pgbench.sgml 22.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
<!-- $PostgreSQL: pgsql/doc/src/sgml/pgbench.sgml,v 1.13 2010/03/23 01:29:22 itagaki Exp $ -->

<sect1 id="pgbench">
 <title>pgbench</title>

 <indexterm zone="pgbench">
  <primary>pgbench</primary>
 </indexterm>

 <para>
  <application>pgbench</application> is a simple program for running benchmark
  tests on <productname>PostgreSQL</>.  It runs the same sequence of SQL
  commands over and over, possibly in multiple concurrent database sessions,
  and then calculates the average transaction rate (transactions per second).
  By default, <application>pgbench</application> tests a scenario that is
  loosely based on TPC-B, involving five <command>SELECT</>,
  <command>UPDATE</>, and <command>INSERT</> commands per transaction.
  However, it is easy to test other cases by writing your own transaction
  script files.
 </para>

 <para>
  Typical output from pgbench looks like:

 <programlisting>
transaction type: TPC-B (sort of)
scaling factor: 10
query mode: simple
number of clients: 10
number of threads: 1
number of transactions per client: 1000
number of transactions actually processed: 10000/10000
tps = 85.184871 (including connections establishing)
tps = 85.296346 (excluding connections establishing)
 </programlisting>

  The first six lines report some of the most important parameter
  settings.  The next line reports the number of transactions completed
  and intended (the latter being just the product of number of clients
  and number of transactions per client); these will be equal unless the run
  failed before completion.  The last two lines report the TPS rate,
  figured with and without counting the time to start database sessions.
 </para>

 <sect2>
  <title>Overview</title>

  <para>
   The default TPC-B-like transaction test requires specific tables to be
   set up beforehand.  <application>pgbench</> should be invoked with
   the <literal>-i</> (initialize) option to create and populate these
   tables.  (When you are testing a custom script, you don't need this
   step, but will instead need to do whatever setup your test needs.)
   Initialization looks like:

   <programlisting>
pgbench -i <optional> <replaceable>other-options</> </optional> <replaceable>dbname</>
   </programlisting>

   where <replaceable>dbname</> is the name of the already-created
   database to test in.  (You may also need <literal>-h</>,
   <literal>-p</>, and/or <literal>-U</> options to specify how to
   connect to the database server.)
  </para>

  <caution>
   <para>
    <literal>pgbench -i</> creates four tables <structname>pgbench_accounts</>,
    <structname>pgbench_branches</>, <structname>pgbench_history</>, and
    <structname>pgbench_tellers</>,
    destroying any existing tables of these names.
    Be very careful to use another database if you have tables having these
    names!
   </para>
  </caution>

  <para>
   At the default <quote>scale factor</> of 1, the tables initially
   contain this many rows:
  </para>
  <programlisting>
table                   # of rows
---------------------------------
pgbench_branches        1
pgbench_tellers         10
pgbench_accounts        100000
pgbench_history         0
  </programlisting>
  <para>
   You can (and, for most purposes, probably should) increase the number
   of rows by using the <literal>-s</> (scale factor) option.  The
   <literal>-F</> (fillfactor) option might also be used at this point.
  </para>

  <para>
   Once you have done the necessary setup, you can run your benchmark
   with a command that doesn't include <literal>-i</>, that is

   <programlisting>
pgbench <optional> <replaceable>options</> </optional> <replaceable>dbname</>
   </programlisting>

   In nearly all cases, you'll need some options to make a useful test.
   The most important options are <literal>-c</> (number of clients),
   <literal>-t</> (number of transactions), <literal>-T</> (time limit),
   and <literal>-f</> (specify a custom script file).
   See below for a full list.
  </para>

  <para>
   <xref linkend="pgbench-init-options"> shows options that are used
   during database initialization, while
   <xref linkend="pgbench-run-options"> shows options that are used
   while running benchmarks, and
   <xref linkend="pgbench-common-options"> shows options that are useful
   in both cases.
  </para>

  <table id="pgbench-init-options">
   <title><application>pgbench</application> initialization options</title>
   <tgroup cols="2">
    <thead>
     <row>
      <entry>Option</entry>
      <entry>Description</entry>
     </row>
    </thead>

    <tbody>
     <row>
      <entry><literal>-i</literal></entry>
      <entry>
       Required to invoke initialization mode.
      </entry>
     </row>
     <row>
      <entry><literal>-s</literal> <replaceable>scale_factor</></entry>
      <entry>
       Multiply the number of rows generated by the scale factor.
       For example, <literal>-s 100</> will create 10,000,000 rows
       in the <structname>pgbench_accounts</> table. Default is 1.
      </entry>
     </row>
     <row>
      <entry><literal>-F</literal> <replaceable>fillfactor</></entry>
      <entry>
       Create the <structname>pgbench_accounts</>,
       <structname>pgbench_tellers</> and
       <structname>pgbench_branches</> tables with the given fillfactor.
       Default is 100.
      </entry>
     </row>
    </tbody>
   </tgroup>
  </table>

  <table id="pgbench-run-options">
   <title><application>pgbench</application> benchmarking options</title>
   <tgroup cols="2">
    <thead>
     <row>
      <entry>Option</entry>
      <entry>Description</entry>
     </row>
    </thead>

    <tbody>
     <row>
      <entry><literal>-c</literal> <replaceable>clients</></entry>
      <entry>
       Number of clients simulated, that is, number of concurrent database
       sessions.  Default is 1.
      </entry>
     </row>
     <row>
      <entry><literal>-j</literal> <replaceable>threads</></entry>
      <entry>
       Number of worker threads within <application>pgbench</application>.
       Using more than one thread can be helpful on multi-CPU machines.
       The number of clients must be a multiple of the number of threads,
       since each thread is given the same number of client sessions to manage.
       Default is 1.
      </entry>
     </row>
     <row>
      <entry><literal>-t</literal> <replaceable>transactions</></entry>
      <entry>
       Number of transactions each client runs.  Default is 10.
      </entry>
     </row>
     <row>
      <entry><literal>-T</literal> <replaceable>seconds</></entry>
      <entry>
       Run the test for this many seconds, rather than a fixed number of
       transactions per client. <literal>-t</literal> and
       <literal>-T</literal> are mutually exclusive.
      </entry>
     </row>
     <row>
      <entry><literal>-M</literal> <replaceable>querymode</></entry>
      <entry>
       Protocol to use for submitting queries to the server:
         <itemizedlist>
          <listitem>
           <para><literal>simple</>: use simple query protocol.</para>
          </listitem>
          <listitem>
           <para><literal>extended</>: use extended query protocol.</para>
          </listitem>
          <listitem>
           <para><literal>prepared</>: use extended query protocol with prepared statements.</para>
          </listitem>
         </itemizedlist>
       The default is simple query protocol.  (See <xref linkend="protocol">
       for more information.)
      </entry>
     </row>
     <row>
      <entry><literal>-N</literal></entry>
      <entry>
       Do not update <structname>pgbench_tellers</> and
       <structname>pgbench_branches</>.
       This will avoid update contention on these tables, but
       it makes the test case even less like TPC-B.
      </entry>
     </row>
     <row>
      <entry><literal>-S</literal></entry>
      <entry>
       Perform select-only transactions instead of TPC-B-like test.
      </entry>
     </row>
     <row>
      <entry><literal>-f</literal> <replaceable>filename</></entry>
      <entry>
       Read transaction script from <replaceable>filename</>.
       See below for details.
       <literal>-N</literal>, <literal>-S</literal>, and <literal>-f</literal>
       are mutually exclusive.
      </entry>
     </row>
     <row>
      <entry><literal>-n</literal></entry>
      <entry>
       Perform no vacuuming before running the test.
       This option is <emphasis>necessary</>
       if you are running a custom test scenario that does not include
       the standard tables <structname>pgbench_accounts</>,
       <structname>pgbench_branches</>, <structname>pgbench_history</>, and
       <structname>pgbench_tellers</>.
      </entry>
     </row>
     <row>
      <entry><literal>-v</literal></entry>
      <entry>
       Vacuum all four standard tables before running the test.
       With neither <literal>-n</> nor <literal>-v</>, pgbench will vacuum the
       <structname>pgbench_tellers</> and <structname>pgbench_branches</>
       tables, and will truncate <structname>pgbench_history</>.
      </entry>
     </row>
     <row>
      <entry><literal>-D</literal> <replaceable>varname</><literal>=</><replaceable>value</></entry>
      <entry>
       Define a variable for use by a custom script (see below).
       Multiple <literal>-D</> options are allowed.
      </entry>
     </row>
     <row>
      <entry><literal>-C</literal></entry>
      <entry>
       Establish a new connection for each transaction, rather than
       doing it just once per client session.
       This is useful to measure the connection overhead.
      </entry>
     </row>
     <row>
      <entry><literal>-l</literal></entry>
      <entry>
       Write the time taken by each transaction to a logfile.
       See below for details.
      </entry>
     </row>
     <row>
      <entry><literal>-s</literal> <replaceable>scale_factor</></entry>
      <entry>
       Report the specified scale factor in <application>pgbench</>'s
       output.  With the built-in tests, this is not necessary; the
       correct scale factor will be detected by counting the number of
       rows in the <structname>pgbench_branches</> table.  However, when testing
       custom benchmarks (<literal>-f</> option), the scale factor
       will be reported as 1 unless this option is used.
      </entry>
     </row>
     <row>
      <entry><literal>-d</literal></entry>
      <entry>
       Print debugging output.
      </entry>
     </row>
    </tbody>
   </tgroup>
  </table>

  <table id="pgbench-common-options">
   <title><application>pgbench</application> common options</title>
   <tgroup cols="2">
    <thead>
     <row>
      <entry>Option</entry>
      <entry>Description</entry>
     </row>
    </thead>

    <tbody>
     <row>
      <entry><literal>-h</literal> <replaceable>hostname</></entry>
      <entry>database server's host</entry>
     </row>
     <row>
      <entry><literal>-p</literal> <replaceable>port</></entry>
      <entry>database server's port</entry>
     </row>
     <row>
      <entry><literal>-U</literal> <replaceable>login</></entry>
      <entry>username to connect as</entry>
     </row>
    </tbody>
   </tgroup>
  </table>
 </sect2>

 <sect2>
  <title>What is the <quote>transaction</> actually performed in pgbench?</title>

  <para>
   The default transaction script issues seven commands per transaction:
  </para>

  <orderedlist>
   <listitem><para><literal>BEGIN;</literal></para></listitem>
   <listitem><para><literal>UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;</literal></para></listitem>
   <listitem><para><literal>SELECT abalance FROM pgbench_accounts WHERE aid = :aid;</literal></para></listitem>
   <listitem><para><literal>UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid;</literal></para></listitem>
   <listitem><para><literal>UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;</literal></para></listitem>
   <listitem><para><literal>INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);</literal></para></listitem>
   <listitem><para><literal>END;</literal></para></listitem>
  </orderedlist>

  <para>
   If you specify <literal>-N</>, steps 4 and 5 aren't included in the
   transaction.  If you specify <literal>-S</>, only the <command>SELECT</> is
   issued.
  </para>
 </sect2>

 <sect2>
  <title>Custom Scripts</title>

  <para>
   <application>pgbench</application> has support for running custom
   benchmark scenarios by replacing the default transaction script
   (described above) with a transaction script read from a file
   (<literal>-f</literal> option).  In this case a <quote>transaction</>
   counts as one execution of a script file.  You can even specify
   multiple scripts (multiple <literal>-f</literal> options), in which
   case a random one of the scripts is chosen each time a client session
   starts a new transaction.
  </para>

  <para>
   The format of a script file is one SQL command per line; multi-line
   SQL commands are not supported.  Empty lines and lines beginning with
   <literal>--</> are ignored.  Script file lines can also be
   <quote>meta commands</>, which are interpreted by <application>pgbench</>
   itself, as described below.
  </para>

  <para>
   There is a simple variable-substitution facility for script files.
   Variables can be set by the command-line <literal>-D</> option,
   explained above, or by the meta commands explained below.
   In addition to any variables preset by <literal>-D</> command-line options,
   the variable <literal>scale</> is preset to the current scale factor.
   Once set, a variable's
   value can be inserted into a SQL command by writing
   <literal>:</><replaceable>variablename</>.  When running more than
   one client session, each session has its own set of variables.
  </para>

  <para>
   Script file meta commands begin with a backslash (<literal>\</>).
   Arguments to a meta command are separated by white space.
   These meta commands are supported:
  </para>

  <variablelist>
   <varlistentry>
    <term>
     <literal>\set <replaceable>varname</> <replaceable>operand1</> [ <replaceable>operator</> <replaceable>operand2</> ]</literal>
    </term>

    <listitem>
     <para>
      Sets variable <replaceable>varname</> to a calculated integer value.
      Each <replaceable>operand</> is either an integer constant or a
      <literal>:</><replaceable>variablename</> reference to a variable
      having an integer value.  The <replaceable>operator</> can be
      <literal>+</>, <literal>-</>, <literal>*</>, or <literal>/</>.
     </para>

     <para>
      Example:
      <programlisting>
\set ntellers 10 * :scale
      </programlisting>
     </para>
    </listitem>
   </varlistentry>

   <varlistentry>
    <term>
     <literal>\setrandom <replaceable>varname</> <replaceable>min</> <replaceable>max</></literal>
    </term>

    <listitem>
     <para>
      Sets variable <replaceable>varname</> to a random integer value
      between the limits <replaceable>min</> and <replaceable>max</> inclusive.
      Each limit can be either an integer constant or a
      <literal>:</><replaceable>variablename</> reference to a variable
      having an integer value.
     </para>

     <para>
      Example:
      <programlisting>
\setrandom aid 1 :naccounts
      </programlisting>
     </para>
    </listitem>
   </varlistentry>

   <varlistentry>
    <term>
     <literal>\sleep <replaceable>number</> [ us | ms | s ]</literal>
    </term>

    <listitem>
     <para>
      Causes script execution to sleep for the specified duration in
      microseconds (<literal>us</>), milliseconds (<literal>ms</>) or seconds
      (<literal>s</>).  If the unit is omitted then seconds are the default.
      <replaceable>number</> can be either an integer constant or a
      <literal>:</><replaceable>variablename</> reference to a variable
      having an integer value.
     </para>

     <para>
      Example:
      <programlisting>
\sleep 10 ms
      </programlisting>
     </para>
    </listitem>
   </varlistentry>

   <varlistentry>
    <term>
     <literal>\setshell <replaceable>varname</> <replaceable>command</> [ <replaceable>argument</> ... ]</literal>
    </term>

    <listitem>
     <para>
      Sets variable <replaceable>varname</> to the result of the shell command
      <replaceable>command</>. The command must return an integer value
      through its standard output.
     </para>

     <para>
      <replaceable>argument</> can be either a text constant or a
      <literal>:</><replaceable>variablename</> reference to a variable of
      any types. If you want to use <replaceable>argument</> starting with
      colons, you need to add an additional colon at the beginning of
      <replaceable>argument</>.
     </para>

     <para>
      Example:
      <programlisting>
\setshell variable_to_be_assigned command literal_argument :variable ::literal_starting_with_colon
      </programlisting>
     </para>
    </listitem>
   </varlistentry>

   <varlistentry>
    <term>
     <literal>\shell <replaceable>command</> [ <replaceable>argument</> ... ]</literal>
    </term>

    <listitem>
     <para>
      Same as <literal>\setshell</literal>, but the result is ignored.
     </para>

     <para>
      Example:
      <programlisting>
\shell command literal_argument :variable ::literal_starting_with_colon
      </programlisting>
     </para>
    </listitem>
   </varlistentry>
  </variablelist>

  <para>
   As an example, the full definition of the built-in TPC-B-like
   transaction is:

   <programlisting>
\set nbranches :scale
\set ntellers 10 * :scale
\set naccounts 100000 * :scale
\setrandom aid 1 :naccounts
\setrandom bid 1 :nbranches
\setrandom tid 1 :ntellers
\setrandom delta -5000 5000
BEGIN;
UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;
SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid;
UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;
INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);
END;
   </programlisting>

   This script allows each iteration of the transaction to reference
   different, randomly-chosen rows.  (This example also shows why it's
   important for each client session to have its own variables &mdash;
   otherwise they'd not be independently touching different rows.)
  </para>

 </sect2>

 <sect2>
  <title>Per-transaction logging</title>

  <para>
   With the <literal>-l</> option, <application>pgbench</> writes the time
   taken by each transaction to a logfile.  The logfile will be named
   <filename>pgbench_log.<replaceable>nnn</></filename>, where
   <replaceable>nnn</> is the PID of the pgbench process.
   If the <literal>-j</> option is 2 or higher, creating multiple worker
   threads, each will have its own log file. The first worker will use the
   the same name for its log file as in the standard single worker case.  
   The additional log files for the other workers will be named
   <filename>pgbench_log.<replaceable>nnn</>.<replaceable>mmm</></filename>,
   where <replaceable>mmm</> is a sequential number for each worker starting
   with 1.
  </para>

  <para>
   The format of the log is:

   <programlisting>
    <replaceable>client_id</> <replaceable>transaction_no</> <replaceable>time</> <replaceable>file_no</> <replaceable>time_epoch</> <replaceable>time_us</>
   </programlisting>

   where <replaceable>time</> is the elapsed transaction time in microseconds,
   <replaceable>file_no</> identifies which script file was used
   (useful when multiple scripts were specified with <literal>-f</>),
   and <replaceable>time_epoch</>/<replaceable>time_us</> are a
   UNIX epoch format timestamp and an offset
   in microseconds (suitable for creating a ISO 8601
   timestamp with fractional seconds) showing when
   the transaction completed.
  </para>

  <para>
   Here are example outputs:
   <programlisting>
 0 199 2241 0 1175850568 995598
 0 200 2465 0 1175850568 998079
 0 201 2513 0 1175850569 608
 0 202 2038 0 1175850569 2663
   </programlisting>
  </para>
 </sect2>

 <sect2>
  <title>Good Practices</title>

  <para>
   It is very easy to use <application>pgbench</> to produce completely
   meaningless numbers.  Here are some guidelines to help you get useful
   results.
  </para>

  <para>
   In the first place, <emphasis>never</> believe any test that runs
   for only a few seconds.  Use the <literal>-t</> or <literal>-T</> option
   to make the run last at least a few minutes, so as to average out noise.
   In some cases you could need hours to get numbers that are reproducible.
   It's a good idea to try the test run a few times, to find out if your
   numbers are reproducible or not.
  </para>

  <para>
   For the default TPC-B-like test scenario, the initialization scale factor
   (<literal>-s</>) should be at least as large as the largest number of
   clients you intend to test (<literal>-c</>); else you'll mostly be
   measuring update contention.  There are only <literal>-s</> rows in
   the <structname>pgbench_branches</> table, and every transaction wants to
   update one of them, so <literal>-c</> values in excess of <literal>-s</>
   will undoubtedly result in lots of transactions blocked waiting for
   other transactions.
  </para>

  <para>
   The default test scenario is also quite sensitive to how long it's been
   since the tables were initialized: accumulation of dead rows and dead space
   in the tables changes the results.  To understand the results you must keep
   track of the total number of updates and when vacuuming happens.  If
   autovacuum is enabled it can result in unpredictable changes in measured
   performance.
  </para>

  <para>
   A limitation of <application>pgbench</> is that it can itself become
   the bottleneck when trying to test a large number of client sessions.
   This can be alleviated by running <application>pgbench</> on a different
   machine from the database server, although low network latency will be
   essential.  It might even be useful to run several <application>pgbench</>
   instances concurrently, on several client machines, against the same
   database server.
  </para>
 </sect2>

</sect1>