIdx = grpColIdx;
2714

2715
		foreach(tl, tlist)
2716
		{
2717 2718
			TargetEntry *tle = (TargetEntry *) lfirst(tl);
			int			colno;
2719

2720 2721 2722 2723 2724 2725 2726 2727
			colno = get_grouping_column_index(parse, tle);
			if (colno >= 0)
			{
				/*
				 * It's a grouping column, so add it to the result tlist and
				 * remember its resno in grpColIdx[].
				 */
				TargetEntry *newtle;
2728

2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
				newtle = makeTargetEntry(tle->expr,
										 list_length(sub_tlist) + 1,
										 NULL,
										 false);
				sub_tlist = lappend(sub_tlist, newtle);

				Assert(grpColIdx[colno] == 0);	/* no dups expected */
				grpColIdx[colno] = newtle->resno;

				if (!(newtle->expr && IsA(newtle->expr, Var)))
					*need_tlist_eval = true;	/* tlist contains non Vars */
			}
			else
2742
			{
2743
				/*
2744 2745
				 * Non-grouping column, so just remember the expression for
				 * later call to pull_var_clause.  There's no need for
2746 2747 2748
				 * pull_var_clause to examine the TargetEntry node itself.
				 */
				non_group_cols = lappend(non_group_cols, tle->expr);
2749 2750 2751
			}
		}
	}
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
	else
	{
		/*
		 * With no grouping columns, just pass whole tlist to pull_var_clause.
		 * Need (shallow) copy to avoid damaging input tlist below.
		 */
		non_group_cols = list_copy(tlist);
	}

	/*
	 * If there's a HAVING clause, we'll need the Vars it uses, too.
	 */
	if (parse->havingQual)
		non_group_cols = lappend(non_group_cols, parse->havingQual);

	/*
	 * Pull out all the Vars mentioned in non-group cols (plus HAVING), and
	 * add them to the result tlist if not already present.  (A Var used
	 * directly as a GROUP BY item will be present already.)  Note this
	 * includes Vars used in resjunk items, so we are covering the needs of
2772
	 * ORDER BY and window specifications.	Vars used within Aggrefs will be
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
	 * pulled out here, too.
	 */
	non_group_vars = pull_var_clause((Node *) non_group_cols,
									 PVC_RECURSE_AGGREGATES,
									 PVC_INCLUDE_PLACEHOLDERS);
	sub_tlist = add_to_flat_tlist(sub_tlist, non_group_vars);

	/* clean up cruft */
	list_free(non_group_vars);
	list_free(non_group_cols);
2783 2784 2785 2786

	return sub_tlist;
}

2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
/*
 * get_grouping_column_index
 *		Get the GROUP BY column position, if any, of a targetlist entry.
 *
 * Returns the index (counting from 0) of the TLE in the GROUP BY list, or -1
 * if it's not a grouping column.  Note: the result is unique because the
 * parser won't make multiple groupClause entries for the same TLE.
 */
static int
get_grouping_column_index(Query *parse, TargetEntry *tle)
{
	int			colno = 0;
	Index		ressortgroupref = tle->ressortgroupref;
	ListCell   *gl;

	/* No need to search groupClause if TLE hasn't got a sortgroupref */
	if (ressortgroupref == 0)
		return -1;

	foreach(gl, parse->groupClause)
	{
		SortGroupClause *grpcl = (SortGroupClause *) lfirst(gl);

		if (grpcl->tleSortGroupRef == ressortgroupref)
			return colno;
		colno++;
	}

	return -1;
}

2818 2819
/*
 * locate_grouping_columns
2820
 *		Locate grouping columns in the tlist chosen by create_plan.
2821 2822
 *
 * This is only needed if we don't use the sub_tlist chosen by
B
Bruce Momjian 已提交
2823
 * make_subplanTargetList.	We have to forget the column indexes found
T
Tom Lane 已提交
2824
 * by that routine and re-locate the grouping exprs in the real sub_tlist.
2825 2826
 */
static void
2827
locate_grouping_columns(PlannerInfo *root,
2828 2829 2830 2831 2832
						List *tlist,
						List *sub_tlist,
						AttrNumber *groupColIdx)
{
	int			keyno = 0;
2833
	ListCell   *gl;
2834 2835 2836 2837

	/*
	 * No work unless grouping.
	 */
2838
	if (!root->parse->groupClause)
2839 2840 2841 2842 2843 2844
	{
		Assert(groupColIdx == NULL);
		return;
	}
	Assert(groupColIdx != NULL);

2845
	foreach(gl, root->parse->groupClause)
2846
	{
2847
		SortGroupClause *grpcl = (SortGroupClause *) lfirst(gl);
B
Bruce Momjian 已提交
2848
		Node	   *groupexpr = get_sortgroupclause_expr(grpcl, tlist);
T
Tom Lane 已提交
2849
		TargetEntry *te = tlist_member(groupexpr, sub_tlist);
2850

T
Tom Lane 已提交
2851
		if (!te)
2852
			elog(ERROR, "failed to locate grouping columns");
2853
		groupColIdx[keyno++] = te->resno;
2854 2855 2856
	}
}

2857 2858 2859 2860 2861 2862 2863
/*
 * postprocess_setop_tlist
 *	  Fix up targetlist returned by plan_set_operations().
 *
 * We need to transpose sort key info from the orig_tlist into new_tlist.
 * NOTE: this would not be good enough if we supported resjunk sort keys
 * for results of set operations --- then, we'd need to project a whole
2864
 * new tlist to evaluate the resjunk columns.  For now, just ereport if we
2865 2866 2867 2868 2869
 * find any resjunk columns in orig_tlist.
 */
static List *
postprocess_setop_tlist(List *new_tlist, List *orig_tlist)
{
2870 2871
	ListCell   *l;
	ListCell   *orig_tlist_item = list_head(orig_tlist);
2872 2873 2874 2875 2876 2877 2878

	foreach(l, new_tlist)
	{
		TargetEntry *new_tle = (TargetEntry *) lfirst(l);
		TargetEntry *orig_tle;

		/* ignore resjunk columns in setop result */
2879
		if (new_tle->resjunk)
2880 2881
			continue;

2882 2883 2884
		Assert(orig_tlist_item != NULL);
		orig_tle = (TargetEntry *) lfirst(orig_tlist_item);
		orig_tlist_item = lnext(orig_tlist_item);
B
Bruce Momjian 已提交
2885
		if (orig_tle->resjunk)	/* should not happen */
2886
			elog(ERROR, "resjunk output columns are not implemented");
2887 2888
		Assert(new_tle->resno == orig_tle->resno);
		new_tle->ressortgroupref = orig_tle->ressortgroupref;
2889
	}
2890
	if (orig_tlist_item != NULL)
2891
		elog(ERROR, "resjunk output columns are not implemented");
2892 2893
	return new_tlist;
}
T
Tom Lane 已提交
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925

/*
 * select_active_windows
 *		Create a list of the "active" window clauses (ie, those referenced
 *		by non-deleted WindowFuncs) in the order they are to be executed.
 */
static List *
select_active_windows(PlannerInfo *root, WindowFuncLists *wflists)
{
	List	   *result;
	List	   *actives;
	ListCell   *lc;

	/* First, make a list of the active windows */
	actives = NIL;
	foreach(lc, root->parse->windowClause)
	{
		WindowClause *wc = (WindowClause *) lfirst(lc);

		/* It's only active if wflists shows some related WindowFuncs */
		Assert(wc->winref <= wflists->maxWinRef);
		if (wflists->windowFuncs[wc->winref] != NIL)
			actives = lappend(actives, wc);
	}

	/*
	 * Now, ensure that windows with identical partitioning/ordering clauses
	 * are adjacent in the list.  This is required by the SQL standard, which
	 * says that only one sort is to be used for such windows, even if they
	 * are otherwise distinct (eg, different names or framing clauses).
	 *
	 * There is room to be much smarter here, for example detecting whether
2926 2927 2928 2929
	 * one window's sort keys are a prefix of another's (so that sorting for
	 * the latter would do for the former), or putting windows first that
	 * match a sort order available for the underlying query.  For the moment
	 * we are content with meeting the spec.
T
Tom Lane 已提交
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
	 */
	result = NIL;
	while (actives != NIL)
	{
		WindowClause *wc = (WindowClause *) linitial(actives);
		ListCell   *prev;
		ListCell   *next;

		/* Move wc from actives to result */
		actives = list_delete_first(actives);
		result = lappend(result, wc);

		/* Now move any matching windows from actives to result */
		prev = NULL;
		for (lc = list_head(actives); lc; lc = next)
		{
			WindowClause *wc2 = (WindowClause *) lfirst(lc);

			next = lnext(lc);
2949
			/* framing options are NOT to be compared here! */
T
Tom Lane 已提交
2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
			if (equal(wc->partitionClause, wc2->partitionClause) &&
				equal(wc->orderClause, wc2->orderClause))
			{
				actives = list_delete_cell(actives, lc, prev);
				result = lappend(result, wc2);
			}
			else
				prev = lc;
		}
	}

	return result;
}

2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
/*
 * add_volatile_sort_exprs
 *		Identify any volatile sort/group expressions used by the active
 *		windows, and add them to window_tlist if not already present.
 *		Return the modified window_tlist.
 */
static List *
add_volatile_sort_exprs(List *window_tlist, List *tlist, List *activeWindows)
{
	Bitmapset  *sgrefs = NULL;
	ListCell   *lc;

	/* First, collect the sortgrouprefs of the windows into a bitmapset */
	foreach(lc, activeWindows)
	{
		WindowClause *wc = (WindowClause *) lfirst(lc);
		ListCell   *lc2;

		foreach(lc2, wc->partitionClause)
		{
			SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc2);

			sgrefs = bms_add_member(sgrefs, sortcl->tleSortGroupRef);
		}
		foreach(lc2, wc->orderClause)
		{
			SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc2);

			sgrefs = bms_add_member(sgrefs, sortcl->tleSortGroupRef);
		}
	}

	/*
2997 2998
	 * Now scan the original tlist to find the referenced expressions. Any
	 * that are volatile must be added to window_tlist.
2999
	 *
3000 3001 3002
	 * Note: we know that the input window_tlist contains no items marked with
	 * ressortgrouprefs, so we don't have to worry about collisions of the
	 * reference numbers.
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
	 */
	foreach(lc, tlist)
	{
		TargetEntry *tle = (TargetEntry *) lfirst(lc);

		if (tle->ressortgroupref != 0 &&
			bms_is_member(tle->ressortgroupref, sgrefs) &&
			contain_volatile_functions((Node *) tle->expr))
		{
			TargetEntry *newtle;

			newtle = makeTargetEntry(tle->expr,
									 list_length(window_tlist) + 1,
									 NULL,
									 false);
			newtle->ressortgroupref = tle->ressortgroupref;
			window_tlist = lappend(window_tlist, newtle);
		}
	}

	return window_tlist;
}

T
Tom Lane 已提交
3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
/*
 * make_pathkeys_for_window
 *		Create a pathkeys list describing the required input ordering
 *		for the given WindowClause.
 *
 * The required ordering is first the PARTITION keys, then the ORDER keys.
 * In the future we might try to implement windowing using hashing, in which
 * case the ordering could be relaxed, but for now we always sort.
 */
static List *
make_pathkeys_for_window(PlannerInfo *root, WindowClause *wc,
						 List *tlist, bool canonicalize)
{
	List	   *window_pathkeys;
	List	   *window_sortclauses;

	/* Throw error if can't sort */
	if (!grouping_is_sortable(wc->partitionClause))
		ereport(ERROR,
				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
				 errmsg("could not implement window PARTITION BY"),
				 errdetail("Window partitioning columns must be of sortable datatypes.")));
	if (!grouping_is_sortable(wc->orderClause))
		ereport(ERROR,
				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
				 errmsg("could not implement window ORDER BY"),
3052
		errdetail("Window ordering columns must be of sortable datatypes.")));
T
Tom Lane 已提交
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072

	/* Okay, make the combined pathkeys */
	window_sortclauses = list_concat(list_copy(wc->partitionClause),
									 list_copy(wc->orderClause));
	window_pathkeys = make_pathkeys_for_sortclauses(root,
													window_sortclauses,
													tlist,
													canonicalize);
	list_free(window_sortclauses);
	return window_pathkeys;
}

/*----------
 * get_column_info_for_window
 *		Get the partitioning/ordering column numbers and equality operators
 *		for a WindowAgg node.
 *
 * This depends on the behavior of make_pathkeys_for_window()!
 *
 * We are given the target WindowClause and an array of the input column
3073
 * numbers associated with the resulting pathkeys.	In the easy case, there
T
Tom Lane 已提交
3074 3075 3076 3077 3078 3079 3080
 * are the same number of pathkey columns as partitioning + ordering columns
 * and we just have to copy some data around.  However, it's possible that
 * some of the original partitioning + ordering columns were eliminated as
 * redundant during the transformation to pathkeys.  (This can happen even
 * though the parser gets rid of obvious duplicates.  A typical scenario is a
 * window specification "PARTITION BY x ORDER BY y" coupled with a clause
 * "WHERE x = y" that causes the two sort columns to be recognized as
3081
 * redundant.)	In that unusual case, we have to work a lot harder to
T
Tom Lane 已提交
3082 3083 3084
 * determine which keys are significant.
 *
 * The method used here is a bit brute-force: add the sort columns to a list
3085
 * one at a time and note when the resulting pathkey list gets longer.	But
T
Tom Lane 已提交
3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
 * it's a sufficiently uncommon case that a faster way doesn't seem worth
 * the amount of code refactoring that'd be needed.
 *----------
 */
static void
get_column_info_for_window(PlannerInfo *root, WindowClause *wc, List *tlist,
						   int numSortCols, AttrNumber *sortColIdx,
						   int *partNumCols,
						   AttrNumber **partColIdx,
						   Oid **partOperators,
						   int *ordNumCols,
						   AttrNumber **ordColIdx,
						   Oid **ordOperators)
{
	int			numPart = list_length(wc->partitionClause);
	int			numOrder = list_length(wc->orderClause);

	if (numSortCols == numPart + numOrder)
	{
		/* easy case */
		*partNumCols = numPart;
		*partColIdx = sortColIdx;
		*partOperators = extract_grouping_ops(wc->partitionClause);
		*ordNumCols = numOrder;
		*ordColIdx = sortColIdx + numPart;
		*ordOperators = extract_grouping_ops(wc->orderClause);
	}
	else
	{
		List	   *sortclauses;
		List	   *pathkeys;
		int			scidx;
		ListCell   *lc;

		/* first, allocate what's certainly enough space for the arrays */
		*partNumCols = 0;
		*partColIdx = (AttrNumber *) palloc(numPart * sizeof(AttrNumber));
		*partOperators = (Oid *) palloc(numPart * sizeof(Oid));
		*ordNumCols = 0;
		*ordColIdx = (AttrNumber *) palloc(numOrder * sizeof(AttrNumber));
		*ordOperators = (Oid *) palloc(numOrder * sizeof(Oid));
		sortclauses = NIL;
		pathkeys = NIL;
		scidx = 0;
		foreach(lc, wc->partitionClause)
		{
			SortGroupClause *sgc = (SortGroupClause *) lfirst(lc);
			List	   *new_pathkeys;

			sortclauses = lappend(sortclauses, sgc);
			new_pathkeys = make_pathkeys_for_sortclauses(root,
														 sortclauses,
														 tlist,
														 true);
			if (list_length(new_pathkeys) > list_length(pathkeys))
			{
				/* this sort clause is actually significant */
3143 3144
				(*partColIdx)[*partNumCols] = sortColIdx[scidx++];
				(*partOperators)[*partNumCols] = sgc->eqop;
T
Tom Lane 已提交
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
				(*partNumCols)++;
				pathkeys = new_pathkeys;
			}
		}
		foreach(lc, wc->orderClause)
		{
			SortGroupClause *sgc = (SortGroupClause *) lfirst(lc);
			List	   *new_pathkeys;

			sortclauses = lappend(sortclauses, sgc);
			new_pathkeys = make_pathkeys_for_sortclauses(root,
														 sortclauses,
														 tlist,
														 true);
			if (list_length(new_pathkeys) > list_length(pathkeys))
			{
				/* this sort clause is actually significant */
3162 3163
				(*ordColIdx)[*ordNumCols] = sortColIdx[scidx++];
				(*ordOperators)[*ordNumCols] = sgc->eqop;
T
Tom Lane 已提交
3164 3165 3166 3167 3168 3169 3170 3171 3172
				(*ordNumCols)++;
				pathkeys = new_pathkeys;
			}
		}
		/* complain if we didn't eat exactly the right number of sort cols */
		if (scidx != numSortCols)
			elog(ERROR, "failed to deconstruct sort operators into partitioning/ordering operators");
	}
}
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186


/*
 * expression_planner
 *		Perform planner's transformations on a standalone expression.
 *
 * Various utility commands need to evaluate expressions that are not part
 * of a plannable query.  They can do so using the executor's regular
 * expression-execution machinery, but first the expression has to be fed
 * through here to transform it from parser output to something executable.
 *
 * Currently, we disallow sublinks in standalone expressions, so there's no
 * real "planning" involved here.  (That might not always be true though.)
 * What we must do is run eval_const_expressions to ensure that any function
3187 3188 3189 3190
 * calls are converted to positional notation and function default arguments
 * get inserted.  The fact that constant subexpressions get simplified is a
 * side-effect that is useful when the expression will get evaluated more than
 * once.  Also, we must fix operator function IDs.
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
 *
 * Note: this must not make any damaging changes to the passed-in expression
 * tree.  (It would actually be okay to apply fix_opfuncids to it, but since
 * we first do an expression_tree_mutator-based walk, what is returned will
 * be a new node tree.)
 */
Expr *
expression_planner(Expr *expr)
{
	Node	   *result;

3202 3203 3204 3205
	/*
	 * Convert named-argument function calls, insert default arguments and
	 * simplify constant subexprs
	 */
3206 3207 3208 3209 3210 3211 3212
	result = eval_const_expressions(NULL, (Node *) expr);

	/* Fill in opfuncid values if missing */
	fix_opfuncids(result);

	return (Expr *) result;
}
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258


/*
 * plan_cluster_use_sort
 *		Use the planner to decide how CLUSTER should implement sorting
 *
 * tableOid is the OID of a table to be clustered on its index indexOid
 * (which is already known to be a btree index).  Decide whether it's
 * cheaper to do an indexscan or a seqscan-plus-sort to execute the CLUSTER.
 * Return TRUE to use sorting, FALSE to use an indexscan.
 *
 * Note: caller had better already hold some type of lock on the table.
 */
bool
plan_cluster_use_sort(Oid tableOid, Oid indexOid)
{
	PlannerInfo *root;
	Query	   *query;
	PlannerGlobal *glob;
	RangeTblEntry *rte;
	RelOptInfo *rel;
	IndexOptInfo *indexInfo;
	QualCost	indexExprCost;
	Cost		comparisonCost;
	Path	   *seqScanPath;
	Path		seqScanAndSortPath;
	IndexPath  *indexScanPath;
	ListCell   *lc;

	/* Set up mostly-dummy planner state */
	query = makeNode(Query);
	query->commandType = CMD_SELECT;

	glob = makeNode(PlannerGlobal);

	root = makeNode(PlannerInfo);
	root->parse = query;
	root->glob = glob;
	root->query_level = 1;
	root->planner_cxt = CurrentMemoryContext;
	root->wt_param_id = -1;

	/* Build a minimal RTE for the rel */
	rte = makeNode(RangeTblEntry);
	rte->rtekind = RTE_RELATION;
	rte->relid = tableOid;
3259
	rte->relkind = RELKIND_RELATION;
3260
	rte->lateral = false;
3261 3262 3263 3264
	rte->inh = false;
	rte->inFromCl = true;
	query->rtable = list_make1(rte);

3265 3266
	/* Set up RTE/RelOptInfo arrays */
	setup_simple_rel_arrays(root);
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278

	/* Build RelOptInfo */
	rel = build_simple_rel(root, 1, RELOPT_BASEREL);

	/* Locate IndexOptInfo for the target index */
	indexInfo = NULL;
	foreach(lc, rel->indexlist)
	{
		indexInfo = (IndexOptInfo *) lfirst(lc);
		if (indexInfo->indexoid == indexOid)
			break;
	}
3279 3280 3281 3282 3283 3284 3285 3286

	/*
	 * It's possible that get_relation_info did not generate an IndexOptInfo
	 * for the desired index; this could happen if it's not yet reached its
	 * indcheckxmin usability horizon, or if it's a system index and we're
	 * ignoring system indexes.  In such cases we should tell CLUSTER to not
	 * trust the index contents but use seqscan-and-sort.
	 */
3287
	if (lc == NULL)				/* not in the list? */
3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
		return true;			/* use sort */

	/*
	 * Rather than doing all the pushups that would be needed to use
	 * set_baserel_size_estimates, just do a quick hack for rows and width.
	 */
	rel->rows = rel->tuples;
	rel->width = get_relation_data_width(tableOid, NULL);

	root->total_table_pages = rel->pages;
3298 3299 3300

	/*
	 * Determine eval cost of the index expressions, if any.  We need to
3301 3302 3303
	 * charge twice that amount for each tuple comparison that happens during
	 * the sort, since tuplesort.c will have to re-evaluate the index
	 * expressions each time.  (XXX that's pretty inefficient...)
3304 3305 3306 3307 3308
	 */
	cost_qual_eval(&indexExprCost, indexInfo->indexprs, root);
	comparisonCost = 2.0 * (indexExprCost.startup + indexExprCost.per_tuple);

	/* Estimate the cost of seq scan + sort */
3309
	seqScanPath = create_seqscan_path(root, rel, NULL);
3310 3311 3312 3313 3314 3315
	cost_sort(&seqScanAndSortPath, root, NIL,
			  seqScanPath->total_cost, rel->tuples, rel->width,
			  comparisonCost, maintenance_work_mem, -1.0);

	/* Estimate the cost of index scan */
	indexScanPath = create_index_path(root, indexInfo,
3316
									  NIL, NIL, NIL, NIL, NIL,
3317 3318
									  ForwardScanDirection, false,
									  NULL, 1.0);
3319 3320 3321

	return (seqScanAndSortPath.total_cost < indexScanPath->path.total_cost);
}