cdbpartition.c 234.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
/*--------------------------------------------------------------------------
 *
 * cdbpartition.c
 *	  Provides utility routines to support sharding via partitioning
 *	  within Greenplum Database.
 *
 *    Many items are just extensions of tablecmds.c.
 *
 * Copyright (c) 2005-2010, Greenplum inc
 *
 *--------------------------------------------------------------------------
 */
#include "postgres.h"
#include "funcapi.h"
#include "access/genam.h"
#include "access/hash.h"
#include "access/heapam.h"
#include "access/reloptions.h"
#include "catalog/catalog.h"
#include "catalog/dependency.h"
#include "catalog/heap.h"
#include "catalog/pg_constraint.h"
#include "catalog/pg_exttable.h"
#include "catalog/pg_inherits.h"
#include "catalog/pg_type.h"
#include "catalog/pg_operator.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_partition_encoding.h"
#include "catalog/namespace.h"
#include "cdb/cdbpartition.h"
#include "cdb/cdbvars.h"
#include "commands/defrem.h"
#include "commands/tablecmds.h"
#include "commands/tablespace.h"
#include "nodes/makefuncs.h"
#include "optimizer/var.h"
#include "parser/analyze.h"
#include "parser/parse_expr.h"
#include "parser/parse_oper.h"
40
#include "parser/parse_partition.h"
41 42
#include "parser/parse_relation.h"
#include "parser/parse_target.h"
43
#include "parser/parse_utilcmd.h"
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
#include "tcop/utility.h"
#include "utils/acl.h"
#include "utils/builtins.h"
#include "utils/datum.h"
#include "utils/elog.h"
#include "utils/fmgroids.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/syscache.h"

#define DEFAULT_CONSTRAINT_ESTIMATE 16
#define MIN_XCHG_CONTEXT_SIZE 4096
#define INIT_XCHG_BLOCK_SIZE 4096
#define MAX_XCHG_BLOCK_SIZE 4096

typedef struct
	{
		char *key;
		List *table_cons;
		List *part_cons;
		List *cand_cons;
	} ConstraintEntry;

typedef struct
{
	Node *entry;
} ConNodeEntry;

72 73 74 75 76 77 78

typedef enum
{
	PART_TABLE,
	PART_PART,
	PART_CAND
} PartExchangeRole;
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
static void
record_constraints(Relation pgcon, MemoryContext context,
				   HTAB *hash_tbl, Relation rel,
				   PartExchangeRole xrole);

static char *
constraint_names(List *cons);

static void
constraint_diffs(List *cons_a, List *cons_b, bool match_names, List **missing, List **extra);

static void add_template_encoding_clauses(Oid relid, Oid paroid, List *stenc);

static PartitionNode *
findPartitionNodeEntry(PartitionNode *partitionNode, Oid partOid);

static uint32
constrNodeHash(const void *keyPtr, Size keysize);

static int
constrNodeMatch(const void *keyPtr1, const void *keyPtr2, Size keysize);
100 101 102 103 104

static void
parruleord_open_gap(Oid partid, int2 level, Oid parent,
					int2 ruleord, int stopkey, bool closegap);

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
/*
 * Hash keys are null-terminated C strings assumed to be stably
 * allocated. We accomplish this by allocating them in a context
 * that lives as long as the hash table that contains them.
 */

/* Hash entire string. */
static uint32 key_string_hash(const void *key, Size keysize)
{
	Size		s_len = strlen((const char *) key);

	Assert(keysize == sizeof(char*));
	return DatumGetUInt32(hash_any((const unsigned char *) key, (int) s_len));
}

/* Compare entire string. */
static int key_string_compare(const void *key1, const void *key2, Size keysize)
{
	Assert(keysize == sizeof(char*));
	return strcmp(((ConstraintEntry*)key1)->key, key2);
}

/* Copy string by copying pointer. */
static void *key_string_copy(void *dest, const void *src, Size keysize)
{
	Assert(keysize == sizeof(char*));

	*((char**)dest) = (char*)src; /* trust caller re allocation */
	return NULL; /* not used */
}

static char parttype_to_char(PartitionByType type);
static void add_partition(Partition *part);
static void add_partition_rule(PartitionRule *rule);
static Oid get_part_oid(Oid rootrelid, int16 parlevel, bool istemplate);
static Datum *magic_expr_to_datum(Relation rel, PartitionNode *partnode,
								  Node *expr, bool **ppisnull);
static Oid selectPartitionByRank(PartitionNode *partnode, int rnk);
static bool compare_partn_opfuncid(PartitionNode *partnode,
								   char *pub, char *compare_op,
								   List *colvals,
								   Datum *values, bool *isnull,
								   TupleDesc tupdesc);
static PartitionNode *
selectListPartition(PartitionNode *partnode, Datum *values, bool *isnull,
					TupleDesc tupdesc, PartitionAccessMethods *accessMethods,
					Oid *foundOid, PartitionRule **prule, Oid exprTypid);
static Oid get_less_than_oper(Oid lhstypid, Oid rhstypid, bool strictlyless);
static FmgrInfo *get_less_than_comparator(int keyno, PartitionRangeState *rs, Oid ruleTypeOid, Oid exprTypeOid, bool strictlyless, bool is_direct);
static int range_test(Datum tupval, Oid ruleTypeOid, Oid exprTypeOid, PartitionRangeState *rs, int keyno,
		   PartitionRule *rule);
static PartitionNode *
selectRangePartition(PartitionNode *partnode, Datum *values, bool *isnull,
					 TupleDesc tupdesc, PartitionAccessMethods *accessMethods,
					 Oid *foundOid, int *pSearch, PartitionRule **prule, Oid exprTypid);
static PartitionNode *
selectHashPartition(PartitionNode *partnode, Datum *values, bool *isnull,
					TupleDesc tupdesc, PartitionAccessMethods *accessMethods,
					Oid *found, PartitionRule **prule);
static Oid
selectPartition1(PartitionNode *partnode, Datum *values, bool *isnull,
				 TupleDesc tupdesc, PartitionAccessMethods *accessMethods,
				 int *pSearch,
				 PartitionNode **ppn_out);
static int
atpxPart_validate_spec(
					   PartitionBy			*pBy,
					   CreateStmtContext	*pcxt,
					   Relation					 rel,
					   CreateStmt				*ct,
					   PartitionElem			*pelem,
					   PartitionNode			*pNode,
177
					   char						*partName,
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
					   bool						 isDefault,
					   PartitionByType			 part_type,
					   char						*partDesc);

static void atpxSkipper(PartitionNode *pNode, int *skipped);

static List *
build_rename_part_recurse(PartitionRule *rule, const char *old_parentname,
						  const char *new_parentname,
						  int *skipped);
static Oid
get_opfuncid_by_opname(List *opname, Oid lhsid, Oid rhsid);

static PgPartRule *
get_pprule_from_ATC(Relation rel, AlterTableCmd *cmd);

static List*
get_partition_rules(PartitionNode *pn);

static bool
relation_has_supers(Oid relid);

static NewConstraint *
constraint_apply_mapped(HeapTuple tuple, AttrMap *map, Relation cand,
						bool validate, bool is_split, Relation pgcon);

static char *
ChooseConstraintNameForPartitionCreate(const char *rname,
									   const char *cname,
									   const char *label,
									   List *used_names);

static Bitmapset *
get_partition_key_bitmapset(Oid relid);

static List *get_deparsed_partition_encodings(Oid relid, Oid paroid);
static List *rel_get_leaf_relids_from_rule(Oid ruleOid);

/*
 * Is the given relation the default partition of a partition table.
 */
bool
rel_is_default_partition(Oid relid)
{
222 223 224 225 226 227
	Relation	partrulerel;
	HeapTuple	tuple;
	bool		parisdefault;
	ScanKeyData scankey;
	SysScanDesc sscan;

228 229 230 231 232 233 234
	/* Though pg_partition and pg_partition_rule are only populated
	 * on the entry database, we accept calls from QEs running a
	 * segment, but return false.
	 */
	if (Gp_segment != -1)
		return false;

235 236 237 238 239 240 241 242 243
	partrulerel = heap_open(PartitionRuleRelationId, AccessShareLock);

	ScanKeyInit(&scankey, Anum_pg_partition_rule_parchildrelid,
				BTEqualStrategyNumber, F_OIDEQ,
				ObjectIdGetDatum(relid));

	sscan = systable_beginscan(partrulerel, PartitionRuleParchildrelidIndexId, true,
							   SnapshotNow, 1, &scankey);
	tuple = systable_getnext(sscan);
244 245 246 247

	Insist(HeapTupleIsValid(tuple));

	parisdefault = ((Form_pg_partition_rule)GETSTRUCT(tuple))->parisdefault;
248 249 250 251

	systable_endscan(sscan);
	heap_close(partrulerel, AccessShareLock);

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
	return parisdefault;
}

/* Is the given relation the top relation of a partitioned table?
 *
 *   exists (select *
 *           from pg_partition
 *           where parrelid = relid)
 *
 * False for interior branches and leaves or when called other
 * then on the entry database, i.e., only meaningful on the
 * entry database.
 */
bool
rel_is_partitioned(Oid relid)
{
H
Heikki Linnakangas 已提交
268 269 270 271 272 273 274
	ScanKeyData	scankey;
	Relation	rel;
	SysScanDesc sscan;
	bool		result;

	/*
	 * Though pg_partition and pg_partition_rule are only populated
275 276 277 278 279 280
	 * on the entry database, we accept calls from QEs running a
	 * segment, but return false.
	 */
	if (Gp_segment != -1)
		return false;

H
Heikki Linnakangas 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
	ScanKeyInit(&scankey, Anum_pg_partition_parrelid,
				BTEqualStrategyNumber, F_OIDEQ,
				ObjectIdGetDatum(relid));

	rel = heap_open(PartitionRelationId, AccessShareLock);
	sscan = systable_beginscan(rel, PartitionParrelidIndexId, true,
							   SnapshotNow, 1, &scankey);

	result = (systable_getnext(sscan) != NULL);

	systable_endscan(sscan);

	heap_close(rel, AccessShareLock);

	return result;
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
}

/*
 * Return an integer list of the attribute numbers of the partitioning
 * key of the partitioned table identified by the argument or NIL.
 *
 * This is similar to get_partition_attrs but is driven by OID and
 * the partition catalog, not by a PartitionNode.
 *
 * Note: Only returns a non-empty list of keys for partitioned table
 *       as a whole.  Returns empty for non-partitioned tables or for
 *       parts of partitioned tables.  Key attributes are attribute
 *       numbers in the partitioned table.
 */
List *
rel_partition_key_attrs(Oid relid)
{
	Relation rel;
	ScanKeyData key;
	SysScanDesc scan;
	HeapTuple tuple;
	List *pkeys = NIL;

	/* Table pg_partition is only populated on the entry database,
	 * however, we disable calls from outside dispatch to foil use
	 * of utility mode.  (Full UCS may may this test obsolete.)
	 */
	if (Gp_session_role != GP_ROLE_DISPATCH )
		elog(ERROR, "mode not dispatch");

	rel = heap_open(PartitionRelationId, AccessShareLock);

	ScanKeyInit(&key,
				Anum_pg_partition_parrelid,
				BTEqualStrategyNumber, F_OIDEQ,
				ObjectIdGetDatum(relid));


	scan = systable_beginscan(rel, PartitionParrelidIndexId, true,
							  SnapshotNow, 1, &key);

	tuple = systable_getnext(scan);

	while ( HeapTupleIsValid(tuple) )
	{
		Index i;
		Form_pg_partition p = (Form_pg_partition) GETSTRUCT(tuple);

		if (p->paristemplate)
		{
			tuple = systable_getnext(scan);
			continue;
		}

		for ( i = 0; i < p->parnatts; i++ )
		{
			pkeys = lappend_int(pkeys, (Oid)p->paratts.values[i]);
		}

		tuple = systable_getnext(scan);
	}

	systable_endscan(scan);
	heap_close(rel, AccessShareLock);

	return pkeys;
}

/*
 * Return a list of lists representing the partitioning keys of the partitioned
 * table identified by the argument or NIL. The keys are in the order of
 * partitioning levels. Each of the lists inside the main list correspond to one
 * level, and may have one or more attribute numbers depending on whether the
 * part key for that level is composite or not.
 *
 * Note: Only returns a non-empty list of keys for partitioned table
 *       as a whole.  Returns empty for non-partitioned tables or for
 *       parts of partitioned tables.  Key attributes are attribute
 *       numbers in the partitioned table.
 */
List *
rel_partition_keys_ordered(Oid relid)
378 379 380 381 382 383 384 385 386 387 388 389 390
{
	List *pkeys = NIL;
	rel_partition_keys_kinds_ordered(relid, &pkeys, NULL);
	return pkeys;
}

/*
 * Output a list of lists representing the partitioning keys and a list representing
 * the partitioning kinds of the partitioned table identified by the relid or NIL.
 * The keys and kinds are in the order of partitioning levels.
 */
void
rel_partition_keys_kinds_ordered(Oid relid, List **pkeys, List **pkinds)
391
{
392 393 394
	Relation	partrel;
	ScanKeyData scankey;
	SysScanDesc sscan;
395 396
	List *levels = NIL;
	List *keysUnordered = NIL;
397
	List *kindsUnordered = NIL;
398 399
	int nlevels = 0;
	HeapTuple tuple = NULL;
400 401 402 403 404 405 406 407 408 409 410

	partrel = heap_open(PartitionRelationId, AccessShareLock);

	/* SELECT * FROM pg_partition WHERE parrelid = :1 */
	ScanKeyInit(&scankey, Anum_pg_partition_parrelid,
				BTEqualStrategyNumber, F_OIDEQ,
				ObjectIdGetDatum(relid));

	sscan = systable_beginscan(partrel, PartitionParrelidIndexId, true,
							   SnapshotNow, 1, &scankey);
	while (HeapTupleIsValid(tuple = systable_getnext(sscan)))
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
	{
		Form_pg_partition p = (Form_pg_partition) GETSTRUCT(tuple);

		if (p->paristemplate)
		{
			continue;
		}

		List *levelkeys = NIL;
		for (int i = 0; i < p->parnatts; i++ )
		{
			levelkeys = lappend_int(levelkeys, (Oid)p->paratts.values[i]);
		}

		nlevels++;
		levels = lappend_int(levels, p->parlevel);
427 428 429 430 431 432

		if (pkeys != NULL)
			keysUnordered = lappend(keysUnordered, levelkeys);

		if (pkinds != NULL)
			kindsUnordered = lappend_int(kindsUnordered, p->parkind);
433
	}
434 435
	systable_endscan(sscan);
	heap_close(partrel, AccessShareLock);
436 437 438 439

	if (1 == nlevels)
	{
		list_free(levels);
440 441 442 443 444 445 446 447

		if (pkeys != NULL)
			*pkeys = keysUnordered;

		if (pkinds != NULL)
			*pkinds = kindsUnordered;

		return;
448 449
	}

450
	// now order the keys and kinds by level
451 452 453 454 455
	for (int i = 0; i< nlevels; i++)
	{
		int pos = list_find_int(levels, i);
		Assert (0 <= pos);

456 457 458 459 460
		if (pkeys != NULL)
			*pkeys = lappend(*pkeys, list_nth(keysUnordered, pos));

		if (pkinds != NULL)
			*pkinds = lappend_int(*pkinds, list_nth_int(kindsUnordered, pos));
461 462 463
	}
	list_free(levels);
	list_free(keysUnordered);
464
	list_free(kindsUnordered);
465
}
466

467
 /*
468
 * Does relation have a external partition?
469 470 471 472 473 474 475 476
 * Returns true only when the input is the root partition
 * of a partitioned table and it has external partitions.
 */
bool
rel_has_external_partition(Oid relid)
{
	ListCell *lc = NULL;
	PartitionNode *n = get_parts(relid, 0 /*level*/ ,
477
							0 /*parent*/, false /* inctemplate */, false /*includesubparts*/);
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498

	if (n == NULL || n->rules == NULL)
		return false;

	foreach(lc, n->rules)
	{
		PartitionRule *rule = lfirst(lc);
		Relation rel = heap_open(rule->parchildrelid, NoLock);

		if (RelationIsExternal(rel))
		{
			heap_close(rel, NoLock);
			return true;
		}

		heap_close(rel, NoLock);
	}

	return false;
}

499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
/*
 * Does relation have an appendonly partition?
 * Returns true only when the input is the root partition
 * of a partitioned table and it has appendonly partitions.
 */
bool
rel_has_appendonly_partition(Oid relid)
{
	ListCell *lc = NULL;
	List	   *leaf_oid_list = NIL;
	PartitionNode *n = get_parts(relid, 0 /*level*/ ,
								 0 /*parent*/, false /* inctemplate */, true /*includesubparts*/);

	if (n == NULL || n->rules == NULL)
		return false;

	leaf_oid_list = all_leaf_partition_relids(n); /* all leaves */

	foreach(lc, leaf_oid_list)
	{
		Relation rel = heap_open(lfirst_oid(lc), NoLock);
		heap_close(rel, NoLock);

		if (RelationIsAoRows(rel) || RelationIsAoCols(rel))
		{
			return true;
		}
	}

	return false;
}

531 532 533 534 535 536 537 538 539 540 541 542 543 544
/*
 * Is relid a child in a partitioning hierarchy?
 *
 *    exists (select *
 *            from pg_partition_rule
 *            where parchildrelid = relid)
 *
 * False for the partitioned table as a whole or when called
 * other then on the entry database, i.e., only meaningful on
 * the entry database.
 */
bool
rel_is_child_partition(Oid relid)
{
H
Heikki Linnakangas 已提交
545 546 547 548 549
	ScanKeyData	scankey;
	Relation	rel;
	SysScanDesc sscan;
	bool		result;

550 551 552 553 554 555
	/* Though pg_partition and  pg_partition_rule are populated only on the
	 * entry database, are some unguarded calles that may come from segments,
	 * so we return false, even though we don't actually know. */
	if (Gp_segment != -1)
		return false;

H
Heikki Linnakangas 已提交
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
	ScanKeyInit(&scankey, Anum_pg_partition_rule_parchildrelid,
				BTEqualStrategyNumber, F_OIDEQ,
				ObjectIdGetDatum(relid));

	rel = heap_open(PartitionRuleRelationId, AccessShareLock);
	sscan = systable_beginscan(rel, PartitionRuleParchildrelidIndexId, true,
							   SnapshotNow, 1, &scankey);

	result = (systable_getnext(sscan) != NULL);

	systable_endscan(sscan);

	heap_close(rel, AccessShareLock);

	return result;
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
}

/*
 * Is relid a leaf node of a partitioning hierarchy? If no, it does not follow
 * that it is the root.
 *
 * To determine if it is a leaf or not, we need to find the depth of our
 * partition and compare this to the maximum depth of the partition set itself.
 * If they're equal, we have a leaf, otherwise, something else.
 *
 * Call only on entry database.
 */
bool
rel_is_leaf_partition(Oid relid)
{
	HeapTuple tuple;
	Oid paroid = InvalidOid;
	int maxdepth = 0;
	int mylevel = 0;
590 591 592 593
	Relation	partrulerel;
	Relation	partrel;
	ScanKeyData scankey;
	SysScanDesc sscan;
594 595 596 597 598 599
	Oid partitioned_rel = InvalidOid; /* OID of the root table of the
									   * partition set
									   */
	/*
	 * Find the pg_partition_rule entry to see if this is a child at
	 * all and, if so, to locate the OID for the pg_partition entry.
600 601
	 *
	 * SELECT paroid FROM pg_partition_rule WHERE parchildrelid = :1
602
	 */
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
	partrulerel = heap_open(PartitionRuleRelationId, AccessShareLock);

	ScanKeyInit(&scankey, Anum_pg_partition_rule_parchildrelid,
				BTEqualStrategyNumber, F_OIDEQ,
				ObjectIdGetDatum(relid));
	sscan = systable_beginscan(partrulerel, PartitionRuleParchildrelidIndexId, true,
							   SnapshotNow, 1, &scankey);
	tuple = systable_getnext(sscan);

	if (tuple)
		paroid = ((Form_pg_partition_rule) GETSTRUCT(tuple))->paroid;
	else
		paroid = InvalidOid;

	systable_endscan(sscan);
	heap_close(partrulerel, AccessShareLock);

	if (!OidIsValid(paroid))
621 622
		return false;

623
	tuple = SearchSysCache1(PARTOID, ObjectIdGetDatum(paroid));
624 625 626 627 628

	Insist(HeapTupleIsValid(tuple));

	mylevel = ((Form_pg_partition)GETSTRUCT(tuple))->parlevel;
	partitioned_rel = ((Form_pg_partition)GETSTRUCT(tuple))->parrelid;
629
	ReleaseSysCache(tuple);
630

631 632 633 634 635 636 637 638 639

	/* SELECT * FROM pg_partition WHERE parrelid = :1 */
	partrel = heap_open(PartitionRelationId, AccessShareLock);

	ScanKeyInit(&scankey, Anum_pg_partition_parrelid,
				BTEqualStrategyNumber, F_OIDEQ,
				ObjectIdGetDatum(partitioned_rel));
	sscan = systable_beginscan(partrel, PartitionParrelidIndexId, true,
							   SnapshotNow, 1, &scankey);
640 641 642 643 644 645

	/*
	 * Of course, we could just maxdepth++ but this seems safer -- we
	 * don't have to worry about the starting depth being 0, 1 or
	 * something else.
	 */
646
	while (HeapTupleIsValid(tuple = systable_getnext(sscan)))
647 648 649 650 651 652 653 654 655
	{
		/* not interested in templates */
		if (((Form_pg_partition)GETSTRUCT(tuple))->paristemplate == false)
		{
			int depth = ((Form_pg_partition)GETSTRUCT(tuple))->parlevel;
			maxdepth = Max(maxdepth, depth);
		}
	}

656 657
	systable_endscan(sscan);
	heap_close(partrel, AccessShareLock);
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753

	return maxdepth == mylevel;
}

/* Determine the status of the given table with respect to partitioning.
 *
 * Uses lower level routines. Returns PART_STATUS_NONE for a non-partitioned
 * table or when called other then on the entry database, i.e., only meaningful
 * on  the entry database.
 */
PartStatus rel_part_status(Oid relid)
{
	if (Gp_role != GP_ROLE_DISPATCH)
	{
		ereport(DEBUG1,
				(errmsg("requesting part status outside dispatch - returning none")));
		return PART_STATUS_NONE;
	}

	if ( rel_is_partitioned(relid) )
	{
		Assert( !rel_is_child_partition(relid) && !rel_is_leaf_partition(relid) );
		return PART_STATUS_ROOT;
	}
	else /* not an actual partitioned table root */
	{
		if ( rel_is_child_partition(relid) )
			return rel_is_leaf_partition(relid) ? PART_STATUS_LEAF : PART_STATUS_INTERIOR;
		else /* not a part of a partitioned table */
			Assert( !rel_is_child_partition(relid) );
	}
	return PART_STATUS_NONE;
}

/*
 * Insert the given tuple in the list of tuples according to
 * increasing OID value.
 */
static List *
sorted_insert_list(List *list, HeapTuple tuple)
{
	ListCell *lc;
	ListCell *lc_prev = NULL;
	HeapTuple list_tup;
	List *ret_list = list;
	foreach(lc, ret_list)
	{
		list_tup = lfirst(lc);
		if (HeapTupleGetOid(list_tup) >
			HeapTupleGetOid(tuple))
		{
				break;
		}
		lc_prev = lc;
	}
	if (lc_prev == NULL)
	{
		ret_list = lcons(tuple, ret_list);
	}
	else
	{
		lappend_cell(ret_list, lc_prev, tuple);
	}
	return ret_list;
}

/* Locate all the constraints on the given open relation (rel) and
 * record them in the hash table (hash_tbl) of ConstraintEntry
 * structs.
 *
 * Depending on the value of xrole, the given relation must be either
 * the root, an existing part, or an exchange candidate for the same
 * partitioned table.  A copy of each constraint tuple found is
 * appended to the corresponding field of the hash entry.
 *
 * The key  of the hash table is a string representing the constraint
 * in SQL. This should be comparable across parts of a partitioning
 * hierarchy regardless of the history (hole pattern) or storage type
 * of the table.
 *
 * Note that pgcon (the ConstraintRelationId appropriately locked)
 * is supplied externally for efficiency.  No other relation should
 * be supplied via this argument.
 *
 * Memory allocated in here (strings, tuples, lists, list cells, etc)
 * is all associated with the hash table and is allocated in the given
 * memory context, so it will be easy to free in bulk.
 */
void
record_constraints(Relation pgcon,
				   MemoryContext context,
				   HTAB *hash_tbl,
				   Relation rel,
				   PartExchangeRole xrole)
{
	HeapTuple	tuple;
754
	Relation	conRel;
755 756 757 758 759
	Oid conid;
	char *condef;
	ConstraintEntry *entry;
	bool found;
	MemoryContext oldcontext;
760 761 762 763
	ScanKeyData scankey;
	SysScanDesc sscan;

	conRel = heap_open(ConstraintRelationId, AccessShareLock);
764

765 766 767 768 769
	ScanKeyInit(&scankey, Anum_pg_constraint_conrelid,
				BTEqualStrategyNumber, F_OIDEQ,
				ObjectIdGetDatum(RelationGetRelid(rel)));
	sscan = systable_beginscan(conRel, ConstraintRelidIndexId, true,
							   SnapshotNow, 1, &scankey);
770 771

	/* For each constraint on rel: */
772
	while (HeapTupleIsValid(tuple = systable_getnext(sscan)))
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
	{
		oldcontext = MemoryContextSwitchTo(context);

		conid = HeapTupleGetOid(tuple);

		condef = pg_get_constraintexpr_string(conid);
		entry = (ConstraintEntry*)hash_search(hash_tbl,
											  (void*) condef,
											  HASH_ENTER,
											  &found);

		/* A tuple isn't a Node, but we'll stick it in a List
		 * anyway, and just be careful.
		 */
		if ( !found )
		{
			entry->key = condef;
			entry->table_cons = NIL;
			entry->part_cons = NIL;
			entry->cand_cons = NIL;
		}
		tuple = heap_copytuple(tuple);
		switch(xrole)
		{
			case PART_TABLE:
				entry->table_cons = sorted_insert_list(
						entry->table_cons, tuple);
				break;
			case PART_PART:
				entry->part_cons = sorted_insert_list(
						entry->part_cons, tuple);
				break;
			case PART_CAND:
				entry->cand_cons = sorted_insert_list(
						entry->cand_cons, tuple);
				break;
			default:
				Assert(FALSE);
		}

		MemoryContextSwitchTo(oldcontext);
	}
815 816
	systable_endscan(sscan);
	heap_close(conRel, AccessShareLock);
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
}

/* Subroutine of ATPExecPartExchange used to swap constraints on existing
 * part and candidate part.  Note that this runs on both the QD and QEs
 * so must not assume availability of partition catalogs.
 *
 * table -- open relation of the parent partitioned table
 * part -- open relation of existing part to exchange
 * cand -- open relation of the candidate part
 * validate -- whether to collect constraints into a result list for
 *             enforcement during phase 3 (WITH/WITHOUT VALIDATION).
 */
List *
cdb_exchange_part_constraints(Relation table,
						  Relation part,
						  Relation cand,
						  bool validate,
						  bool is_split,
						  AlterPartitionCmd *pc)
{
	HTAB *hash_tbl;
	HASHCTL hash_ctl;
	HASH_SEQ_STATUS hash_seq;
	Relation pgcon;
	MemoryContext context;
	MemoryContext oldcontext;
	ConstraintEntry *entry;
	AttrMap *p2t = NULL;
	AttrMap *c2t = NULL;

	HeapTuple tuple;
	Form_pg_constraint con;

	List *excess_constraints = NIL;
	List *missing_constraints = NIL;
	List *missing_part_constraints = NIL;
	List *validation_list = NIL;
	int delta_checks = 0;


D
Daniel Gustafsson 已提交
857 858
	/*
	 * Setup an empty hash table mapping constraint definition
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
	 * strings to ConstraintEntry structures.
	 */
	context = AllocSetContextCreate(CurrentMemoryContext,
									"Constraint Exchange Context",
									MIN_XCHG_CONTEXT_SIZE,
									INIT_XCHG_BLOCK_SIZE,
									MAX_XCHG_BLOCK_SIZE);

	memset(&hash_ctl, 0, sizeof(hash_ctl));
	hash_ctl.keysize = sizeof(char*);
	hash_ctl.entrysize = sizeof(ConstraintEntry);
	hash_ctl.hash = key_string_hash;
	hash_ctl.match = key_string_compare;
	hash_ctl.keycopy = key_string_copy;
	hash_ctl.hcxt = context;
	hash_tbl = hash_create("Constraint Exchange Map",
						   DEFAULT_CONSTRAINT_ESTIMATE,
						   &hash_ctl,
						   HASH_ELEM | HASH_FUNCTION |
						   HASH_COMPARE | HASH_KEYCOPY |
						   HASH_CONTEXT);

	/* Open pg_constraint here for use in the subroutine and below. */
	pgcon = heap_open(ConstraintRelationId, AccessShareLock);

	/* We need attribute numbers normalized to the partitioned table.
	 * Note that these maps are inverse to the usual table-to-part maps.
	 */
	oldcontext =  MemoryContextSwitchTo(context);
	map_part_attrs(part, table, &p2t, TRUE);
	map_part_attrs(cand, table, &c2t, TRUE);
	MemoryContextSwitchTo(oldcontext);

	/* Find and record constraints on the players. */
	record_constraints(pgcon, context, hash_tbl, table, PART_TABLE);
	record_constraints(pgcon, context, hash_tbl, part, PART_PART);
	record_constraints(pgcon, context, hash_tbl, cand, PART_CAND);
	hash_freeze(hash_tbl);

	/* Each entry in the hash table represents a single logically equivalent
	 * constraint which may appear zero or more times (under different names)
	 * on each of the three involved relations.  By construction, it will
	 * appear on at least one list.
	 *
	 * For each hash table entry:
	 */
	hash_seq_init(&hash_seq, hash_tbl);
	while ((entry = hash_seq_search(&hash_seq)))
	{
		if ( list_length(entry->table_cons) > 0 )
		{
			/* REGULAR CONSTRAINT
			 *
			 * Constraints on the whole partitioned table are regular (in
			 * the sense that they do not enforce partitioning rules and
			 * corresponding constraints must occur on every part).
			 */

			List *missing = NIL;
			List *extra = NIL;

			if ( list_length(entry->part_cons) == 0 )
			{
				/* The regular constraint is missing from the existing part,
				 * so there is a database anomaly.  Warn rather than issuing
				 * an error, because this may be an attempt to use EXCHANGE
				 * to correct the problem.  There may be multiple constraints
				 * with different names, but report only the first name since
				 * the constraint expression itself is all that matters.
				 */
				tuple = linitial(entry->table_cons);
				con = (Form_pg_constraint) GETSTRUCT(tuple);

				ereport(WARNING,
						(errcode(ERRCODE_WARNING),
						 errmsg("ignoring inconsistency: \"%s\" "
								"has no constraint corresponding to \"%s\" "
								"on \"%s\"",
								RelationGetRelationName(part),
								NameStr(con->conname),
								RelationGetRelationName(table))));
			}

			/* The regular constraint should ultimately appear on the candidate
			 * part the same number of times and with the same name as it appears
			 * on the partitioned table. The call to constraint_diff will find
945 946
			 * matching names and we'll be left with occurrences of the constraint
			 * that must be added to the candidate (missing) and occurrences that
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
			 * must be dropped from the candidate (extra).
			 */
			constraint_diffs(entry->table_cons, entry->cand_cons, true, &missing, &extra);
			missing_constraints = list_concat(missing_constraints, missing);
			excess_constraints = list_concat(excess_constraints, extra);
		}
		else if ( list_length(entry->part_cons) > 0 ) /* and none on whole */
		{
			/* PARTITION CONSTRAINT
			 *
			 * Constraints on the part and not the whole must guard a partition
			 * rule, so they must be CHECK constraints on partitioning columns.
			 * They are managed internally, so there must be only one of them.
			 * (Though a part will have a partition constraint for each partition
			 * level, a given constraint should appear only once per part.)
			 *
			 * They should either already occur on the candidate or be added.
			 * Partition constraint names are not carefully managed so they
			 * shouldn't be regarded as meaningful.
			 *
			 * Since we use the partition constraint of the part to check or
			 * construct the partition constraint of the candidate, we insist it
			 * is in good working order, and issue an error, if not.
			 */
			int n = list_length(entry->part_cons);

			if ( n > 1 )
			{
				elog(ERROR,
					 "multiple partition constraints (same key) on \"%s\"",
					 RelationGetRelationName(part));
			}

			/* Get the model partition constraint.
			 */
			tuple = linitial(entry->part_cons);
			con = (Form_pg_constraint) GETSTRUCT(tuple);

			/* Check it, though this is cursory in that we don't check that
			 * the right attributes are involved and that the semantics are
			 * right.
			 */
			if (con->contype != CONSTRAINT_CHECK)
			{
				elog(ERROR,
					 "invalid partition constraint on \"%s\"",
					 RelationGetRelationName(part));
			}

			n = list_length(entry->cand_cons);

			if ( n == 0 )
			{
				/* The partition constraint is missing from the candidate and
				 * must be added.
				 */
				missing_part_constraints = lappend(missing_part_constraints,
												   (HeapTuple)linitial(entry->part_cons));
			}
			else if ( n == 1 )
			{
				/* One instance of the partition constraint exists on the
				 * candidate, so let's not worry about name drift.  All is
				 * well. */
			}
			else
			{
				/* Several instances of the partition constraint exist on
				 * the candidate. If one has a matching name, prefer it.
				 * Else, just chose the first (arbitrary).
				 */
				List *missing = NIL;
				List *extra = NIL;

				constraint_diffs(entry->part_cons, entry->cand_cons, false, &missing, &extra);

				if ( list_length(missing) == 0 )
				{
					excess_constraints = list_concat(excess_constraints, extra);
				}
				else /* missing */
				{
					ListCell *lc;
					bool skip = TRUE;

					foreach(lc, entry->cand_cons)
					{
						HeapTuple tuple = (HeapTuple)lfirst(lc);
						if ( skip )
						{
							skip = FALSE;
						}
						else
						{
							excess_constraints = lappend(excess_constraints, tuple);
						}
					}
				}
			}
		}
		else if ( list_length(entry->cand_cons) > 0 ) /* and none on whole or part */
		{
			/* MAVERICK CONSTRAINT
			 *
			 * Constraints on only the candidate are extra and must be
			 * dropped before the candidate can replace the part.
			 */
			excess_constraints = list_concat(excess_constraints,
											 entry->cand_cons);
		}
		else /* Defensive: Can't happen that no constraints are set. */
		{
			elog(ERROR, "constraint hash table inconsistent");
		}
	}


	if ( excess_constraints )
	{
		/* Disallow excess constraints.  We could drop them automatically, but they
		 * may carry semantic information about the candidate that is important to
		 * the user, so make the user decide whether to drop them.
		 */
		ereport(ERROR,
				(errcode(ERRCODE_INTEGRITY_CONSTRAINT_VIOLATION),
				 errmsg("invalid constraint(s) found on \"%s\": %s",
						RelationGetRelationName(cand),
						constraint_names(excess_constraints)),
				 errhint("drop the invalid constraints and retry")));
	}

	if ( missing_part_constraints )
	{
		ListCell *lc;

		foreach(lc, missing_part_constraints)
		{
			HeapTuple missing_part_constraint = (HeapTuple)lfirst(lc);
			/* We need a constraint like the missing one for the part, but translated
			 * for the candidate.
			 */
			AttrMap *map;
			struct NewConstraint *nc;
			Form_pg_constraint mcon = (Form_pg_constraint)GETSTRUCT(missing_part_constraint);

			if ( mcon->contype != CONSTRAINT_CHECK )
				elog(ERROR,"Invalid partition constration, not CHECK type");

			map_part_attrs(part, cand, &map, TRUE);
			nc = constraint_apply_mapped(missing_part_constraint, map, cand,
										 validate, is_split, pgcon);
			if ( nc )
				validation_list = lappend(validation_list, nc);

			delta_checks++;
		}
	}

	if ( missing_constraints )
	{
		/* We need constraints like the missing ones for the whole, but
		 * translated for the candidate.
		 */
		AttrMap *map;
		struct NewConstraint *nc;
		ListCell *lc;

		map_part_attrs(table, cand, &map, TRUE);
		foreach(lc, missing_constraints)
		{
			HeapTuple tuple = (HeapTuple)lfirst(lc);
			Form_pg_constraint mcon = (Form_pg_constraint)GETSTRUCT(tuple);
1119

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
			nc = constraint_apply_mapped(tuple, map, cand,
										 validate, is_split, pgcon);
			if ( nc )
				validation_list = lappend(validation_list, nc);

			if ( mcon->contype == CONSTRAINT_CHECK )
				delta_checks++;
		}
	}

	if ( delta_checks )
	{
		SetRelationNumChecks(cand, cand->rd_rel->relchecks + delta_checks);
	}

	hash_destroy(hash_tbl);
	MemoryContextDelete(context);
	heap_close(pgcon, AccessShareLock);

	return validation_list;
}

/*
 * Return a string of comma-delimited names of the constraints in the
 * argument list of pg_constraint tuples.  This is primarily for use
 * in messages.
 */
static char *
constraint_names(List *cons)
{
1150
	ListCell   *lc;
1151
	StringInfoData str;
1152
	char	   *p;
1153 1154 1155

	initStringInfo(&str);

1156
	p = "";
1157 1158
	foreach (lc, cons)
	{
1159 1160 1161
		HeapTuple tuple = lfirst(lc);
		Form_pg_constraint con = (Form_pg_constraint) GETSTRUCT(tuple);

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
		appendStringInfo(&str, "%s\"%s\"", p, NameStr(con->conname));
		p = ", ";
	}

	return str.data;
}


/*
 * Identify constraints in the first list that don't correspond to
 * constraints in the second (missing) and vice versa (extra). Assume
 * that the constraints all match semantically, i.e, their expressions
 * are equivalent. (There are no checks for this.) Also assume there
 * are no duplicate constraint names in either argument list. (This
 * isn't checked, but is asserted.
 *
 * There are two checking modes.  One matches by name, one prefers
 * matching names, but accepts mismatches based on the assumed
 * semantic equivlence.
 *
 * Matching by name (which applies to regular constraints on the whole
 * table) may have missing and/or extra constraints.
 *
 * Matching by expression (which applies to partition constraints)
 * can yield only one or the other of extra or missing constraints.
 * The cleverness is that we match by name to avoid choosing as the
 * missing or extra constraints ones that match by name with items in
 * the other list.
 */
static void
constraint_diffs(List *cons_a, List *cons_b, bool match_names, List **missing, List **extra)
{
	ListCell *cell_a, *cell_b;
	Index pos_a, pos_b;
	int *match_a, *match_b;
	int n;

	int len_a = list_length(cons_a);
	int len_b = list_length(cons_b);

	Assert(missing != NULL);
	Assert(extra != NULL);

	if ( len_a == 0 )
	{
		*extra = list_copy(cons_b);
		*missing = NIL;
		return;
	}

	if ( len_b == 0 )
	{
		*extra = NIL;
		*missing = list_copy(cons_a);
		return;
	}

	match_a = (int*)palloc(len_a * sizeof(int));
	for ( pos_a = 0; pos_a < len_a; pos_a++ )
		match_a[pos_a] = -1;

	match_b = (int*)palloc(len_b * sizeof(int));
	for ( pos_b = 0; pos_b < len_b; pos_b++ )
		match_b[pos_b] = -1;

	pos_b = 0;
	foreach (cell_b, cons_b)
	{
		HeapTuple tuple_b = (HeapTuple)lfirst(cell_b);
		Form_pg_constraint b = (Form_pg_constraint) GETSTRUCT(tuple_b);


		pos_a = 0;
		foreach (cell_a, cons_a)
		{
			HeapTuple tuple_a = lfirst(cell_a);
			Form_pg_constraint a = (Form_pg_constraint) GETSTRUCT(tuple_a);

			if ( strncmp(NameStr(a->conname), NameStr(b->conname), NAMEDATALEN) == 0 )
			{
				/* No duplicate names on either list. */
				Assert(match_a[pos_a] == -1 && match_b[pos_b] == -1);

				match_b[pos_b] = pos_a;
				match_a[pos_a] = pos_b;
				break;
			}
			pos_a++;
		}
		pos_b++;
	}

	*missing = NIL;
	*extra = NIL;

	n = len_a - len_b;
	if ( n > 0 || match_names )
	{
		pos_a = 0;
		foreach (cell_a, cons_a)
		{
			if ( match_a[pos_a] == -1 )
				*missing = lappend(*missing, lfirst(cell_a));
			pos_a++;
			n--;
			if ( n <= 0 && !match_names)
				break;
		}
	}

	n = len_b - len_a;
	if ( n > 0 || match_names )
	{
		pos_b = 0;
		foreach (cell_b, cons_b)
		{
			if ( match_b[pos_b] == -1 )
				*extra = lappend(*extra, lfirst(cell_b));
			pos_b++;
			n--;
			if ( n <= 0 && !match_names )
				break;
		}
	}

	pfree(match_a);
	pfree(match_b);
}

/*
 * Translate internal representation to catalog partition type indication
 * ('r', 'h' or 'l').
 */
static char
parttype_to_char(PartitionByType type)
{
	char c;

	switch (type)
	{
		case PARTTYP_HASH: c = 'h'; break;
		case PARTTYP_RANGE: c = 'r'; break;
		case PARTTYP_LIST: c = 'l'; break;
		default:
			c = 0; /* quieten compiler */
			elog(ERROR, "unknown partitioning type %i", type);

	}
	return c;
}

/*
 * Translate a catalog partition type indication ('r', 'h' or 'l') to the
 * internal representation.
 */
PartitionByType
char_to_parttype(char c)
{
	PartitionByType pt = PARTTYP_RANGE; /* just to shut GCC up */

	switch(c)
	{
		case 'h': /* hash */
			pt = PARTTYP_HASH;
			break;
		case 'r': /* range */
			pt = PARTTYP_RANGE;
			break;
		case 'l': /* list */
			pt = PARTTYP_LIST;
			break;
		default:
			elog(ERROR, "unrecognized partitioning kind '%c'",
				 c);
			Assert(false);
			break;
	} /* end switch */

	return pt;
}

/*
 * Add metadata for a partition level.
 */
static void
add_partition(Partition *part)
{
	Datum		 values[Natts_pg_partition];
	bool		 isnull[Natts_pg_partition];
	Relation	 partrel;
	HeapTuple	 tup;
	oidvector	*opclass;
	int2vector	*attnums;

	MemSet(isnull, 0, sizeof(bool) * Natts_pg_partition);

	values[Anum_pg_partition_parrelid - 1] = ObjectIdGetDatum(part->parrelid);
	values[Anum_pg_partition_parkind - 1] = CharGetDatum(part->parkind);
	values[Anum_pg_partition_parlevel - 1] = Int16GetDatum(part->parlevel);
	values[Anum_pg_partition_paristemplate - 1] =
									BoolGetDatum(part->paristemplate);
	values[Anum_pg_partition_parnatts - 1] = Int16GetDatum(part->parnatts);

	attnums = buildint2vector(part->paratts, part->parnatts);
	values[Anum_pg_partition_paratts - 1] = PointerGetDatum(attnums);

	opclass = buildoidvector(part->parclass, part->parnatts);
	values[Anum_pg_partition_parclass - 1] = PointerGetDatum(opclass);

	partrel = heap_open(PartitionRelationId, RowExclusiveLock);

H
Heikki Linnakangas 已提交
1373
	tup = heap_form_tuple(RelationGetDescr(partrel), values, isnull);
1374 1375

	/* Insert tuple into the relation */
H
Heikki Linnakangas 已提交
1376 1377
	part->partid = simple_heap_insert(partrel, tup);
	CatalogUpdateIndexes(partrel, tup);
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438

	heap_close(partrel, NoLock);
}

/*
 * Add a partition rule. A partition rule represents a discrete partition
 * child.
 */
static void
add_partition_rule(PartitionRule *rule)
{
	Datum		 values[Natts_pg_partition_rule];
	bool		 isnull[Natts_pg_partition_rule];
	Relation	 rulerel;
	HeapTuple	 tup;
	NameData	 name;

	MemSet(isnull, 0, sizeof(bool) * Natts_pg_partition_rule);

	values[Anum_pg_partition_rule_paroid - 1] = ObjectIdGetDatum(rule->paroid);
	values[Anum_pg_partition_rule_parchildrelid - 1] =
							ObjectIdGetDatum(rule->parchildrelid);
	values[Anum_pg_partition_rule_parparentrule - 1] =
							ObjectIdGetDatum(rule->parparentoid);

	name.data[0] = '\0';
	namestrcpy(&name, rule->parname);
	values[Anum_pg_partition_rule_parname - 1] = NameGetDatum(&name);

	values[Anum_pg_partition_rule_parisdefault - 1] =
							BoolGetDatum(rule->parisdefault);
	values[Anum_pg_partition_rule_parruleord - 1] =
							Int16GetDatum(rule->parruleord);
	values[Anum_pg_partition_rule_parrangestartincl - 1] =
							BoolGetDatum(rule->parrangestartincl);
	values[Anum_pg_partition_rule_parrangeendincl - 1] =
							BoolGetDatum(rule->parrangeendincl);

	values[Anum_pg_partition_rule_parrangestart - 1] =
			DirectFunctionCall1(textin,
						CStringGetDatum(nodeToString(rule->parrangestart)));
	values[Anum_pg_partition_rule_parrangeend - 1] =
			DirectFunctionCall1(textin,
						CStringGetDatum(nodeToString(rule->parrangeend)));
	values[Anum_pg_partition_rule_parrangeevery - 1] =
			DirectFunctionCall1(textin,
						CStringGetDatum(nodeToString(rule->parrangeevery)));
	values[Anum_pg_partition_rule_parlistvalues - 1] =
			DirectFunctionCall1(textin,
						CStringGetDatum(nodeToString(rule->parlistvalues)));
	if (rule->parreloptions)
		values[Anum_pg_partition_rule_parreloptions - 1] =
				transformRelOptions((Datum) 0, rule->parreloptions, true, false);
	else
		isnull[Anum_pg_partition_rule_parreloptions - 1] = true;

	values[Anum_pg_partition_rule_partemplatespace -1] =
							ObjectIdGetDatum(rule->partemplatespaceId);

	rulerel = heap_open(PartitionRuleRelationId, RowExclusiveLock);

H
Heikki Linnakangas 已提交
1439
	tup = heap_form_tuple(RelationGetDescr(rulerel), values, isnull);
1440 1441

	/* Insert tuple into the relation */
H
Heikki Linnakangas 已提交
1442 1443
	rule->parruleid = simple_heap_insert(rulerel, tup);
	CatalogUpdateIndexes(rulerel, tup);
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453

	heap_close(rulerel, NoLock);
}

/*
 * Oid of the row of pg_partition corresponding to the given relation and level.
 */
static Oid
get_part_oid(Oid rootrelid, int16 parlevel, bool istemplate)
{
1454 1455 1456 1457 1458
	Relation	partrel;
	ScanKeyData scankey[3];
	SysScanDesc sscan;
	HeapTuple	tuple;
	Oid			paroid;
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

	/* select oid
	 * from pg_partition
	 * where
	 *     parrelid = :rootrelid and
	 *     parlevel = :parlevel and
	 *     paristemplate = :istemplate;
	 */

	/* pg_partition and  pg_partition_rule are populated only on the
	 * entry database, so our result is only meaningful there. */
	Insist(Gp_segment == -1);

1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
	partrel = heap_open(PartitionRelationId, AccessShareLock);
	ScanKeyInit(&scankey[0], Anum_pg_partition_parrelid,
				BTEqualStrategyNumber, F_OIDEQ,
				ObjectIdGetDatum(rootrelid));
	ScanKeyInit(&scankey[1], Anum_pg_partition_parlevel,
				BTEqualStrategyNumber, F_INT2EQ,
				Int16GetDatum(parlevel));
	ScanKeyInit(&scankey[2], Anum_pg_partition_paristemplate,
				BTEqualStrategyNumber, F_BOOLEQ,
				BoolGetDatum(istemplate));

	/* XXX XXX: SnapshotSelf */
	sscan = systable_beginscan(partrel, PartitionParrelidParlevelParistemplateIndexId, true,
							   SnapshotSelf, 3, scankey);

	tuple = systable_getnext(sscan);

	if (tuple)
		paroid = HeapTupleGetOid(tuple);
	else
		paroid = InvalidOid;

	systable_endscan(sscan);
	heap_close(partrel, NoLock);
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505

	return paroid;
}

/*
 * delete the template for a partition
 */
int
del_part_template(Oid rootrelid, int16 parlevel, Oid parent)
{
H
Heikki Linnakangas 已提交
1506 1507 1508 1509 1510 1511 1512 1513
	bool		istemplate = true;
	Oid			paroid = InvalidOid;
	ItemPointerData tid;
	ScanKeyData	scankey[3];
	Relation	part_rel;
	Relation	part_rule_rel;
	SysScanDesc sscan;
	HeapTuple	tuple;
1514

H
Heikki Linnakangas 已提交
1515
	part_rel = heap_open(PartitionRelationId, RowExclusiveLock);
1516

H
Heikki Linnakangas 已提交
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
	ScanKeyInit(&scankey[0], Anum_pg_partition_parrelid,
				BTEqualStrategyNumber, F_OIDEQ,
				ObjectIdGetDatum(rootrelid));
	ScanKeyInit(&scankey[1], Anum_pg_partition_parlevel,
				BTEqualStrategyNumber, F_INT2EQ,
				Int16GetDatum(parlevel));
	ScanKeyInit(&scankey[2], Anum_pg_partition_paristemplate,
				BTEqualStrategyNumber, F_BOOLEQ,
				BoolGetDatum(istemplate));

	sscan = systable_beginscan(part_rel, PartitionParrelidParlevelParistemplateIndexId, true,
							   SnapshotNow, 3, scankey);

	tuple = systable_getnext(sscan);
	if (tuple == NULL)
	{
		/* not found */
		systable_endscan(sscan);
		heap_close(part_rel, RowExclusiveLock);
1536
		return 0;
H
Heikki Linnakangas 已提交
1537 1538 1539 1540
	}

	paroid = HeapTupleGetOid(tuple);
	tid = tuple->t_self;
1541 1542

	/* should only be one matching template per level */
H
Heikki Linnakangas 已提交
1543 1544 1545 1546
	if (systable_getnext(sscan))
	{
		systable_endscan(sscan);
		heap_close(part_rel, RowExclusiveLock);
1547
		return 2;
H
Heikki Linnakangas 已提交
1548 1549 1550
	}

	simple_heap_delete(part_rel, &tid);
1551

H
Heikki Linnakangas 已提交
1552
	systable_endscan(sscan);
1553

H
Heikki Linnakangas 已提交
1554
	/* Also delete pg_partition_rule entries */
1555

H
Heikki Linnakangas 已提交
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
	part_rule_rel = heap_open(PartitionRuleRelationId, RowExclusiveLock);

	ScanKeyInit(&scankey[0], Anum_pg_partition_rule_paroid,
				BTEqualStrategyNumber, F_OIDEQ,
				ObjectIdGetDatum(paroid));
	ScanKeyInit(&scankey[1], Anum_pg_partition_rule_parparentrule,
				BTEqualStrategyNumber, F_OIDEQ,
				ObjectIdGetDatum(parent));
	sscan = systable_beginscan(part_rule_rel, PartitionRuleParoidParparentruleParruleordIndexId, true,
							   SnapshotNow, 2, scankey);

	while ((tuple = systable_getnext(sscan)) != NULL)
	{
		simple_heap_delete(part_rule_rel, &tuple->t_self);
	}

	systable_endscan(sscan);

	heap_close(part_rule_rel, RowExclusiveLock);
	heap_close(part_rel, RowExclusiveLock);
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709

	/* make visible */
	CommandCounterIncrement();

	return 1;
} /* end del_part_template */


/*
 * add_part_to_catalog() - add a partition to the catalog
 *
 * NOTE: If bTemplate_Only = false, add both actual partitions and the
 * template definitions (if specified).  However, if bTemplate_Only =
 * true, then only treat the partition spec as a template.
 */
void
add_part_to_catalog(Oid relid, PartitionBy *pby,
					bool bTemplate_Only /* = false */)
{
	char pt = parttype_to_char(pby->partType);
	ListCell *lc;
	PartitionSpec *spec;
	Oid paroid = InvalidOid;
	Oid rootrelid = InvalidOid;
	Relation rel;
	Oid parttemplid = InvalidOid;
	bool add_temp = bTemplate_Only; /* normally false */
	spec = (PartitionSpec *)pby->partSpec;

	/* only create partition catalog entries on the master */
	if (Gp_role == GP_ROLE_EXECUTE)
		return;

	/*
	 * Get the partitioned table relid.
	 */
	rootrelid = RangeVarGetRelid(pby->parentRel, false);
	paroid = get_part_oid(rootrelid, pby->partDepth,
						  bTemplate_Only /* = false */);

	/* create a partition for this level, if one doesn't exist */
	if (!OidIsValid(paroid))
	{
		AttrNumber *attnums;
		Oid *parclass;
		Partition *part = makeNode(Partition);
		int i = 0;

		part->parrelid = rootrelid;
		part->parkind = pt;
		part->parlevel = pby->partDepth;

		if (pby->partSpec)
			part->paristemplate = ((PartitionSpec *)pby->partSpec)->istemplate;
		else
			part->paristemplate = false;

		part->parnatts = list_length(pby->keys);

		attnums = palloc(list_length(pby->keys) * sizeof(AttrNumber));

		foreach(lc, pby->keys)
		{
			int colnum = lfirst_int(lc);

			attnums[i++] = colnum;
		}

		part->paratts = attnums;

		parclass = palloc(list_length(pby->keys) * sizeof(Oid));

		i = 0;
		foreach(lc, pby->keyopclass)
		{
			Oid opclass = lfirst_oid(lc);

			parclass[i++] = opclass;
		}
		part->parclass = parclass;

		add_partition(part);

		/*
		 * If we added a template, we treat that as a 'virtual' entry and then
		 * add a modifiable entry, which is not a template.
		 */
		if (part->paristemplate)
		{
			add_temp = true;
			parttemplid = part->partid;

			if (spec && spec->enc_clauses)
			{
				add_template_encoding_clauses(relid, parttemplid,
											  spec->enc_clauses);
			}

			/* if only building a template, don't add "real" entries */
			if (!bTemplate_Only)
			{
				part->paristemplate = false;
				add_partition(part);

			}
		}
		paroid = part->partid;
	}
	else
	/* oid of the template accompanying the real partition */
		parttemplid = get_part_oid(rootrelid, pby->partDepth, true);

	/* create partition rule */
	if (spec)
	{
		Node *listvalues = NULL;
		Node *rangestart = NULL;
		Node *rangeend = NULL;
		Node *rangeevery = NULL;
		bool rangestartinc = false;
		bool rangeendinc = false;
		int2 parruleord = 0;
		PartitionRule *rule = makeNode(PartitionRule);
		PartitionElem *el;
		char *parname = NULL;
		Oid parentoid = InvalidOid;

		Assert(list_length(spec->partElem) == 1);

		el = linitial(spec->partElem);

		parruleord = el->partno;

		if (el->partName)
1710
			parname = el->partName;
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773

		switch (pby->partType)
		{
			case PARTTYP_HASH: break;
			case PARTTYP_LIST:
			{
				PartitionValuesSpec *vspec =
				(PartitionValuesSpec *)el->boundSpec;

				/* might be NULL if this is a default spec */
				if (vspec)
					listvalues = (Node *)vspec->partValues;
			}
				break;
			case PARTTYP_RANGE:
			{
				PartitionBoundSpec *bspec =
				(PartitionBoundSpec *)el->boundSpec;
				PartitionRangeItem *ri;

				/* remember, could be a default clause */
				if (bspec)
				{
					Assert(IsA(bspec, PartitionBoundSpec));
					ri = (PartitionRangeItem *)bspec->partStart;
					if (ri)
					{
						Assert(ri->partedge == PART_EDGE_INCLUSIVE ||
							   ri->partedge == PART_EDGE_EXCLUSIVE);

						rangestartinc = ri->partedge == PART_EDGE_INCLUSIVE;
						rangestart = (Node *)ri->partRangeVal;
					}

					ri = (PartitionRangeItem *)bspec->partEnd;
					if (ri)
					{
						Assert(ri->partedge == PART_EDGE_INCLUSIVE ||
							   ri->partedge == PART_EDGE_EXCLUSIVE);

						rangeendinc = ri->partedge == PART_EDGE_INCLUSIVE;
						rangeend = (Node *)ri->partRangeVal;
					}

					if (bspec->partEvery)
					{
						ri = (PartitionRangeItem *)bspec->partEvery;
						rangeevery = (Node *)ri->partRangeVal;
					}
					else
						rangeevery = NULL;
				}
			}
				break;
			default:
				elog(ERROR, "unknown partitioning type %i", pby->partType);
				break;
		}

		/* Find our parent */
		if (!bTemplate_Only && (pby->partDepth > 0))
		{
			Oid			inhoid;
1774 1775 1776
			ScanKeyData	scankey;
			SysScanDesc sscan;
			HeapTuple tuple;
1777 1778 1779

			rel = heap_open(InheritsRelationId, AccessShareLock);

1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
			/* SELECT inhparent FROM pg_inherits WHERE inhrelid = :1 */
			ScanKeyInit(&scankey, Anum_pg_inherits_inhrelid,
						BTEqualStrategyNumber, F_OIDEQ,
						ObjectIdGetDatum(relid));
			/* XXX XXX: SnapshotAny */
			sscan = systable_beginscan(rel, InheritsRelidSeqnoIndexId, true,
									   SnapshotAny, 1, &scankey);
			tuple = systable_getnext(sscan);
			if (!tuple)
				elog(ERROR, "could not find pg_inherits row for rel %u", relid);
1790

1791
			inhoid = ((Form_pg_inherits) GETSTRUCT(tuple))->inhparent;
1792

1793
			systable_endscan(sscan);
1794 1795 1796 1797
			heap_close(rel, NoLock);

			rel = heap_open(PartitionRuleRelationId, AccessShareLock);

1798 1799 1800
			ScanKeyInit(&scankey, Anum_pg_partition_rule_parchildrelid,
						BTEqualStrategyNumber, F_OIDEQ,
						ObjectIdGetDatum(inhoid));
1801

1802 1803 1804 1805 1806 1807 1808
			/* XXX XXX: SnapshotAny */
			sscan = systable_beginscan(rel, PartitionRuleParchildrelidIndexId, true,
									   SnapshotAny, 1, &scankey);
			tuple = systable_getnext(sscan);
			if (!tuple)
				elog(ERROR, "could not find pg_partition_rule row with parchildrelid %u", relid);
			parentoid = HeapTupleGetOid(tuple);
1809

1810
			systable_endscan(sscan);
1811 1812 1813 1814 1815 1816 1817 1818
			heap_close(rel, NoLock);
		}
		else
			add_temp = true;

		/* we still might have to add template rules */
		if (!add_temp && OidIsValid(parttemplid))
		{
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
			ScanKeyData	scankey[3];
			SysScanDesc sscan;
			Relation	partrulerel;
			HeapTuple	tuple;

			partrulerel = heap_open(PartitionRuleRelationId, AccessShareLock);

			/*
			 * SELECT parchildrelid FROM pg_partition_rule
			 * WHERE paroid = :1
			 * AND parparentrule = :2
			 * AND parruleord = :3
			 */
			ScanKeyInit(&scankey[0], Anum_pg_partition_rule_paroid,
						BTEqualStrategyNumber, F_OIDEQ,
						ObjectIdGetDatum(parttemplid));
			ScanKeyInit(&scankey[1], Anum_pg_partition_rule_parparentrule,
						BTEqualStrategyNumber, F_OIDEQ,
						ObjectIdGetDatum(InvalidOid));
			ScanKeyInit(&scankey[2], Anum_pg_partition_rule_parruleord,
						BTEqualStrategyNumber, F_INT2EQ,
						Int16GetDatum(parruleord));
			/* XXX XXX: SnapshotAny */
			sscan = systable_beginscan(partrulerel,
									   PartitionRuleParoidParparentruleParruleordIndexId, true,
									   SnapshotAny, 3, scankey);

			tuple = systable_getnext(sscan);
			if (tuple)
			{
				Assert(((Form_pg_partition_rule) GETSTRUCT(tuple))->parchildrelid == InvalidOid);
			}
1851 1852
			else
				add_temp = true;
1853 1854
			systable_endscan(sscan);
			heap_close(partrulerel, AccessShareLock);
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
		}

		rule->paroid = paroid;
		rule->parchildrelid = relid;
		rule->parparentoid = parentoid;
		rule->parisdefault = el->isDefault;
		rule->parname = parname;
		rule->parruleord = parruleord;
		rule->parrangestartincl = rangestartinc;
		rule->parrangestart = rangestart;
		rule->parrangeendincl = rangeendinc;
		rule->parrangeend = rangeend;
		rule->parrangeevery = rangeevery;
		rule->parlistvalues = (List *)listvalues;
		rule->partemplatespaceId = InvalidOid; /* only valid for template */

		if (!bTemplate_Only)
			add_partition_rule(rule);

		if (OidIsValid(parttemplid) && add_temp)
		{
			rule->paroid = parttemplid;
			rule->parparentoid = InvalidOid;
			rule->parchildrelid = InvalidOid;

			if (el->storeAttr)
			{
				if (((AlterPartitionCmd *)el->storeAttr)->arg1)
					rule->parreloptions =
					(List *)((AlterPartitionCmd *)el->storeAttr)->arg1;
				if (((AlterPartitionCmd *)el->storeAttr)->arg2)
				{
					Oid			tablespaceId;

					tablespaceId =
					get_settable_tablespace_oid(
												strVal(((AlterPartitionCmd *)el->storeAttr)->arg2));

					/* get_settable_tablespace_oid will error out for us */
					Assert(OidIsValid(tablespaceId));

					/* only valid for template definitions */
					rule->partemplatespaceId = tablespaceId;
				}
			}
			add_partition_rule(rule);
		}
	}

	/* allow subsequent callers to see our work */
	CommandCounterIncrement();
} /* end add_part_to_catalog */

/*
 * parruleord_open_gap
 *
 * iterate over the specified set of range partitions (in *DESCENDING*
 * order) in pg_partition_rule and increment the parruleord in order
 * to open a "gap" for a new partition.  The stopkey is inclusive: to
 * insert a new partition at parruleord=5, set the stopkey to 5.  The
 * current partition at parruleord=5 (and all subsequent partitions)
 * are incremented by 1 to allow the insertion of the new partition.
 *
 * If closegap is set, parruleord values are decremented, to close a
 * gap in parruleord sequence.
 */
1921
static void
1922
parruleord_open_gap(Oid partid, int2 level, Oid parent, int2 ruleord,
1923
					int stopkey, bool closegap)
1924
{
1925 1926
	Relation	rel;
	Relation	irel;
1927
	HeapTuple tuple;
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
	ScanKeyData scankey[3];
	IndexScanDesc sd;

	/*---
	 * This is equivalent to:
	 * SELECT * FROM pg_partition_rule
	 * WHERE paroid = :1
	 * AND parparentrule = :2
	 * AND parruleord <= :3
	 * ORDER BY parruleord DESC
	 * FOR UPDATE
	 *
	 * Note that the attribute numbers below are attribute numbers
	 * of the index, rather than the table.
	 *---
	 */
	rel = heap_open(PartitionRuleRelationId, RowExclusiveLock);
	irel = index_open(PartitionRuleParoidParparentruleParruleordIndexId, RowExclusiveLock);
1946

1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
	ScanKeyInit(&scankey[0], 1,
				BTEqualStrategyNumber, F_OIDEQ,
				ObjectIdGetDatum(partid));
	ScanKeyInit(&scankey[1], 2,
				BTEqualStrategyNumber, F_OIDEQ,
				ObjectIdGetDatum(parent));
	ScanKeyInit(&scankey[2], 3,
				BTLessEqualStrategyNumber, F_INT2LE,
				Int16GetDatum(ruleord));
	sd = index_beginscan(rel, irel, SnapshotNow, 3, scankey);
	while (HeapTupleIsValid(tuple = index_getnext(sd, BackwardScanDirection)))
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
	{
		int old_ruleord;
		Form_pg_partition_rule rule_desc;

		Insist(HeapTupleIsValid(tuple));

		tuple = heap_copytuple(tuple);

		rule_desc =
		(Form_pg_partition_rule)GETSTRUCT(tuple);

		old_ruleord = rule_desc->parruleord;
		closegap ? rule_desc->parruleord-- : rule_desc->parruleord++;

1972 1973 1974 1975
		simple_heap_update(rel, &tuple->t_self, tuple);
		CatalogUpdateIndexes(rel, tuple);

		heap_freetuple(tuple);
1976 1977 1978 1979

		if (old_ruleord <= stopkey)
			break;
	}
1980 1981 1982
	index_endscan(sd);
	heap_close(irel, RowExclusiveLock);
	heap_close(rel, RowExclusiveLock);
1983 1984 1985 1986 1987 1988 1989 1990

} /* end parruleord_open_gap */

/*
 * Build up a PartitionRule based on a tuple from pg_partition_rule
 * Exported for ruleutils.c
 */
PartitionRule *
1991
ruleMakePartitionRule(HeapTuple tuple)
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
{
	Form_pg_partition_rule rule_desc =
	(Form_pg_partition_rule)GETSTRUCT(tuple);
	text *rule_text;
	char *rule_str;
	Datum rule_datum;
	bool isnull;
	PartitionRule *rule;

	rule = makeNode(PartitionRule);

	rule->parruleid = HeapTupleGetOid(tuple);
	rule->paroid = rule_desc->paroid;
	rule->parchildrelid = rule_desc->parchildrelid;
	rule->parparentoid = rule_desc->parparentrule;
	rule->parisdefault = rule_desc->parisdefault;

2009
	rule->parname = pstrdup(NameStr(rule_desc->parname));
2010 2011 2012 2013 2014 2015

	rule->parruleord = rule_desc->parruleord;
	rule->parrangestartincl = rule_desc->parrangestartincl;
	rule->parrangeendincl = rule_desc->parrangeendincl;

	/* start range */
2016 2017 2018
	rule_datum = SysCacheGetAttr(PARTRULEOID, tuple,
								 Anum_pg_partition_rule_parrangestart,
								 &isnull);
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
	Assert(!isnull);
	rule_text = DatumGetTextP(rule_datum);
	rule_str = DatumGetCString(DirectFunctionCall1(textout,
												   PointerGetDatum(rule_text)));

	rule->parrangestart = stringToNode(rule_str);

	pfree(rule_str);

	/* end range */
2029 2030 2031
	rule_datum = SysCacheGetAttr(PARTRULEOID, tuple,
								 Anum_pg_partition_rule_parrangeend,
								 &isnull);
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
	Assert(!isnull);
	rule_text = DatumGetTextP(rule_datum);
	rule_str = DatumGetCString(DirectFunctionCall1(textout,
												   PointerGetDatum(rule_text)));

	rule->parrangeend = stringToNode(rule_str);

	pfree(rule_str);

	/* every */
2042 2043 2044
	rule_datum = SysCacheGetAttr(PARTRULEOID, tuple,
								 Anum_pg_partition_rule_parrangeevery,
								 &isnull);
2045 2046 2047 2048 2049 2050 2051 2052
	Assert(!isnull);
	rule_text = DatumGetTextP(rule_datum);
	rule_str = DatumGetCString(DirectFunctionCall1(textout,
												   PointerGetDatum(rule_text)));

	rule->parrangeevery = stringToNode(rule_str);

	/* list values */
2053 2054 2055
	rule_datum = SysCacheGetAttr(PARTRULEOID, tuple,
								 Anum_pg_partition_rule_parlistvalues,
								 &isnull);
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
	Assert(!isnull);
	rule_text = DatumGetTextP(rule_datum);
	rule_str = DatumGetCString(DirectFunctionCall1(textout,
												   PointerGetDatum(rule_text)));

	rule->parlistvalues = stringToNode(rule_str);

	pfree(rule_str);

	if (rule->parlistvalues)
		Assert(IsA(rule->parlistvalues, List));

2068 2069 2070
	rule_datum = SysCacheGetAttr(PARTRULEOID, tuple,
								 Anum_pg_partition_rule_parreloptions,
								 &isnull);
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

	if (isnull)
		rule->parreloptions = NIL;
	else
	{
		ArrayType  *array = DatumGetArrayTypeP(rule_datum);
		Datum	   *options;
		int			noptions;
		List	   *opts = NIL;
		int i;

		/* XXX XXX: why not use untransformRelOptions ? */

		Assert(ARR_ELEMTYPE(array) == TEXTOID);

		deconstruct_array(array, TEXTOID, -1, false, 'i',
						  &options, NULL, &noptions);

		/* key/value pairs for storage clause */
		for (i = 0; i < noptions; i++)
		{
			char *n = DatumGetCString(DirectFunctionCall1(textout, options[i]));
			Value *v = NULL;
			char *s;

			s = strchr(n, '=');

			if (s)
			{
				*s = '\0';
				s++;
				if (*s)
					v = makeString(s);
			}

			opts = lappend(opts, makeDefElem(n, (Node *)v));
		}
		rule->parreloptions = opts;

	}

2112 2113 2114
	rule_datum = SysCacheGetAttr(PARTRULEOID, tuple,
								 Anum_pg_partition_rule_partemplatespace,
								 &isnull);
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
	if (isnull)
		rule->partemplatespaceId = InvalidOid;
	else
		rule->partemplatespaceId = DatumGetObjectId(rule_datum);

	return rule;
}

/*
 * Construct a Partition node from a pg_partition tuple and its description.
 * Result is in the given memory context.
 */
Partition *
2128
partMakePartition(HeapTuple tuple)
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
{
	oidvector *oids;
	int2vector *atts;
	bool isnull;
	Form_pg_partition partrow = (Form_pg_partition)GETSTRUCT(tuple);
	Partition *p;

	p = makeNode(Partition);

	p->partid = HeapTupleGetOid(tuple);
	p->parrelid = partrow->parrelid;
	p->parkind = partrow->parkind;
	p->parlevel = partrow->parlevel;
	p->paristemplate = partrow->paristemplate;
	p->parnatts = partrow->parnatts;

2145 2146 2147
	atts = DatumGetPointer(SysCacheGetAttr(PARTOID, tuple,
										   Anum_pg_partition_paratts,
										   &isnull));
2148
	Assert(!isnull);
2149 2150 2151
	oids = DatumGetPointer(SysCacheGetAttr(PARTOID, tuple,
										   Anum_pg_partition_parclass,
										   &isnull));
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
	Assert(!isnull);

	p->paratts = palloc(sizeof(int2) * p->parnatts);
	p->parclass = palloc(sizeof(Oid) * p->parnatts);

	memcpy(p->paratts, atts->values, sizeof(int2) * p->parnatts);
	memcpy(p->parclass, oids->values, sizeof(Oid) * p->parnatts);

	return p;
}

/*
 * Construct a PartitionNode-PartitionRule tree for the given part.
2165
 * Recurs to construct branches.  Note that the PartitionRule (and,
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
 * hence, the Oid) of the given part itself is not included in the
 * result.
 *
 *    relid				--	pg_class.oid of the partitioned table
 *    level				--	partitioning level
 *    parent			--	pg_partition_rule.oid of the parent of
 *    inctemplate		--	should the tree include template rules?
 *    mcxt				--	memory context
 *    includesubparts	--	whether or not to include sub partitions
 */
PartitionNode *
get_parts(Oid relid, int2 level, Oid parent, bool inctemplate,
2178
		  bool includesubparts)
2179 2180 2181 2182 2183
{
	PartitionNode *pnode = NULL;
	HeapTuple tuple;
	Relation rel;
	List *rules = NIL;
2184 2185
	ScanKeyData scankey[3];
	SysScanDesc sscan;
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202

	/* Though pg_partition and  pg_partition_rule are populated only
	 * on the entry database, we accept calls from QEs running on a
	 * segment database, but always return NULL; so our result is
	 * only meaningful on the entry database. */
	if (Gp_segment != -1)
		return pnode;

	/* select oid as partid, *
	 * from pg_partition
	 * where
	 *     parrelid = :relid and
	 *     parlevel = :level and
	 *     paristemplate = :inctemplate;
	 */
	rel = heap_open(PartitionRelationId, AccessShareLock);

2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
	ScanKeyInit(&scankey[0],
				Anum_pg_partition_parrelid,
				BTEqualStrategyNumber, F_OIDEQ,
				ObjectIdGetDatum(relid));
	ScanKeyInit(&scankey[1],
				Anum_pg_partition_parlevel,
				BTEqualStrategyNumber, F_INT2EQ,
				Int16GetDatum(level));
	ScanKeyInit(&scankey[2],
				Anum_pg_partition_paristemplate,
				BTEqualStrategyNumber, F_BOOLEQ,
				BoolGetDatum(inctemplate));
	sscan = systable_beginscan(rel, PartitionParrelidParlevelParistemplateIndexId, true,
							   SnapshotNow, 3, scankey);
	tuple = systable_getnext(sscan);
2218 2219 2220
	if (HeapTupleIsValid(tuple))
	{
		pnode = makeNode(PartitionNode);
2221
		pnode->part = partMakePartition(tuple);
2222 2223
	}

2224
	systable_endscan(sscan);
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
	heap_close(rel, AccessShareLock);

	if ( ! pnode )
		return pnode;

	/* select *
	 * from pg_partition_rule
	 * where
	 *     paroid = :pnode->part->partid and -- pg_partition.oid
	 *     parparentrule = :parent;
	 */
	rel = heap_open(PartitionRuleRelationId, AccessShareLock);

	if (includesubparts)
	{
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
		ScanKeyInit(&scankey[0],
					Anum_pg_partition_rule_paroid,
					BTEqualStrategyNumber, F_OIDEQ,
					ObjectIdGetDatum(pnode->part->partid));
		ScanKeyInit(&scankey[1],
					Anum_pg_partition_rule_parparentrule,
					BTEqualStrategyNumber, F_OIDEQ,
					ObjectIdGetDatum(parent));
		sscan = systable_beginscan(rel, PartitionRuleParoidParparentruleParruleordIndexId, true,
								   SnapshotNow, 2, scankey);
2250 2251 2252
	}
	else
	{
2253 2254 2255 2256 2257 2258
		ScanKeyInit(&scankey[0],
					Anum_pg_partition_rule_paroid,
					BTEqualStrategyNumber, F_OIDEQ,
					ObjectIdGetDatum(pnode->part->partid));
		sscan = systable_beginscan(rel, PartitionRuleParoidParparentruleParruleordIndexId, true,
								   SnapshotNow, 1, scankey);
2259 2260
	}

2261
	while (HeapTupleIsValid(tuple = systable_getnext(sscan)))
2262 2263 2264
	{
		PartitionRule *rule;

2265
		rule = ruleMakePartitionRule(tuple);
2266 2267 2268
		if (includesubparts)
		{
			rule->children = get_parts(relid, level + 1, rule->parruleid,
2269
									   inctemplate, true /*includesubparts*/);
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
		}

		if (rule->parisdefault)
			pnode->default_part = rule;
		else
		{
			rules = lappend(rules, rule);
		}
	}
	/* NOTE: this assert is valid, except for the case of splitting
	 * the very last partition of a table.  For that case, we must
	 * drop the last partition before re-adding the new pieces, which
	 * violates this invariant
	 */
	/*	Assert(inctemplate || list_length(rules) || pnode->default_part); */
	pnode->rules = rules;

2287
	systable_endscan(sscan);
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
	heap_close(rel, AccessShareLock);
	return pnode;
}

PartitionNode *
RelationBuildPartitionDesc(Relation rel, bool inctemplate)
{
	return RelationBuildPartitionDescByOid(RelationGetRelid(rel), inctemplate);
}

PartitionNode *
RelationBuildPartitionDescByOid(Oid relid, bool inctemplate)
{
	PartitionNode *n;

2303
	n = get_parts(relid, 0, 0, inctemplate, true /*includesubparts*/);
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323

	return n;
}

/*
 * Return a Bitmapset of the attribute numbers of a partitioned table
 * (not a part).  The attribute numbers refer to the root partition table.
 * Call only on the entry database.  Returns an empty set, if called on a
 * regular table or a part.
 *
 * Note: Reads the pg_partition catalog.  If you have a PartitionNode,
 * in hand, use get_partition_attrs and construct a Bitmapset from its
 * result instead.
 */
Bitmapset *
get_partition_key_bitmapset(Oid relid)
{
	Relation rel;
	HeapTuple tuple;
	TupleDesc tupledesc;
2324 2325
	ScanKeyData scankey;
	SysScanDesc sscan;
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
	Bitmapset *partition_key = NULL;

	/* Reject calls from QEs running on a segment database, since
	 * pg_partition and  pg_partition_rule are populated only
	 * on the entry database.
	 */
	Insist(Gp_segment == -1);

	/* select paratts
	 * from pg_partition
	 * where
	 *     parrelid = :relid and
	 *     not paristemplate;
	 */
	rel = heap_open(PartitionRelationId, AccessShareLock);
	tupledesc = RelationGetDescr(rel);

2343 2344 2345 2346 2347 2348 2349 2350
	ScanKeyInit(&scankey,
				Anum_pg_partition_parrelid,
				BTEqualStrategyNumber, F_OIDEQ,
				ObjectIdGetDatum(relid));
	sscan = systable_beginscan(rel, PartitionParrelidIndexId, true,
							   SnapshotNow, 1, &scankey);

	while (HeapTupleIsValid(tuple = systable_getnext(sscan)))
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
	{
		int i;
		int2 natts;
		int2vector *atts;
		bool isnull;
		Form_pg_partition partrow = (Form_pg_partition)GETSTRUCT(tuple);

		if (partrow->paristemplate)
			continue;  /* no interest in template parts */

		natts = partrow->parnatts;
		atts = DatumGetPointer(heap_getattr(tuple, Anum_pg_partition_paratts,
											tupledesc, &isnull));
		Insist(!isnull);

		for ( i = 0; i < natts; i++ )
			partition_key = bms_add_member(partition_key, atts->values[i]);
	}

2370
	systable_endscan(sscan);
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
	heap_close(rel, AccessShareLock);

	return partition_key;
}


/*
 * Return a list of partition attributes. Order is not guaranteed.
 * Caller must free the result.
 */
List *
get_partition_attrs(PartitionNode *pn)
{
	List *attrs = NIL;
	int i;

	if (!pn)
		return NIL;

	for (i = 0; i < pn->part->parnatts; i++)
		attrs = lappend_int(attrs, pn->part->paratts[i]);

	/* We don't want duplicates, do just go down a single branch */
	if (list_length(pn->rules))
	{
		PartitionRule *rule = linitial(pn->rules);

		return list_concat_unique_int(attrs, get_partition_attrs(rule->children));
	}
	else
		return attrs;
}

void
partition_get_policies_attrs(PartitionNode *pn, GpPolicy *master_policy,
							 List **cols)
{
	if (!pn)
		return;
	else
	{
		ListCell *lc;

		/*
		 * We use master_policy as a fast path. The assumption is that most
		 * child partitions look like the master so we don't want to enter
		 * the O(N^2) loop below if we can avoid it. Firstly, though, we must
		 * copy the master policy into the list.
		 */
		if (*cols == NIL && master_policy->nattrs)
		{
			int attno;

			for (attno = 0; attno < master_policy->nattrs; attno++)
				*cols = lappend_int(*cols, master_policy->attrs[attno]);
		}

		foreach(lc, pn->rules)
		{
			PartitionRule *rule = lfirst(lc);
			Relation rel = heap_open(rule->parchildrelid, NoLock);

			if (master_policy->nattrs != rel->rd_cdbpolicy->nattrs ||
				memcmp(master_policy->attrs, rel->rd_cdbpolicy->attrs,
					   (master_policy->nattrs * sizeof(AttrNumber))))
			{
				int attno;

				for (attno = 0; attno < rel->rd_cdbpolicy->nattrs; attno++)
				{
					if (!list_member_int(*cols,
										 rel->rd_cdbpolicy->attrs[attno]))
						*cols = lappend_int(*cols,
											rel->rd_cdbpolicy->attrs[attno]);
				}
			}
			heap_close(rel, NoLock);

			partition_get_policies_attrs(rule->children, master_policy,
										 cols);
		}
	}
}

bool
partition_policies_equal(GpPolicy *p, PartitionNode *pn)
{
	if (!pn)
		return true;

	if (pn->rules)
	{
		ListCell *lc;

		foreach(lc, pn->rules)
		{
			PartitionRule *rule = lfirst(lc);
			Relation rel = heap_open(rule->parchildrelid, NoLock);

			if (p->nattrs != rel->rd_cdbpolicy->nattrs)
			{
				heap_close(rel, NoLock);
				return false;
			}
			else
			{
				if (p->attrs == 0)
				/* random policy, skip */
					;
				if (memcmp(p->attrs, rel->rd_cdbpolicy->attrs,
						   (sizeof(AttrNumber) * p->nattrs)))
				{
					heap_close(rel, NoLock);
					return false;
				}
			}
			if (!partition_policies_equal(p, rule->children))
			{
				heap_close(rel, NoLock);
				return false;
			}
			heap_close(rel, NoLock);
		}
	}
	return true;
}

AttrNumber
max_partition_attr(PartitionNode *pn)
{
	AttrNumber n = 0;
	List *l = get_partition_attrs(pn);

	if (l)
	{
		ListCell *lc;

		foreach(lc, l)
		{
			AttrNumber att = lfirst_int(lc);

			n = Max(att, n);
		}
		pfree(l);
	}
	return n;
}

int
num_partition_levels(PartitionNode *pn)
{
	PartitionNode *tmp;
	int level = 0;

	tmp = pn;

	/* just descend one branch of the tree until we hit a leaf */
	while (tmp)
	{
		level++;
		if (tmp->rules)
		{
			PartitionRule *rule = linitial(tmp->rules);
			tmp = rule->children;
		}
		else if (tmp->default_part)
		{
			PartitionRule *rule = tmp->default_part;
			tmp = rule->children;
		}
		else
			tmp = NULL;
	}

	return level;
}

/* Return the pg_class Oids of the relations representing parts of the
 * PartitionNode tree headed by the argument PartitionNode.
 */
List *
all_partition_relids(PartitionNode *pn)
{
	if (!pn)
		return NIL;
	else
	{
		ListCell *lc;
		List *out = NIL;

		foreach(lc, pn->rules)
		{
			PartitionRule *rule = lfirst(lc);

			Assert(OidIsValid(rule->parchildrelid));
			out = lappend_oid(out, rule->parchildrelid);

			out = list_concat(out, all_partition_relids(rule->children));
		}
		if (pn->default_part)
		{
			out = lappend_oid(out, pn->default_part->parchildrelid);
			out = list_concat(out,
							  all_partition_relids(pn->default_part->children));
		}
		return out;
	}
}

/*
 * getPartConstraintsContainsKeys
 *   Given an OID, returns a Node that represents the check constraints
 *   on the table having constraint keys from the given key list.
 *   If there are multiple constraints they are AND'd together.
 */
static Node *
getPartConstraintsContainsKeys(Oid partOid, Oid rootOid, List *partKey)
{
2589 2590
	ScanKeyData	scankey;
	SysScanDesc sscan;
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
	Relation        conRel;
	HeapTuple       conTup;
	Node            *conExpr;
	Node            *result = NULL;
	Datum           conBinDatum;
	Datum			conKeyDatum;
	char            *conBin;
	bool            conbinIsNull = false;
	bool			conKeyIsNull = false;
	AttrMap		*map;

	/* create the map needed for mapping attnums */
	Relation rootRel = heap_open(rootOid, AccessShareLock);
	Relation partRel = heap_open(partOid, AccessShareLock);

	map_part_attrs(partRel, rootRel, &map, false);

	heap_close(rootRel, AccessShareLock);
	heap_close(partRel, AccessShareLock);

	/* Fetch the pg_constraint row. */
	conRel = heap_open(ConstraintRelationId, AccessShareLock);

2614 2615 2616 2617 2618
	ScanKeyInit(&scankey, Anum_pg_constraint_conrelid,
				BTEqualStrategyNumber, F_OIDEQ,
				ObjectIdGetDatum(partOid));
	sscan = systable_beginscan(conRel, ConstraintRelidIndexId, true,
							   SnapshotNow, 1, &scankey);
2619

2620
	while (HeapTupleIsValid(conTup = systable_getnext(sscan)))
2621 2622
	{
		/* we defer the filter on contype to here in order to take advantage of
2623
		 * the index on conrelid in the scan */
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
		Form_pg_constraint conEntry = (Form_pg_constraint) GETSTRUCT(conTup);
		if (conEntry->contype != 'c')
		{
			continue;
		}
		/* Fetch the constraint expression in parsetree form */
		conBinDatum = heap_getattr(conTup, Anum_pg_constraint_conbin,
				RelationGetDescr(conRel), &conbinIsNull);

		Assert (!conbinIsNull);
		/* map the attnums in constraint expression to root attnums */
		conBin = TextDatumGetCString(conBinDatum);
		conExpr = stringToNode(conBin);
		conExpr = attrMapExpr(map, conExpr);

		// fetch the key associated with this constraint
		conKeyDatum = heap_getattr(conTup, Anum_pg_constraint_conkey,
				RelationGetDescr(conRel), &conKeyIsNull);
		Datum *dats = NULL;
		int numKeys = 0;

		bool found = false;
		// extract key elements
		deconstruct_array(DatumGetArrayTypeP(conKeyDatum), INT2OID, 2, true, 's', &dats, NULL, &numKeys);
		for (int i = 0; i < numKeys; i++)
		{
			int16 key_elem =  DatumGetInt16(dats[i]);
			if (list_find_int(partKey, key_elem) >= 0)
			{
				found = true;
				break;
			}
		}

		if (found)
		{
			if (result)
				result = (Node *)make_andclause(list_make2(result, conExpr));
			else
				result = conExpr;
		}
	}

	if (map)
	{
		pfree(map);
	}
2671
	systable_endscan(sscan);
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
	heap_close(conRel, AccessShareLock);

	return result;
}

/*
 * Create a hash table with both key and hash entry as a constraint Node*
 * Input:
 *	nEntries - estimated number of elements in the hash table
 * Outout:
 *	a pointer to the created hash table
 */
static HTAB*
createConstraintHashTable(unsigned int nEntries)
{
	HASHCTL	hash_ctl;
	MemSet(&hash_ctl, 0, sizeof(hash_ctl));

	hash_ctl.keysize = sizeof(Node**);
	hash_ctl.entrysize = sizeof(ConNodeEntry);
	hash_ctl.hash = constrNodeHash;
	hash_ctl.match = constrNodeMatch;

	return hash_create("ConstraintHashTable", nEntries, &hash_ctl, HASH_ELEM | HASH_FUNCTION | HASH_COMPARE);
}

/*
 * Hash function for a constraint node
 * Input:
 *	keyPtr - pointer to hash key
 *	keysize - not used, hash function must have this signature
 * Output:
 *	result - hash value as an unsigned integer
 */
static uint32
constrNodeHash(const void *keyPtr, Size keysize)
{
	uint32 result = 0;
	Node *constr = *((Node **) keyPtr);
	int con_len = 0;
	if (constr)
	{
		char* constr_bin = nodeToBinaryStringFast(constr, &con_len);
		Assert(con_len > 0);
		result = tag_hash(constr_bin, con_len);
		pfree(constr_bin);
	}

	return result;
}

/**
 * Match function for two constraint nodes.
 * Input:
 *	keyPtr1, keyPtr2 - pointers to two hash keys
 *	keysize - not used, hash function must have this signature
 * Output:
 *	0 if two hash keys match, 1 otherwise
 */
static int
constrNodeMatch(const void *keyPtr1, const void *keyPtr2, Size keysize)
{
	Node *left = *((Node **) keyPtr1);
	Node *right = *((Node **) keyPtr2);
	return equal(left, right) ? 0 : 1;
}

/*
 * Check if a partitioning hierarchy is uniform, i.e. for each partitioning level,
 * all the partition nodes should have the same number of children, AND the child nodes
 * at the same position w.r.t the subtree should have the same constraint on the partition
 * key of that level.
 * The time complexity of this check is linear to the number of nodes in the partitioning
 * hierarchy.
 */
bool
rel_partitioning_is_uniform(Oid rootOid)
{
	Assert(OidIsValid(rootOid));
	Assert(rel_is_partitioned(rootOid));

	bool result = true;

	MemoryContext uniformityMemoryContext = AllocSetContextCreate(CurrentMemoryContext,
			"PartitioningIsUniform",
			ALLOCSET_DEFAULT_MINSIZE,
			ALLOCSET_DEFAULT_INITSIZE,
			ALLOCSET_DEFAULT_MAXSIZE);
	MemoryContext callerMemoryContext = MemoryContextSwitchTo(uniformityMemoryContext);

	PartitionNode *pnRoot = RelationBuildPartitionDescByOid(rootOid, false /*inctemplate*/);
	List *queue = list_make1(pnRoot);

	while (result)
	{
		/* we process the partitioning tree level by level, each outer loop corresponds to one level */
		int size = list_length(queue);
		if (0 == size)
		{
			break;
		}

		/* Look ahead to get the number of children of the first partition node in this level.
		 * This allows us to initialize a hash table on the constraints which each partition node
		 * in this level will be compared to.
		 */
		PartitionNode *pn_ahead = (PartitionNode*) linitial(queue);
		int nChildren = list_length(pn_ahead->rules) + (pn_ahead->default_part ? 1 : 0);
		HTAB* conHash = createConstraintHashTable(nChildren);

		/* get the list of part keys for this level */
		List *lpartkey = NIL;
		for (int i = 0; i < pn_ahead->part->parnatts; i++)
		{
			lpartkey = lappend_int(lpartkey, pn_ahead->part->paratts[i]);
		}

		/* now iterate over all partition nodes on this level */
		bool fFirstNode = true;
		while (size > 0 && result)
		{
			PartitionNode *pn = (PartitionNode*) linitial(queue);
			List *lrules = get_partition_rules(pn);
			int curr_nChildren = list_length(lrules);

			if (curr_nChildren != nChildren)
			{
				result = false;
				break;
			}

			/* loop over the children's constraints of this node */
			ListCell *lc = NULL;
			foreach(lc, lrules)
			{
				PartitionRule *pr = (PartitionRule*) lfirst(lc);
				Node *curr_con = getPartConstraintsContainsKeys(pr->parchildrelid, rootOid, lpartkey);
				bool found = false;

				/* we populate the hash table with the constraints of the children of the
				 * first node in this level */
				if (fFirstNode)
				{
					/* add current constraint to hash table */
					void *con_entry = hash_search(conHash, &curr_con, HASH_ENTER, &found);
					if (con_entry == NULL)
					{
						ereport(ERROR, (errcode(ERRCODE_OUT_OF_MEMORY), errmsg("out of memory")));
					}
					((ConNodeEntry*) con_entry)->entry = curr_con;
				}

				/* starting from the second node in this level, we probe the children's constraints */
				else
				{
					hash_search(conHash, &curr_con, HASH_FIND, &found);
					if (!found)
					{
						result = false;
						break;
					}
				}

				if (pr->children)
				{
					queue = lappend(queue, pr->children);
				}
			}
			size--;
			fFirstNode = false;
			queue = list_delete_first(queue);
			pfree(lrules);
		}

		hash_destroy(conHash);
		pfree(lpartkey);

	}

	MemoryContextSwitchTo(callerMemoryContext);
	MemoryContextDelete(uniformityMemoryContext);

	return result;
}

/* Return the pg_class Oids of the relations representing leaf parts of the
 * PartitionNode tree headed by the argument PartitionNode.
 *
 * The caller should be responsible for freeing the list after
 * using it.
 */
List *
all_leaf_partition_relids(PartitionNode *pn)
{
	if (NULL == pn)
	{
		return NIL;
	}

	ListCell *lc;
	List *leaf_relids = NIL;

	foreach(lc, pn->rules)
	{
		PartitionRule *rule = lfirst(lc);
		if (NULL != rule->children)
		{
			leaf_relids = list_concat(leaf_relids, all_leaf_partition_relids(rule->children));
		}
		else
		{
			leaf_relids = lappend_oid(leaf_relids, rule->parchildrelid);
		}

	}
	if (NULL != pn->default_part)
	{
		if (NULL != pn->default_part->children)
		{
			leaf_relids = list_concat(leaf_relids,
							  all_leaf_partition_relids(pn->default_part->children));
		}
		else
		{
			leaf_relids = lappend_oid(leaf_relids, pn->default_part->parchildrelid);
		}
	}
	return leaf_relids;
}

/*
 * Given an Oid of a partition rule, return all leaf-level table Oids that are
 * descendants of the given rule.
 * Input:
 *	ruleOid - the oid of an entry in pg_partition_rule
 * Output:
 *	a list of Oids of all leaf-level partition tables under the given rule in
 *	the partitioning hierarchy.
 */
static List *
rel_get_leaf_relids_from_rule(Oid ruleOid)
{
H
Heikki Linnakangas 已提交
2914 2915 2916
	ScanKeyData	scankey;
	Relation	part_rule_rel;
	SysScanDesc sscan;
2917
	bool		hasChildren = false;
H
Heikki Linnakangas 已提交
2918 2919 2920
	List	   *lChildrenOid = NIL;
	HeapTuple	tuple;

2921 2922 2923 2924 2925
	if (!OidIsValid(ruleOid))
	{
		return NIL;
	}

H
Heikki Linnakangas 已提交
2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
	part_rule_rel = heap_open(PartitionRuleRelationId, AccessShareLock);

	ScanKeyInit(&scankey, Anum_pg_partition_rule_parparentrule,
				BTEqualStrategyNumber, F_OIDEQ,
				ObjectIdGetDatum(ruleOid));

	/* No suitable index */
	sscan = systable_beginscan(part_rule_rel, InvalidOid, false,
							   SnapshotNow, 1, &scankey);

	/*
	 * If we are still in mid-level, recursively call this function on children rules of
	 * the given rule.
	 */
	while ((tuple = systable_getnext(sscan)) != NULL)
	{
		hasChildren = true;
		lChildrenOid = list_concat(lChildrenOid, rel_get_leaf_relids_from_rule(HeapTupleGetOid(tuple)));
	}

2946 2947 2948
	/* if ruleOid is not parent of any rule, we have reached the leaf level and
	 * we need to append parchildrelid of this entry to the output
	 */
H
Heikki Linnakangas 已提交
2949
	if (!hasChildren)
2950
	{
H
Heikki Linnakangas 已提交
2951 2952 2953 2954 2955 2956 2957
		HeapTuple tuple;
		Form_pg_partition_rule rule_desc;

		tuple = SearchSysCache1(PARTRULEOID, ObjectIdGetDatum(ruleOid));
		if (!tuple)
			elog(ERROR, "cache lookup failed for partition rule with OID %u", ruleOid);
		rule_desc = (Form_pg_partition_rule) GETSTRUCT(tuple);
2958 2959 2960

		lChildrenOid = lcons_oid(rule_desc->parchildrelid, lChildrenOid);

H
Heikki Linnakangas 已提交
2961
		ReleaseSysCache(tuple);
2962 2963
	}

H
Heikki Linnakangas 已提交
2964 2965 2966 2967
	systable_endscan(sscan);

	heap_close(part_rule_rel, AccessShareLock);

2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
	return lChildrenOid;
}

/* Given a partition table Oid (root or interior), return the Oids of all leaf-level
 * children below it. Similar to all_leaf_partition_relids() but takes Oid as input.
 */
List *
rel_get_leaf_children_relids(Oid relid)
{
	PartStatus ps = rel_part_status(relid);
	List *leaf_relids = NIL;
	Assert(PART_STATUS_INTERIOR == ps || PART_STATUS_ROOT == ps);

	if (PART_STATUS_ROOT == ps)
	{
2983 2984 2985 2986
		PartitionNode *pn;

		pn = get_parts(relid, 0 /*level*/, 0 /*parent*/, false /*inctemplate*/,
					   true /*includesubparts*/);
2987 2988 2989 2990 2991
		leaf_relids = all_leaf_partition_relids(pn);
		pfree(pn);
	}
	else if (PART_STATUS_INTERIOR == ps)
	{
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
		Relation	partrulerel;
		ScanKeyData scankey;
		SysScanDesc sscan;
		HeapTuple tuple;

		/* SELECT * FROM pg_partition_rule WHERE parchildrelid = :1 */
		partrulerel = heap_open(PartitionRuleRelationId, AccessShareLock);

		ScanKeyInit(&scankey, Anum_pg_partition_rule_parchildrelid,
					BTEqualStrategyNumber, F_OIDEQ,
					ObjectIdGetDatum(relid));

		sscan = systable_beginscan(partrulerel, PartitionRuleParchildrelidIndexId, true,
								   SnapshotNow, 1, &scankey);
		tuple = systable_getnext(sscan);
3007 3008 3009 3010
		if (HeapTupleIsValid(tuple))
		{
			leaf_relids = rel_get_leaf_relids_from_rule(HeapTupleGetOid(tuple));
		}
3011 3012
		systable_endscan(sscan);
		heap_close(partrulerel, AccessShareLock);
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
	}
	else if (PART_STATUS_LEAF == ps)
	{
		leaf_relids = list_make1_oid(relid);
	}

	return leaf_relids;
}

/* Return the pg_class Oids of the relations representing interior parts of the
 * PartitionNode tree headed by the argument PartitionNode.
 *
 * The caller is responsible for freeing the list after using it.
 */
List *
all_interior_partition_relids(PartitionNode *pn)
{
	if (NULL == pn)
	{
		return NIL;
	}

	ListCell *lc;
	List *interior_relids = NIL;

	foreach(lc, pn->rules)
	{
		PartitionRule *rule = lfirst(lc);
		if (rule->children)
		{
			interior_relids = lappend_oid(interior_relids, rule->parchildrelid);
			interior_relids = list_concat(interior_relids, all_interior_partition_relids(rule->children));
		}
	}

	if (pn->default_part)
	{
		if (pn->default_part->children)
		{
			interior_relids = lappend_oid(interior_relids, pn->default_part->parchildrelid);
			interior_relids = list_concat(interior_relids,
							  all_interior_partition_relids(pn->default_part->children));
		}
	}

	return interior_relids;
}

/*
 * Return the number of leaf parts of the partitioned table with the given oid
 */
int
countLeafPartTables(Oid rootOid)
{
	Assert (rel_is_partitioned(rootOid));

	PartitionNode *pn = get_parts(rootOid, 0 /* level */, 0 /* parent */, false /* inctemplate */,
3070
								  true /* include subparts */);
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118

	List *lRelOids = all_leaf_partition_relids(pn);
	Assert (list_length(lRelOids) > 0);
	int count = list_length(lRelOids);
	list_free(lRelOids);
	pfree(pn);
	return count;
}

/* Return the pg_class Oids of the relations representing the parts
 * of the PartitionRule tree headed by the argument PartitionRule.
 *
 * This local function is similar to all_partition_relids but enters
 * at a PartitionRule which is more convenient in some cases, e.g.,
 * on the topRule of a PgPartRule.
 */
List *
all_prule_relids(PartitionRule *prule)
{
	ListCell *lcr;
	PartitionNode *pnode = NULL;

	List *oids = NIL; /* of pg_class Oid */

	if ( prule )
	{
		oids = lappend_oid(oids, prule->parchildrelid);

		pnode = prule->children;
		if ( pnode )
		{
			oids = list_concat(oids, all_prule_relids(pnode->default_part));
			foreach (lcr, pnode->rules)
			{
				PartitionRule *child = (PartitionRule*)lfirst(lcr);
				oids = list_concat(oids, all_prule_relids(child));
			}
		}
	}
	return oids;
}

/*
 * Returns the parent Oid from the given part Oid.
 */
Oid
rel_partition_get_root(Oid relid)
{
3119 3120 3121 3122 3123
	Relation	inhrel;
	ScanKeyData scankey;
	SysScanDesc sscan;
	HeapTuple	tuple;
	Oid			masteroid;
3124

3125
	inhrel = heap_open(InheritsRelationId, AccessShareLock);
3126

3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
	/* SELECT inhparent FROM pg_inherits WHERE inhrelid = :1 */
	ScanKeyInit(&scankey, Anum_pg_inherits_inhrelid,
				BTEqualStrategyNumber, F_OIDEQ,
				ObjectIdGetDatum(relid));
	sscan = systable_beginscan(inhrel, InheritsRelidSeqnoIndexId, true,
							   SnapshotNow, 1, &scankey);
	tuple = systable_getnext(sscan);
	if (!tuple)
		masteroid = InvalidOid;
	else
		masteroid = ((Form_pg_inherits) GETSTRUCT(tuple))->inhparent;

	systable_endscan(sscan);
	heap_close(inhrel, AccessShareLock);
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157

	return masteroid;
}

/* Get the top relation of the partitioned table of which the given
 * relation is a part, or error.
 *
 *   select parrelid
 *   from pg_partition
 *   where oid = (
 *     select paroid
 *     from pg_partition_rule
 *     where parchildrelid = relid);
 */
Oid
rel_partition_get_master(Oid relid)
{
3158 3159 3160 3161
	Relation	partrulerel;
	ScanKeyData scankey;
	SysScanDesc sscan;
	HeapTuple	tuple;
3162 3163
	Oid			paroid;
	Oid			masteroid;
3164 3165 3166 3167 3168

	/* pg_partition and  pg_partition_rule are populated only on the
	 * entry database, so our result is only meaningful there. */
	Insist(Gp_segment == -1);

3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
	partrulerel = heap_open(PartitionRuleRelationId, AccessShareLock);

	/* SELECT paroid FROM pg_partition_rule WHERE parchildrelid = :1 */
	ScanKeyInit(&scankey, Anum_pg_partition_rule_parchildrelid,
				BTEqualStrategyNumber, F_OIDEQ,
				ObjectIdGetDatum(relid));

	sscan = systable_beginscan(partrulerel, PartitionRuleParchildrelidIndexId, true,
							   SnapshotNow, 1, &scankey);
	tuple = systable_getnext(sscan);
	if (tuple)
		paroid = ((Form_pg_partition_rule) GETSTRUCT(tuple))->paroid;
	else
		paroid = InvalidOid;

	systable_endscan(sscan);
	heap_close(partrulerel, AccessShareLock);
3186 3187 3188 3189

	if (!OidIsValid(paroid))
		return InvalidOid;

3190 3191
	tuple = SearchSysCache1(PARTOID, ObjectIdGetDatum(paroid));
	if (!tuple)
3192 3193 3194
		elog(ERROR, "could not find pg_partition entry with oid %d for "
			 "pg_partition_rule with child table %d", paroid, relid);

3195 3196
	masteroid = ((Form_pg_partition) GETSTRUCT(tuple))->parrelid;
	ReleaseSysCache(tuple);
3197 3198 3199 3200 3201 3202 3203 3204 3205

	return masteroid;

} /* end rel_partition_get_master */

/* given a relid, build a path list from the master tablename down to
 * the partition for that relation, using partition names if possible,
 * else rank or value expressions.
 */
3206 3207
List *
rel_get_part_path1(Oid relid)
3208
{
3209 3210 3211 3212 3213 3214 3215
	Relation	partrulerel;
	ScanKeyData scankey;
	SysScanDesc sscan;
	HeapTuple	tuple;
	Oid			paroid = InvalidOid;
	Oid			parparentrule = InvalidOid;
	List	   *lrelid = NIL;
3216 3217 3218 3219 3220

	/* pg_partition and  pg_partition_rule are populated only on the
	 * entry database, so our result is only meaningful there. */
	Insist(Gp_segment == -1);

3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
	partrulerel = heap_open(PartitionRuleRelationId, AccessShareLock);

	/*
	 * Use the relid of the table to find the first rule
	 *
	 * SELECT paroid FROM pg_partition_rule WHERE parchildrelid = :1
	 */
	ScanKeyInit(&scankey, Anum_pg_partition_rule_parchildrelid,
				BTEqualStrategyNumber, F_OIDEQ,
				ObjectIdGetDatum(relid));
	sscan = systable_beginscan(partrulerel, PartitionRuleParchildrelidIndexId, true,
							   SnapshotNow, 1, &scankey);
	tuple = systable_getnext(sscan);
3234 3235 3236 3237

	if (HeapTupleIsValid(tuple))
	{
		Form_pg_partition_rule rule_desc =
3238
			(Form_pg_partition_rule) GETSTRUCT(tuple);
3239 3240 3241 3242 3243 3244 3245 3246

		paroid = rule_desc->paroid;
		parparentrule = rule_desc->parparentrule;

		/* prepend relid of child table to list */
		lrelid = lcons_oid(rule_desc->parchildrelid, lrelid);
	}

3247 3248 3249
	systable_endscan(sscan);
	heap_close(partrulerel, AccessShareLock);

3250 3251 3252 3253 3254 3255 3256
	if (!OidIsValid(paroid))
		return NIL;

	/* walk up the tree using the parent rule oid */

	while (OidIsValid(parparentrule))
	{
3257
		tuple = SearchSysCache1(PARTRULEOID, ObjectIdGetDatum(parparentrule));
3258 3259 3260
		if (HeapTupleIsValid(tuple))
		{
			Form_pg_partition_rule rule_desc =
3261
				(Form_pg_partition_rule) GETSTRUCT(tuple);
3262 3263 3264 3265 3266 3267

			paroid = rule_desc->paroid;
			parparentrule = rule_desc->parparentrule;

			/* prepend relid of child table to list */
			lrelid = lcons_oid(rule_desc->parchildrelid, lrelid);
3268 3269

			ReleaseSysCache(tuple);
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
		}
		else
			parparentrule = InvalidOid; /* we are done */
	}

	return lrelid;

} /* end rel_get_part_path1 */

static List *rel_get_part_path(Oid relid)
{
	PartitionNode		*pNode	   = NULL;
	Partition			*part	   = NULL;
	List				*lrelid	   = NIL;
	List				*lnamerank = NIL;
	List				*lnrv	   = NIL;
	ListCell			*lc, *lc2;
	Oid					 masteroid = InvalidOid;

	masteroid = rel_partition_get_master(relid);

	if (!OidIsValid(masteroid))
		return NIL;

	/* call the guts of RelationBuildPartitionDesc */
3295
	pNode = get_parts(masteroid, 0, 0, false, true /*includesubparts*/);
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364

	if (!pNode)
	{
		return NIL;
	}

	part = pNode->part;

	/* get the relids for each table that corresponds to the partition
	 * heirarchy from the master to the specified partition
	 */
	lrelid = rel_get_part_path1(relid);

	/* walk the partition tree, finding the partition for each relid,
	 * and extract useful information (name, rank, value)
	 */
	foreach(lc, lrelid)
	{
		Oid parrelid = lfirst_oid(lc);
		PartitionRule *prule;
		int rulerank = 1;

		Assert(pNode);

		part = pNode->part;

		rulerank = 1;

		foreach (lc2, pNode->rules)
		{
			prule = (PartitionRule *)lfirst(lc2);

			if (parrelid == prule->parchildrelid)
			{
				pNode = prule->children;
				goto L_rel_get_part_path_match;
			}
			rulerank++;
		}

		/* if we get here, then must match the default partition */
		prule = pNode->default_part;

		Assert(parrelid == prule->parchildrelid);

		/* default partition must have a name (and no rank) */
		Assert (prule->parname && strlen(prule->parname));

		pNode = prule->children;
		rulerank = 0;

	L_rel_get_part_path_match:

		if (!rulerank) /* must be default, so it has a name, but no
						* rank or value */
		{
			lnrv = list_make3(prule->parname, NULL, NULL);
		}
		else if (part->parkind == 'l') /* list partition by value */
		{
			char				*idval	= NULL;
			ListCell			*lc3;
			List				*l1		= (List *)prule->parlistvalues;
			StringInfoData       sid1;
			int2				 nkeys  = part->parnatts;
			int2				 parcol = 0;

			initStringInfo(&sid1);

			/*			foreach(lc3, l1) */
			/* don't loop -- just need first set of values */

			lc3 = list_head(l1);

			if (lc3)
			{
				List		*vals = lfirst(lc3);
				ListCell	*lcv  = list_head(vals);

				/* Note: similar code in
				 * ruleutils.c:partition_rule_def_worker
				 */

				for (parcol = 0; parcol < nkeys; parcol++)
				{
					Const *con = lfirst(lcv);

					if (lcv != list_head(vals))
						appendStringInfoString(&sid1, ", ");

					idval =
					deparse_expression((Node*)con,
									   deparse_context_for(get_rel_name(relid),
														   relid),
									   false, false);

					appendStringInfo(&sid1, "%s", idval);

					lcv = lnext(lcv);
				} /* end for parcol */
			}
			/* list - no rank */
			lnrv = list_make3(prule->parname, NULL, sid1.data);
		}
		else /* range (or hash) - use rank (though rank is not really
			  * appropriate for hash)
			  */
		{
			char *rtxt = palloc(NAMEDATALEN);

			sprintf(rtxt, "%d", rulerank);

			/* not list - rank, but no value */
			lnrv = list_make3(prule->parname, rtxt, NULL);
		}

		/* build the list of (lists of name, rank, value) for each level */
		lnamerank = lappend(lnamerank, lnrv);

	} /* end foreach lc (walking list of relids) */

	return lnamerank;
} /* end rel_get_part_path */

char *
rel_get_part_path_pretty(Oid relid,
									  char *separator,
									  char *lastsep)
{
	List				*lnamerank = NIL;
	List				*lnrv	   = NIL;
	ListCell			*lc, *lc2;
	int maxlen;
	StringInfoData			 sid1, sid2;

	lnamerank = rel_get_part_path(relid);

	maxlen = list_length(lnamerank);

	if (!maxlen)
		return NULL;

	Assert(separator);
	Assert(lastsep);

	initStringInfo(&sid1);
	initStringInfo(&sid2);

	foreach(lc, lnamerank)
	{
		int lcnt = 0;

		lnrv = (List *)lfirst(lc);

		maxlen--;

		appendStringInfo(&sid1, "%s", maxlen ? separator : lastsep);

		lcnt = 0;

		foreach (lc2, lnrv)
		{
			char *str = (char *)lfirst(lc2);

			truncateStringInfo(&sid2, 0);

			switch(lcnt)
			{
				case 0:
					if (str && strlen(str))
					{
						appendStringInfo(&sid2, "\"%s\"", str);
						goto l_pretty;
					}
					break;

				case 1:
					if (str && strlen(str))
					{
						appendStringInfo(&sid2, "FOR(RANK(%s))", str);
						goto l_pretty;
					}
					break;

				case 2:
					if (str && strlen(str))
					{
						appendStringInfo(&sid2, "FOR(%s)", str);
						goto l_pretty;
					}
					break;
				default:
					break;
			}
			lcnt++;
		}

	l_pretty:

		appendStringInfo(&sid1, "%s", sid2.data);
	}

	return sid1.data;
} /* end rel_get_part_path_pretty */


/*
 * ChoosePartitionName: given a table name, partition "depth", and a
 * partition name, generate a unique name using ChooseRelationName.
 * The partition depth is the raw parlevel (zero-based), which is
 * incremented by 1 to be one-based.
 *
 * Note: calls CommandCounterIncrement.
 *
 * Returns a palloc'd string (from ChooseRelationName)
 */
char *
ChoosePartitionName(const char *tablename, int partDepth,
					const char *partname, Oid namespaceId)
{
	char	*relname;
	char	 depthstr[NAMEDATALEN];
	char     prtstr[NAMEDATALEN];

	/* build a relation name (see transformPartitionBy */
	snprintf(depthstr, sizeof(depthstr), "%d", partDepth+1);
	snprintf(prtstr, sizeof(prtstr), "prt_%s", partname);

	relname = ChooseRelationName(tablename,
								 depthstr, /* depth */
								 prtstr,	/* part spec */
								 namespaceId);
	CommandCounterIncrement();

	return relname;
}

/*
 * Given a constant expression, build a datum according to
 * part->paratts and the relation tupledesc.  Needs work for
 * type_coercion, multicol, etc.  The returned Datum * is suitable for
 * use in SelectPartition
 */
static Datum *
magic_expr_to_datum(Relation rel, PartitionNode *partnode,
					Node *expr, bool **ppisnull)
{
	Partition  *part = partnode->part;
	TupleDesc	tupleDesc;
	Datum	   *values;
	bool	   *isnull;
	int ii, jj;

	Assert(rel);

	tupleDesc = RelationGetDescr(rel);

	/* Preallocate values/isnull arrays */
	ii = tupleDesc->natts;
	values = (Datum *) palloc(ii * sizeof(Datum));
	isnull = (bool *) palloc(ii * sizeof(bool));
	memset(values, 0, ii * sizeof(Datum));
	memset(isnull, true, ii * sizeof(bool));

	*ppisnull = isnull;

	Assert (IsA(expr, List));

	jj = list_length((List *)expr);

	if (jj > ii)
		ereport(ERROR,
				(errcode(ERRCODE_DATATYPE_MISMATCH),
				 errmsg("too many columns in boundary specification (%d > %d)",
						jj, ii)));

	if (jj > part->parnatts)
		ereport(ERROR,
				(errcode(ERRCODE_DATATYPE_MISMATCH),
				 errmsg("too many columns in boundary specification (%d > %d)",
						jj, part->parnatts)));

	{
		ListCell   *lc;
		int i = 0;

		foreach(lc, (List *)expr)
		{
			Node *n1 = (Node *) lfirst(lc);
			Const *c1;
			AttrNumber attno = part->paratts[i++];
			Form_pg_attribute attribute = tupleDesc->attrs[attno - 1];
			Oid lhsid = attribute->atttypid;

			if (!IsA(n1, Const))
				ereport(ERROR,
						(errcode(ERRCODE_DATATYPE_MISMATCH),
						 errmsg("Not a constant expression")));

			c1 = (Const *)n1;

			if (lhsid != c1->consttype)
			{
				/* see coerce_partition_value */
				Node *out;

				out = coerce_partition_value(n1, lhsid, attribute->atttypmod,
											 char_to_parttype(partnode->part->parkind));
				if (!out)
					ereport(ERROR,
							(errcode(ERRCODE_DATATYPE_MISMATCH),
							 errmsg("cannot coerce column type (%s versus %s)",
									format_type_be(c1->consttype),
									format_type_be(lhsid))));

				Assert(IsA(out, Const));

				c1 = (Const *)out;
			}

			/* XXX: cache */
			values[attno - 1] = c1->constvalue;
			isnull[attno - 1] = c1->constisnull;
		}
	}

	return values;
} /* end magic_expr_to_datum */

/*
 * Assume the partition rules are in the "correct" order and return
 * the nth rule (1-based).  If rnk is negative start from the end, ie
 * -1 is the last rule.
 */
static Oid
selectPartitionByRank(PartitionNode *partnode, int rnk)
{
	Oid   relid = InvalidOid;
	List *rules = partnode->rules;
	PartitionRule *rule;

	Assert(partnode->part->parkind == 'r');

	if (rnk > list_length(rules))
		return relid;

	if (rnk == 0)
		return relid;

	if (rnk > 0)
		rnk--; /* list_nth is zero-based, not one-based */
	else if (rnk < 0)
	{
		rnk = list_length(rules) + rnk; /* if negative go from end */

		/* mpp-3265 */
		if (rnk < 0) /* oops -- too negative */
			return relid;
	}

	rule = (PartitionRule *)list_nth(rules, rnk);

	return rule->parchildrelid;
} /* end selectPartitionByRank */

static bool compare_partn_opfuncid(PartitionNode *partnode,
								   char *pub, char *compare_op,
								   List *colvals,
								   Datum *values, bool *isnull,
								   TupleDesc tupdesc)

{
	Partition	*part		 = partnode->part;
	List		*last_opname = list_make2(makeString(pub),
										  makeString(compare_op));
	List		*opname		 = NIL;
	ListCell	*lc;
	int			 numCols	 = 0;
	int			 colCnt		 = 0;
	int			 ii			 = 0;

	if (1 == strlen(compare_op))
	{
		/* handle case of less than or greater than */
		if (0 == strcmp("<", compare_op))
			compare_op = "<=";
		if (0 == strcmp(">", compare_op))
			compare_op = ">=";

		/* for a list of values, when performing less than or greater
		 * than comparison, only the final value is compared using
		 * less than or greater.  All prior values must be compared
		 * with LTE/GTE.  For example, comparing the list (1,2,3) to
		 * see if it is less than (1,2,4), we see that 1 <= 1, 2 <= 2,
		 * and 3 < 4.  So the last_opname is the specified compare_op,
		 * and the prior opnames are LTE or GTE.
		 */

	}

	opname = list_make2(makeString(pub), makeString(compare_op));

	colCnt = numCols = list_length(colvals);

	foreach(lc, colvals)
	{
		Const *c = lfirst(lc);
		AttrNumber attno = part->paratts[ii];

		if (isnull && isnull[attno - 1])
		{
			if (!c->constisnull)
				return false;
		}
		else
		{
			Oid lhsid = tupdesc->attrs[attno - 1]->atttypid;
			Oid rhsid = lhsid;
			Oid opfuncid;
			Datum res;
			Datum d = values[attno - 1];

			if (1 == colCnt)
			{
				opname = last_opname;
			}

			opfuncid = get_opfuncid_by_opname(opname, lhsid, rhsid);
			res = OidFunctionCall2(opfuncid, c->constvalue, d);

			if (!DatumGetBool(res))
				return false;
		}

		ii++;
		colCnt--;
	} /* end foreach */

	return true;
} /* end compare_partn_opfuncid */

/*
 *	Given a partition-by-list PartitionNode, search for
 *	a part that matches the given datum value.
 *
 *	Input parameters:
 *	partnode: the PartitionNode that we search for matched parts
 *	values, isnull: datum values to search for parts
 *	tupdesc: TupleDesc for retrieving values
 *	accessMethods: PartitionAccessMethods
 *	foundOid: output parameter for matched part Oid
 *	prule: output parameter for matched part PartitionRule
 *	exprTypeOid: type of the expression used to select partition
 */
static PartitionNode *
selectListPartition(PartitionNode *partnode, Datum *values, bool *isnull,
					TupleDesc tupdesc, PartitionAccessMethods *accessMethods, Oid *foundOid, PartitionRule **prule,
					Oid exprTypeOid)
{
	ListCell *lc;
	Partition *part = partnode->part;
	MemoryContext oldcxt = NULL;
	PartitionListState *ls;

	if (accessMethods && accessMethods->amstate[partnode->part->parlevel])
		ls = (PartitionListState *)accessMethods->amstate[partnode->part->parlevel];
	else
	{
		int natts = partnode->part->parnatts;

		ls = palloc(sizeof(PartitionListState));

		ls->eqfuncs = palloc(sizeof(FmgrInfo) * natts);
		ls->eqinit = palloc0(sizeof(bool) * natts);

		if (accessMethods)
			accessMethods->amstate[partnode->part->parlevel] = (void *)ls;
	}

	if (accessMethods && accessMethods->part_cxt)
		oldcxt = MemoryContextSwitchTo(accessMethods->part_cxt);

	*foundOid = InvalidOid;

	/* With LIST, we have no choice at the moment except to be exhaustive */
	foreach(lc, partnode->rules)
	{
		PartitionRule *rule = lfirst(lc);
		List *vals = rule->parlistvalues;
		ListCell *lc2;
		bool matched = false;

		/*
		 * list values are stored in a list of lists to support multi column
		 * partitions.
		 *
		 * At this level, we're processing the list of possible values for the
		 * given rule, for example:
		 *     values(1, 2, 3)
		 *     values((1, '2005-01-01'), (2, '2006-01-01'))
		 *
		 * Each iteraction is one element of the values list. In the first
		 * example, we iterate '1', '2' then '3'. For the second, we iterate
		 * through '(1, '2005-01-01')' then '(2, '2006-01-01')'. It's for that
		 * reason that we need the inner loop.
		 */
		foreach(lc2, vals)
		{
			ListCell *lc3;
			List *colvals = (List *)lfirst(lc2);
			int i = 0;

			matched = true; /* prove untrue */

			foreach(lc3, colvals)
			{
				Const *c = lfirst(lc3);
				AttrNumber attno = part->paratts[i];

				if (isnull[attno - 1])
				{
					if (!c->constisnull)
					{
						matched = false;
						break;
					}
				}
				else if (c->constisnull)
				{
					/* constant is null but datum isn't so break */
					matched = false;
					break;
				}
				else
				{
					Datum res;
					Datum d = values[attno - 1];
					FmgrInfo *finfo;

					if (!ls->eqinit[i])
					{

						/*
						 * Compute the type of the LHS and RHS for the equality comparator.
						 * The way we call the comparator is comp(expr, rule)
						 * So lhstypid = type(expr) and rhstypeid = type(rule)
						 */

						/* The tupdesc tuple descriptor matches the table schema, so it has the rule type */
						Oid rhstypid = tupdesc->attrs[attno - 1]->atttypid;

						/*
						 * exprTypeOid is passed to us from our caller which evaluated the expression.
						 * In some cases (e.g legacy optimizer doing explicit casting), we don't compute
						 * specify exprTypeOid.
						 * Assume lhstypid = rhstypid in those cases
						 */
						Oid lhstypid = exprTypeOid;
						if (!OidIsValid(lhstypid))
						{
							lhstypid = rhstypid;
						}

						List *opname = list_make2(makeString("pg_catalog"),
												  makeString("="));

						Oid opfuncid = get_opfuncid_by_opname(opname, lhstypid, rhstypid);
						fmgr_info(opfuncid, &(ls->eqfuncs[i]));
						ls->eqinit[i] = true;
					}

					finfo = &(ls->eqfuncs[i]);
					res = FunctionCall2(finfo, d, c->constvalue);

					if (!DatumGetBool(res))
					{
						/* found it */
						matched = false;
						break;
					}
				}
				i++;
			}
			if (matched)
				break;
		}

		if (matched)
		{
			*foundOid = rule->parchildrelid;
			*prule = rule;

			/* go to the next level */
			if (oldcxt)
				MemoryContextSwitchTo(oldcxt);
			return rule->children;
		}
	}

	if (oldcxt)
		MemoryContextSwitchTo(oldcxt);

	return NULL;

}

/*
 * get_less_than_oper()
 *
 * Retrieves the appropriate comparator that knows how to handle
 * the two types lhsid, rhsid.
 *
 * Input parameters:
 * lhstypid: Type oid of the LHS of the comparator
 * rhstypid: Type oid of the RHS of the comparator
 * strictlyless: If true, requests the 'strictly less than' operator instead of 'less or equal than'
 *
 * Returns: The Oid of the appropriate comparator; throws an ERROR if no such comparator exists
 *
 */
static Oid
get_less_than_oper(Oid lhstypid, Oid rhstypid, bool strictlyless)
{
	Value *str = strictlyless ? makeString("<") : makeString("<=");
	Value *pub = makeString("pg_catalog");
	List *opname = list_make2(pub, str);

	Oid funcid = get_opfuncid_by_opname(opname, lhstypid, rhstypid);
	list_free_deep(opname);

	return funcid;
}

/*
 * get_comparator
 *   Retrieves the comparator function between the expression and the partition rules
 *
 *  Input:
 *   keyno: Index in the key array of the partitioning key considered
 *   rs: the current PartitionRangeState
 *   ruleTypeOid: Oid for the type of the partition rules
 *   exprTypeOid: Oid for the type of the expressions
 *   strictlyless: If true, the operator for strictly less than (LT) is retrieved. Otherwise,
 *     it's less or equal than (LE)
 *   is_direct: If true, then the "direct" comparison (expression OP rule) is retrieved.
 *     Otherwise, it's the "inverse" comparison (rule OP expression)
 *
 */
static FmgrInfo *
get_less_than_comparator(int keyno, PartitionRangeState *rs, Oid ruleTypeOid, Oid exprTypeOid, bool strictlyless, bool is_direct)
{

	Assert(NULL != rs);

	Oid lhsOid = InvalidOid;
	Oid rhsOid = InvalidOid;
	FmgrInfo *funcInfo = NULL;

	if (is_direct && strictlyless) {
		/* Looking for expr < partRule comparator */
		funcInfo = &rs->ltfuncs_direct[keyno];
	} else if (is_direct && !strictlyless) {
		/* Looking for expr <= partRule comparator */
		funcInfo = &rs->lefuncs_direct[keyno];
	} else if (!is_direct && strictlyless) {
		/* Looking for partRule < expr comparator */
		funcInfo = &rs->ltfuncs_inverse[keyno];
	} else if (!is_direct && !strictlyless) {
		/* Looking for partRule <= expr comparator */
		funcInfo = &rs->lefuncs_inverse[keyno];
	}

	Assert(NULL != funcInfo);

	if (!OidIsValid(funcInfo->fn_oid)) {
		/* We haven't looked up this comparator before, let's do it now */

		if (is_direct) {
			/* Looking for "direct" comparators (expr OP partRule ) */
			lhsOid = exprTypeOid;
			rhsOid = ruleTypeOid;
		}
		else {
			/* Looking for "inverse" comparators (partRule OP expr ) */
			lhsOid = ruleTypeOid;
			rhsOid = exprTypeOid;
		}

		Oid funcid = get_less_than_oper(lhsOid, rhsOid, strictlyless);
		fmgr_info(funcid, funcInfo);
	}

	Assert(OidIsValid(funcInfo->fn_oid));
	return funcInfo;
}

/*
 * range_test
 *   Test if an expression value falls in the range of a given partition rule
 *
 *  Input parameters:
 *    tupval: The value of the expression
 *    ruleTypeOid: The type of the partition rule boundaries
 *    exprTypeOid: The type of the expression (can be different from ruleTypeOid
 *      if types can be directly compared with each other)
 *    rs: The partition range state
 *    keyno: The index of the partitioning key considered (for composite partitioning keys)
 *    rule: The rule whose boundaries we're testing
 *
 */
static int
range_test(Datum tupval, Oid ruleTypeOid, Oid exprTypeOid, PartitionRangeState *rs, int keyno,
		   PartitionRule *rule)
{
	Const *c = NULL;
	FmgrInfo *finfo;
	Datum res;

	Assert(PointerIsValid(rule->parrangestart) ||
		   PointerIsValid(rule->parrangeend));

	/* might be a rule with no START value */
	if (PointerIsValid(rule->parrangestart))
	{
		Assert(IsA(rule->parrangestart, List));
#if NOT_YET
		c = (Const *)list_nth((List *)rule->parrangestart, keyno);
#else
		c = (Const *)linitial((List *)rule->parrangestart);
#endif

		/*
		 * Is the value in the range?
		 *   If rule->parrangestartincl, we request for comparator ruleVal <= exprVal ( ==> strictly_less = false)
		 *   Otherwise, we request comparator ruleVal < exprVal ( ==> strictly_less = true)
		 */
		finfo = get_less_than_comparator(keyno, rs, ruleTypeOid, exprTypeOid, !rule->parrangestartincl /* strictly_less */, false /* is_direct */);
		res = FunctionCall2(finfo, c->constvalue, tupval);

		if (!DatumGetBool(res))
			return -1;
	}

	/* There might be no END value */
	if (PointerIsValid(rule->parrangeend))
	{
#if NOT_YET
		c = (Const *)list_nth((List *)rule->parrangeend, keyno);
#else
		c = (Const *)linitial((List *)rule->parrangeend);
#endif

		/*
		 * Is the value in the range?
		 *   If rule->parrangeendincl, we request for comparator exprVal <= ruleVal ( ==> strictly_less = false)
		 *   Otherwise, we request comparator exprVal < ruleVal ( ==> strictly_less = true)
		 */
		finfo = get_less_than_comparator(keyno, rs, ruleTypeOid, exprTypeOid, !rule->parrangeendincl /* strictly_less */, true /* is_direct */);
		res = FunctionCall2(finfo, tupval, c->constvalue);

		if (!DatumGetBool(res))
		{
			return 1;
		}
	}
	return 0;
}

/*
 * Given a partition specific part, a tuple as represented by values and isnull and
 * a list of rules, return an Oid in *foundOid or the next set of rules.
 */
static PartitionNode *
selectRangePartition(PartitionNode *partnode, Datum *values, bool *isnull,
					 TupleDesc tupdesc, PartitionAccessMethods *accessMethods,
					 Oid *foundOid, int *pSearch, PartitionRule **prule, Oid exprTypeOid)
{
	List *rules = partnode->rules;
	int high = list_length(rules) - 1;
	int low = 0;
	int searchpoint = 0;
	int mid = 0;
	bool matched = false;
	PartitionRule *rule = NULL;
	PartitionNode *pNode = NULL;
	PartitionRangeState *rs = NULL;
	MemoryContext oldcxt = NULL;

	Assert(partnode->part->parkind == 'r');
	/* For composite partitioning keys, exprTypeOid should always be InvalidOid */
	AssertImply(partnode->part->parnatts > 1, !OidIsValid(exprTypeOid));

	if (accessMethods && accessMethods->amstate[partnode->part->parlevel])
		rs = (PartitionRangeState *)accessMethods->amstate[partnode->part->parlevel];
	else
	{
		int natts = partnode->part->parnatts;

		/*
		 * We're still in our caller's memory context so
		 * the memory will persist long enough for us.
		 */
		rs = palloc(sizeof(PartitionRangeState));
		rs->lefuncs_direct = palloc0(sizeof(FmgrInfo) * natts);
		rs->ltfuncs_direct = palloc0(sizeof(FmgrInfo) * natts);
		rs->lefuncs_inverse = palloc0(sizeof(FmgrInfo) * natts);
		rs->ltfuncs_inverse = palloc0(sizeof(FmgrInfo) * natts);

		/*
		 * Set the function Oid to InvalidOid to signal that we
		 * haven't looked up this function yet
		 */
		for (int keyno = 0; keyno < natts; keyno++)
		{
			rs->lefuncs_direct[keyno].fn_oid = InvalidOid;
			rs->ltfuncs_direct[keyno].fn_oid = InvalidOid;
			rs->lefuncs_inverse[keyno].fn_oid = InvalidOid;
			rs->lefuncs_inverse[keyno].fn_oid = InvalidOid;
		}

		/*
		 * Unrolling the rules into an array currently works for the
		 * top level partition only
		 */
		if (partnode->part->parlevel == 0)
		{
			int i = 0;
			ListCell *lc;

			rs->rules = palloc(sizeof(PartitionRule *) * list_length(rules));

			foreach(lc, rules)
			rs->rules[i++] = (PartitionRule *)lfirst(lc);
		}
		else
			rs->rules = NULL;
	}

	if (accessMethods && accessMethods->part_cxt)
		oldcxt = MemoryContextSwitchTo(accessMethods->part_cxt);

	*foundOid = InvalidOid;

	/*
	 * Use a binary search to try and pin point the region within the set of
	 * rules where the rule is. If the partition is across a single column,
	 * the rule located by the binary search is the only possible candidate.
	 * If the partition is across more than one column, we need to search
	 * sequentially to either side of the rule to see if the match is there.
	 * The reason for this complexity is the nature of find a point within an
	 * interval.
	 *
	 * Consider the following intervals:
	 *
	 * 1. start( 1, 8)   end( 10,  9)
	 * 2. start( 1, 9)   end( 15, 10)
	 * 3. start( 1, 11)  end(100, 12)
	 * 4. start(15, 10)  end( 30, 11)
	 *
	 * If we were to try and find the partition for a tuple (25, 10), using the
	 * binary search for the first element, we'd select partition 3 but
	 * partition 4 is also a candidate. It is only when we look at the second
	 * element that we find the single definitive rule.
	 */
	while (low <= high)
	{
		AttrNumber attno = partnode->part->paratts[0];
		Datum exprValue = values[attno - 1];
		int ret;

		mid = low + (high - low)/2;

		if (rs->rules)
			rule = rs->rules[mid];
		else
			rule = (PartitionRule *)list_nth(rules, mid);

		if (isnull[attno - 1])
		{
			pNode = NULL;
			goto l_fin_range;
		}

		Oid ruleTypeOid = tupdesc->attrs[attno - 1]->atttypid;
		if (OidIsValid(exprTypeOid))
		{
			ret = range_test(exprValue, ruleTypeOid, exprTypeOid, rs, 0, rule);
		}
		else
		{
			/*
			 * In some cases, we don't have an expression type oid. In those cases, the expression and
			 * partition rules have the same type.
			 */
			ret = range_test(exprValue, ruleTypeOid, ruleTypeOid, rs, 0, rule);
		}

		if (ret > 0)
		{
			searchpoint = mid;
			low = mid + 1;
			continue;
		}
		else if (ret < 0)
		{
			high = mid - 1;
			continue;
		}
		else
		{
			matched = true;
			break;
		}
	}

	if (matched)
	{
		int j;

		/* Non-composite partition key, we matched so we're done */
		if (partnode->part->parnatts == 1)
		{
			*foundOid = rule->parchildrelid;
			*prule = rule;

			pNode = rule->children;
			goto l_fin_range;
		}

		/* We have more than one partition key.. Must match on the other keys as well */
		j = mid;
		do
		{
			int i;
			bool matched = true;
			bool first_fail = false;

			for (i = 0; i < partnode->part->parnatts; i++)
			{
				AttrNumber attno = partnode->part->paratts[i];
				Datum d = values[attno - 1];
				int ret;

				if (j != mid)
					rule = (PartitionRule *)list_nth(rules, j);

				if (isnull[attno - 1])
				{
					pNode = NULL;
					goto l_fin_range;
				}

				Oid ruleTypeOid = tupdesc->attrs[attno - 1]->atttypid;
				/* For composite partition keys, we don't support casting comparators, so both sides must be of identical types */
				Assert(!OidIsValid(exprTypeOid));
				ret = range_test(d, ruleTypeOid, ruleTypeOid,
								 rs, i, rule);
				if (ret != 0)
				{
					matched = false;

					/*
					 * If we've gone beyond the boundary of rules which match
					 * the first tuple, no use looking further
					 */
					if (i == 0)
						first_fail = true;

					break;
				}
			}

			if (first_fail)
				break;

			if (matched)
			{
				*foundOid = rule->parchildrelid;
				*prule = rule;

				pNode = rule->children;
				goto l_fin_range;
			}

		}
		while (--j >= 0);

		j = mid;
		do
		{
			int i;
			bool matched = true;
			bool first_fail = false;

			for (i = 0; i < partnode->part->parnatts; i++)
			{
				AttrNumber attno = partnode->part->paratts[i];
				Datum d = values[attno - 1];
				int ret;

				rule = (PartitionRule *)list_nth(rules, j);

				if (isnull[attno - 1])
				{
					pNode = NULL;
					goto l_fin_range;
				}

				Oid ruleTypeOid = tupdesc->attrs[attno - 1]->atttypid;
				/* For composite partition keys, we don't support casting comparators, so both sides must be of identical types */
				Assert(!OidIsValid(exprTypeOid));
				ret = range_test(d, ruleTypeOid, ruleTypeOid, rs, i, rule);
				if (ret != 0)
				{
					matched = false;

					/*
					 * If we've gone beyond the boundary of rules which match
					 * the first tuple, no use looking further
					 */
					if (i == 0)
						first_fail = true;

					break;
				}
			}

			if (first_fail)
				break;
			if (matched)
			{
				*foundOid = rule->parchildrelid;
				*prule = rule;

				pNode = rule->children;
				goto l_fin_range;
			}

		}
		while (++j < list_length(rules));
	} /* end if matched */

	pNode = NULL;

l_fin_range:
	if (pSearch)
		*pSearch = searchpoint;

	if (oldcxt)
		MemoryContextSwitchTo(oldcxt);

	if (accessMethods)
		accessMethods->amstate[partnode->part->parlevel] = (void *)rs;

	return pNode;
} /* end selectrangepartition */


/* select partition via hash */
static PartitionNode *
selectHashPartition(PartitionNode *partnode, Datum *values, bool *isnull,
					TupleDesc tupdesc, PartitionAccessMethods *accessMethods, Oid *found, PartitionRule **prule)
{
	uint32 hash = 0;
	int i;
	int part;
	PartitionRule *rule;
	MemoryContext oldcxt = NULL;

4365 4366 4367
	if (partnode->rules == NIL)
		return NULL;

4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386
	if (accessMethods && accessMethods->part_cxt)
		oldcxt = MemoryContextSwitchTo(accessMethods->part_cxt);

	for (i = 0; i < partnode->part->parnatts; i++)
	{
		AttrNumber attnum = partnode->part->paratts[i];

		/* rotate hash left 1 bit at each step */
		hash = (hash << 1) | ((hash & 0x80000000) ? 1 : 0);

		/*
		 * If we found a NULL, just pretend it has a hashcode of 0 (like the
		 * hash join code does.
		 */
		if (isnull[attnum - 1])
			continue;
		else
		{
			Oid opclass = partnode->part->parclass[i];
4387 4388 4389 4390
			Oid inctype = get_opclass_input_type(opclass);
			Oid opfamily = get_opclass_family(opclass);

			Oid hashfunc = get_opfamily_proc(opfamily, inctype, inctype, HASHPROC);
4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959
			Datum d = values[attnum - 1];
			hash ^= DatumGetUInt32(OidFunctionCall1(hashfunc, d));
		}
	}

	part = hash % list_length(partnode->rules);

	rule = (PartitionRule *)list_nth(partnode->rules, part);

	*found = rule->parchildrelid;
	*prule = rule;

	if (oldcxt)
		MemoryContextSwitchTo(oldcxt);

	return rule->children;
}

/*
 * selectPartition1()
 *
 * Given pdata and prules, try and find a suitable partition for the input key.
 * values is an array of datums representing the partitioning key, isnull
 * tells us which of those is NULL. pSearch allows the caller to get the
 * position in the partition range where the key falls (might be hypothetical).
 */
static Oid
selectPartition1(PartitionNode *partnode, Datum *values, bool *isnull,
				 TupleDesc tupdesc, PartitionAccessMethods *accessMethods,
				 int *pSearch,
				 PartitionNode **ppn_out)
{
	Oid relid = InvalidOid;
	Partition *part = partnode->part;
	PartitionNode *pn = NULL;
	PartitionRule *prule = NULL;

	if (ppn_out)
		*ppn_out = NULL;

	/* what kind of partition? */
	switch (part->parkind)
	{
		case 'r': /* range */
			pn = selectRangePartition(partnode, values, isnull, tupdesc,
									  accessMethods, &relid, pSearch, &prule, InvalidOid);
			break;
		case 'h': /* hash */
			pn = selectHashPartition(partnode, values, isnull, tupdesc,
									 accessMethods, &relid, &prule);
			break;
		case 'l': /* list */
			pn = selectListPartition(partnode, values, isnull, tupdesc,
									 accessMethods, &relid, &prule, InvalidOid);
			break;
		default:
			elog(ERROR, "unrecognized partitioning kind '%c'",
				 part->parkind);
			break;
	}

	if (pn)
	{
		if (ppn_out)
		{
			*ppn_out = pn;
			return relid;
		}
		return selectPartition1(pn, values, isnull, tupdesc, accessMethods,
								pSearch, ppn_out);
	}
	else
	{
		/* retry a default */
		if (partnode->default_part && !OidIsValid(relid))
		{
			if (partnode->default_part->children)
			{
				if (ppn_out)
				{
					*ppn_out = partnode->default_part->children;

					/* don't return the relid, it is invalid -- return
					 * the relid of the default partition instead
					 */
					return partnode->default_part->parchildrelid;
				}
				return selectPartition1(partnode->default_part->children,
										values, isnull, tupdesc, accessMethods,
										pSearch, ppn_out);
			}
			else
				return partnode->default_part->parchildrelid;
		}
		else
			return relid;
	}
}

Oid
selectPartition(PartitionNode *partnode, Datum *values, bool *isnull,
				TupleDesc tupdesc, PartitionAccessMethods *accessMethods)
{
	return selectPartition1(partnode, values, isnull, tupdesc, accessMethods,
							NULL, NULL);
}

/*
 * get_next_level_matched_partition()
 *
 * Given pdata and prules, try to find a suitable partition for the input key.
 * values is an array of datums representing the partitioning key, isnull
 * tells us which of those is NULL. It will return NULL if no part matches.
 *
 * Input parameters:
 * partnode: the PartitionNode that we search for matched parts
 * values, isnull: datum values to search for parts
 * tupdesc: TupleDesc for retrieving values
 * accessMethods: PartitionAccessMethods
 * exprTypid: the type of the datum
 *
 * return: PartitionRule of which constraints match the input key
 */
PartitionRule*
get_next_level_matched_partition(PartitionNode *partnode, Datum *values, bool *isnull,
								TupleDesc tupdesc, PartitionAccessMethods *accessMethods,
								Oid exprTypid)
{
	Oid relid = InvalidOid;
	Partition *part = partnode->part;
	PartitionRule *prule = NULL;

	/* what kind of partition? */
	switch (part->parkind)
	{
		case 'r': /* range */
			selectRangePartition(partnode, values, isnull, tupdesc,
								accessMethods, &relid, NULL, &prule, exprTypid);
			break;
		case 'l': /* list */
			selectListPartition(partnode, values, isnull, tupdesc,
								accessMethods, &relid, &prule, exprTypid);
			break;
		default:
			elog(ERROR, "unrecognized partitioning kind '%c'",
				 part->parkind);
			break;
	}

	if (NULL != prule)
	{
		return prule;
	}
	/* retry a default */
	return partnode->default_part;
}

/*
 * get_part_rule
 *
 * find PartitionNode and the PartitionRule for a partition if it
 * exists.
 *
 * If bExistError is not set, just return the PgPartRule.
 * If bExistError is set, return an error message based upon
 * bMustExist.  That is, if the table does not exist and
 * bMustExist=true then return an error.  Conversely, if the table
 * *does* exist and bMustExist=false then return an error.
 *
 * If pSearch is set, return a ptr to the position where the pid
 * *might* be.  For get_part_rule1, pNode is the position to start at
 * (ie not necessarily at the top).  relname is a char string to
 * describe the current relation/partition for error messages, eg
 * 'relation "foo"' or 'partition "baz" of relation "foo"'.
 *
 */
PgPartRule*
get_part_rule1(Relation rel,
			   AlterPartitionId *pid,
			   bool bExistError,
			   bool bMustExist,
			   int *pSearch,
			   PartitionNode *pNode,
			   char *relname,
			   PartitionNode **ppNode
			   )
{
	char		   namBuf[NAMEDATALEN]; /* the real partition name */

	/* a textual representation of the partition id (for error msgs) */
	char		   partIdStr[(NAMEDATALEN * 2)];

	PgPartRule			*prule	   = NULL;

	Oid					 partrelid = InvalidOid;
	int					 idrank    = 0;	/* only set for range partns by rank */

	if (!pid)
		ereport(ERROR,
				(errcode(ERRCODE_WRONG_OBJECT_TYPE),
				 errmsg("No partition id specified for %s",
						relname)));

	namBuf[0] = 0;

	/* build the partition "id string" for error messages as a
	 * partition name, value, or rank.
	 *
	 * Later on, if we discover
	 *   (the partition exists) and
	 *   (it has a name)
	 * then we update the partIdStr to the name
	 */
	switch (pid->idtype)
	{
		case AT_AP_IDNone:				/* no ID */
			/* should never happen */
			partIdStr[0] = 0;

			break;
		case AT_AP_IDName:				/* IDentify by Name */
			snprintf(partIdStr, sizeof(partIdStr), " \"%s\"",
					 strVal(pid->partiddef));
			snprintf(namBuf, sizeof(namBuf), "%s",
					 strVal(pid->partiddef));
			break;
		case AT_AP_IDValue:				/* IDentifier FOR Value */
			snprintf(partIdStr, sizeof(partIdStr), " for specified value");
			break;
		case AT_AP_IDRank:				/* IDentifier FOR Rank */
		{
			snprintf(partIdStr, sizeof(partIdStr), " for specified rank");

#ifdef WIN32
#define round(x) (x+0.5)
#endif
			if (IsA(pid->partiddef, Integer))
				idrank = intVal(pid->partiddef);
			else if (IsA(pid->partiddef, Float))
				idrank = floor(floatVal(pid->partiddef));
			else
				Assert(false);

			snprintf(partIdStr, sizeof(partIdStr),
					 " for rank %d",
					 idrank);
		}
			break;
		case AT_AP_ID_oid:				/* IDentifier by oid */
			snprintf(partIdStr, sizeof(partIdStr), " for oid %u",
					 *((Oid *)(pid->partiddef)));
			break;
		case AT_AP_IDDefault:			/* IDentify DEFAULT partition */
			snprintf(partIdStr, sizeof(partIdStr), " for DEFAULT");
			break;
		case AT_AP_IDRule:
		{
			PgPartRule *p = linitial((List *)pid->partiddef);
			snprintf(partIdStr, sizeof(partIdStr), "%s",
					 p->partIdStr);
			return p;
			break;
		}
		default: /* XXX XXX */
			Assert(false);

	}

	if (bExistError && !pNode)
		ereport(ERROR,
				(errcode(ERRCODE_UNDEFINED_OBJECT),
				 errmsg("%s is not partitioned",
						relname)));

	/* if id is a value or rank, get the relid of the partition if
	 * it exists */
	if (pNode)
	{
		if (pid->idtype == AT_AP_IDValue)
		{
			TupleDesc			 tupledesc = RelationGetDescr(rel);
			bool				*isnull;
			PartitionNode		*pNode2	   = NULL;
			Datum	*d	= magic_expr_to_datum(rel, pNode,
											  pid->partiddef, &isnull);

			/* MPP-4011: get right pid for FOR(value).  pass a pNode
			 * ptr down to prevent recursion in selectPartition -- we
			 * only want the top-most partition for the value in this
			 * case
			 */
			if (ppNode)
				partrelid = selectPartition1(pNode, d, isnull, tupledesc, NULL,
											 pSearch, ppNode);
			else
				partrelid = selectPartition1(pNode, d, isnull, tupledesc, NULL,
											 pSearch, &pNode2);

			/* build a string rep for the value */
			{
				ParseState		*pstate = make_parsestate(NULL);
				Node			*pval	= (Node *)pid->partiddef;
				char			*idval	= NULL;

				pval = (Node *)transformExpressionList(pstate,
													   (List *)pval);

				free_parsestate(pstate);

				idval =
				deparse_expression(pval,
								   deparse_context_for(RelationGetRelationName(rel),
													   RelationGetRelid(rel)),
								   false, false);

				if (idval)
					snprintf(partIdStr, sizeof(partIdStr),
							 " for value (%s)",
							 idval);
			}

		}
		else if (pid->idtype == AT_AP_IDRank)
		{
			char *parTypName = "UNKNOWN";

			if (pNode->part->parkind != 'r')
			{
				switch (pNode->part->parkind)
				{
					case 'h': /* hash */
						parTypName = "HASH";
						break;
					case 'l': /* list */
						parTypName = "LIST";
						break;
				} /* end switch */

				ereport(ERROR,
						(errcode(ERRCODE_WRONG_OBJECT_TYPE),
						 errmsg("cannot find partition by RANK -- "
								"%s is %s partitioned",
								relname,
								parTypName)));

			}

			partrelid =	selectPartitionByRank(pNode, idrank);
		}
	}

	/* check thru the list of partition rules to match by relid or name */
	if (pNode)
	{
		ListCell *lc;
		int rulerank = 1;

		/* set up the relid for the default partition if necessary */
		if ((pid->idtype == AT_AP_IDDefault)
			&& pNode->default_part)
			partrelid = pNode->default_part->parchildrelid;

		foreach(lc, pNode->rules)
		{
			PartitionRule *rule = lfirst(lc);
			bool foundit = false;

			if ((pid->idtype == AT_AP_IDValue)
				|| (pid->idtype == AT_AP_IDRank))
			{
				if ((partrelid != InvalidOid)
					&& (partrelid == rule->parchildrelid))
				{
					foundit = true;

					if (strlen(rule->parname))
					{
						snprintf(partIdStr, sizeof(partIdStr), " \"%s\"",
								 rule->parname);
						snprintf(namBuf, sizeof(namBuf), "%s",
								 rule->parname);
					}
				}
			}
			else if (pid->idtype == AT_AP_IDName)
			{
				if (0 == strcmp(rule->parname, namBuf))
					foundit = true;
			}

			if (foundit)
			{
				prule = makeNode(PgPartRule);

				prule->pNode = pNode;
				prule->topRule = rule;
				prule->topRuleRank = rulerank; /* 1-based */
				prule->relname = relname;
				break;
			}
			rulerank++;
		} /* end foreach */

		/* if cannot find, check default partition */
		if (!prule && pNode->default_part)
		{
			PartitionRule *rule = pNode->default_part;
			bool foundit = false;

			if ((pid->idtype == AT_AP_IDValue)
				|| (pid->idtype == AT_AP_IDRank)
				|| (pid->idtype == AT_AP_IDDefault))
			{
				if ((partrelid != InvalidOid)
					&& (partrelid == rule->parchildrelid))
				{
					foundit = true;

					if (strlen(rule->parname))
					{
						snprintf(partIdStr, sizeof(partIdStr), " \"%s\"",
								 rule->parname);
						snprintf(namBuf, sizeof(namBuf), "%s",
								 rule->parname);
					}
				}
			}
			else if (pid->idtype == AT_AP_IDName)
			{
				if (0 == strcmp(rule->parname, namBuf))
					foundit = true;
			}

			if (foundit)
			{
				prule = makeNode(PgPartRule);

				prule->pNode = pNode;
				prule->topRule = rule;
				prule->topRuleRank = 0; /* 1-based -- 0 means no rank */
				prule->relname = relname;
			}
		}
	} /* end if pnode */

	/* if the partition exists, set the "id string" in prule and
	 * indicate whether it is the partition name.  The ATPExec
	 * commands will notify users of the "real" name if the original
	 * specification was by value or rank
	 */
	if (prule)
	{
		prule->partIdStr = pstrdup(partIdStr);
		prule->isName = (strlen(namBuf) > 0);
	}

	if (!bExistError)
		goto L_fin_partrule;

	/* MPP-3722: complain if for(value) matches the default partition */
	if ((pid->idtype == AT_AP_IDValue)
		&& prule &&
		(prule->topRule == prule->pNode->default_part))
	{
		if (bMustExist)
			ereport(ERROR,
					(errcode(ERRCODE_WRONG_OBJECT_TYPE),
					 errmsg("FOR expression matches "
							"DEFAULT partition%s of %s",
							prule->isName ?
							partIdStr : "",
							relname),
					 errhint("FOR expression may only specify "
							 "a non-default partition in this context.")));

	}

	if (bMustExist && !prule)
	{
		switch (pid->idtype)
		{
			case AT_AP_IDNone:				/* no ID */
				/* should never happen */
				Assert(false);
				break;
			case AT_AP_IDName:				/* IDentify by Name */
			case AT_AP_IDValue:				/* IDentifier FOR Value */
			case AT_AP_IDRank:				/* IDentifier FOR Rank */
			case AT_AP_ID_oid:				/* IDentifier by oid */
				ereport(ERROR,
						(errcode(ERRCODE_UNDEFINED_OBJECT),
						 errmsg("partition%s of %s does not exist",
								partIdStr,
								relname)));
				break;
			case AT_AP_IDDefault:			/* IDentify DEFAULT partition */
				ereport(ERROR,
						(errcode(ERRCODE_UNDEFINED_OBJECT),
						 errmsg("DEFAULT partition of %s does not exist",
								relname)));
				break;
			default: /* XXX XXX */
				Assert(false);

		}
	}
	else if (!bMustExist && prule)
	{
		switch (pid->idtype)
		{
			case AT_AP_IDNone:				/* no ID */
				/* should never happen */
				Assert(false);
				break;
			case AT_AP_IDName:				/* IDentify by Name */
			case AT_AP_IDValue:				/* IDentifier FOR Value */
			case AT_AP_IDRank:				/* IDentifier FOR Rank */
			case AT_AP_ID_oid:				/* IDentifier by oid */
				ereport(ERROR,
						(errcode(ERRCODE_DUPLICATE_OBJECT),
						 errmsg("partition%s of %s already exists",
								partIdStr,
								relname)));
				break;
			case AT_AP_IDDefault:			/* IDentify DEFAULT partition */
				ereport(ERROR,
						(errcode(ERRCODE_DUPLICATE_OBJECT),
						 errmsg("DEFAULT partition%s of %s already exists",
								prule->isName ?
								partIdStr : "",
								relname)));
				break;
			default: /* XXX XXX */
				Assert(false);

		}

	}

L_fin_partrule:

	return prule;
} /* end get_part_rule1 */

PgPartRule *
get_part_rule(Relation rel,
			  AlterPartitionId *pid,
			  bool bExistError,
			  bool bMustExist,
			  int *pSearch,
			  bool inctemplate)
{
	PartitionNode		*pNode	= NULL;
	PartitionNode		*pNode2 = NULL;
	char				relnamBuf[(NAMEDATALEN * 2)];
	char *relname;

	snprintf(relnamBuf, sizeof(relnamBuf), "relation \"%s\"",
			 RelationGetRelationName(rel));

	relname = pstrdup(relnamBuf);

	pNode = RelationBuildPartitionDesc(rel, inctemplate);

	if (pid && ((pid->idtype != AT_AP_IDList)
				&& (pid->idtype != AT_AP_IDRule)))
		return get_part_rule1(rel,
							  pid,
							  bExistError, bMustExist,
4960
							  pSearch, pNode, relname, NULL);
4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983

	if (!pid)
		return NULL;

	if (pid->idtype == AT_AP_IDRule)
	{
		List					*l1		= (List *)pid->partiddef;
		ListCell				*lc;
		AlterPartitionId		*pid2	= NULL;
		PgPartRule*				 prule2 = NULL;

		lc = list_head(l1);
		prule2 = (PgPartRule*) lfirst(lc);
		if (prule2 && prule2->topRule && prule2->topRule->children)
			pNode = prule2->topRule->children;

		lc = lnext(lc);

		pid2 = (AlterPartitionId *)lfirst(lc);

		prule2 = get_part_rule1(rel,
								pid2,
								bExistError, bMustExist,
4984
								pSearch, pNode, pstrdup(prule2->relname), &pNode2);
4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016

		pNode = pNode2;

		if (!pNode)
		{
			if (prule2 && prule2->topRule && prule2->topRule->children)
				pNode = prule2->topRule->children;
		}

		return prule2;
	}

	if (pid->idtype == AT_AP_IDList)
	{
		List					*l1		= (List *)pid->partiddef;
		ListCell				*lc;
		AlterPartitionId		*pid2	= NULL;
		PgPartRule*				 prule2 = NULL;
		StringInfoData			 sid1, sid2;

		initStringInfo(&sid1);
		initStringInfo(&sid2);
		appendStringInfoString(&sid1, relnamBuf);

		foreach(lc, l1)
		{

			pid2 = (AlterPartitionId *)lfirst(lc);

			prule2 = get_part_rule1(rel,
									pid2,
									bExistError, bMustExist,
5017
									pSearch, pNode, sid1.data, &pNode2);
5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089

			pNode = pNode2;

			if (!pNode)
			{
				if (prule2 && prule2->topRule && prule2->topRule->children)
					pNode = prule2->topRule->children;
			}

			appendStringInfo(&sid2, "partition%s of %s",
							 prule2->partIdStr, sid1.data);
			truncateStringInfo(&sid1, 0);
			appendStringInfo(&sid1, "%s", sid2.data);
			truncateStringInfo(&sid2, 0);
		} /* end foreach */

		return prule2;
	}
	return NULL;
} /* end get_part_rule */

static void
fixup_table_storage_options(CreateStmt *ct)
{
	if (!ct->options)
	{
		ct->options = list_make2(makeDefElem("appendonly",
											 (Node *)makeString("true")),
								 makeDefElem("orientation",
											 (Node *)makeString("column")));
	}
}

/*
 * The user is adding a partition and we have a subpartition template that has
 * been brought into the mix. At partition create time, if the user added any
 * storage encodings to the subpartition template, we would have cached them in
 * pg_partition_encoding. Retrieve them now, deparse and apply to the
 * PartitionSpec as if this was CREATE TABLE.
 */
static void
apply_template_storage_encodings(CreateStmt *ct, Oid relid, Oid paroid,
								 PartitionSpec *tmpl)
{
	List *encs = get_deparsed_partition_encodings(relid, paroid);

	if (encs)
	{
		/*
		 * If the user didn't specify WITH (...) at create time,
		 * we need to force the new partitions to be AO/CO.
		 */
		fixup_table_storage_options(ct);
		tmpl->partElem = list_concat(tmpl->partElem,
									 encs);
	}
}

/*
 * atpxPart_validate_spec: kludge up a PartitionBy statement and use
 * validate_partition_spec to transform and validate a partition
 * boundary spec.
 */

static int
atpxPart_validate_spec(
					   PartitionBy			*pBy,
					   CreateStmtContext	*pcxt,
					   Relation					 rel,
					   CreateStmt				*ct,
					   PartitionElem			*pelem,
					   PartitionNode			*pNode,
5090
					   char						*partName,
5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118
					   bool						 isDefault,
					   PartitionByType			 part_type,
					   char						*partDesc)
{
	PartitionSpec		*spec	= makeNode(PartitionSpec);
	ParseState			*pstate = NULL;
	List				*schema = NIL;
	List				*inheritOids;
	List				*old_constraints;
	int					 parentOidCount;
	int                  result;
	PartitionNode		*pNode_tmpl = NULL;

	/* get the table column defs */
	schema =
	MergeAttributes(schema,
					list_make1(
							   makeRangeVar(
											get_namespace_name(
															   RelationGetNamespace(rel)),
											pstrdup(RelationGetRelationName(rel)), -1)),
					false, true /* isPartitioned */,
					&inheritOids, &old_constraints, &parentOidCount, NULL);

	pcxt->columns = schema;

	spec->partElem = list_make1(pelem);

5119
	pelem->partName = partName;
5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264
	pelem->isDefault = isDefault;
	pelem->AddPartDesc = pstrdup(partDesc);

	/* generate a random name for the partition relation if necessary */
	if (partName)
		pelem->rrand = 0;
	else
		pelem->rrand = random();

	pBy->partType = part_type;
	pBy->keys     = NULL;
	pBy->partNum  = 0;
	pBy->subPart  = NULL;
	pBy->partSpec = (Node *)spec;
	pBy->partDepth = pNode->part->parlevel;
	/* Note: pBy->partQuiet already set by caller */
	pBy->parentRel =
	makeRangeVar(get_namespace_name(RelationGetNamespace(rel)),
				 pstrdup(RelationGetRelationName(rel)), -1);
	pBy->location  = -1;
	pBy->partDefault = NULL;
	pBy->bKeepMe = true; /* nefarious: we need to keep the "top"
						  * partition by statement because
						  * analyze.c:do_parse_analyze needs to find
						  * it to re-order the ALTER statements
						  */

	/* fixup the pnode_tmpl to get the right parlevel */
	if (pNode && (pNode->rules || pNode->default_part))
	{
		pNode_tmpl = get_parts(pNode->part->parrelid,
							   pNode->part->parlevel + 1,
							   InvalidOid, /* no parent for template */
							   true,
							   true /*includesubparts*/
							   );
	}

	{ /* find the partitioning keys (recursively) */

		PartitionBy				*pBy2 = pBy;
		PartitionBy				*parent_pBy2 = NULL;
		PartitionNode			*pNode2 = pNode;

		int				 ii;
		TupleDesc		 tupleDesc		= RelationGetDescr(rel);
		List			*pbykeys		= NIL;
		List			*pbyopclass		= NIL;
		Oid				 accessMethodId = BTREE_AM_OID;

		while (pNode2)
		{
			pbykeys    = NIL;
			pbyopclass = NIL;

			for (ii = 0; ii < pNode2->part->parnatts; ii++)
			{
				AttrNumber			 attno		   =
				pNode2->part->paratts[ii];
				Form_pg_attribute	 attribute	   =
				tupleDesc->attrs[attno - 1];
				char				*attributeName =
				NameStr(attribute->attname);
				Oid					 opclass	   =
				InvalidOid;

				opclass =
				GetDefaultOpClass(attribute->atttypid, accessMethodId);

				if (pbykeys)
				{
					pbykeys = lappend(pbykeys, makeString(attributeName));
					pbyopclass = lappend_oid(pbyopclass, opclass);
				}
				else
				{
					pbykeys = list_make1(makeString(attributeName));
					pbyopclass = list_make1_oid(opclass);
				}
			} /* end for */

			pBy2->keys = pbykeys;
			pBy2->keyopclass = pbyopclass;

			if (parent_pBy2)
				parent_pBy2->subPart = (Node *)pBy2;

			parent_pBy2 = pBy2;

			if (pNode2 && (pNode2->rules || pNode2->default_part))
			{
				PartitionRule *prule;
				PartitionElem *el = NULL; /* for the subpartn template */

				if (pNode2->default_part)
					prule = pNode2->default_part;
				else
					prule = linitial(pNode2->rules);

				if (prule && prule->children)
				{
					pNode2 = prule->children;

					/* XXX XXX: make this work for HASH at some point */

					Assert(
						   ('l' == pNode2->part->parkind) ||
						   ('r' == pNode2->part->parkind));

					pBy2 = makeNode(PartitionBy);
					pBy2->partType	=
					('r' == pNode2->part->parkind) ?
					PARTTYP_RANGE :
					PARTTYP_LIST;
					pBy2->keys		= NULL;
					pBy2->partNum	= 0;
					pBy2->subPart	= NULL;
					pBy2->partSpec	= NULL;
					pBy2->partDepth = pNode2->part->parlevel;
					pBy2->partQuiet = pBy->partQuiet;
					pBy2->parentRel =
					makeRangeVar(
								 get_namespace_name(
													RelationGetNamespace(rel)),
								 pstrdup(RelationGetRelationName(rel)), -1);
					pBy2->location  = -1;
					pBy2->partDefault = NULL;

					el = NULL;

					/* build the template (if it exists) */
					if (pNode_tmpl)
					{
						PartitionSpec *spec_tmpl = makeNode(PartitionSpec);
						ListCell *lc;

						spec_tmpl->istemplate = true;

						/* add entries for rules at current level */
						foreach(lc, pNode_tmpl->rules)
						{
							PartitionRule *rule_tmpl = lfirst(lc);

							el = makeNode(PartitionElem);

5265 5266
							if (rule_tmpl->parname && strlen(rule_tmpl->parname) > 0)
								el->partName = rule_tmpl->parname;
5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372

							el->isDefault = rule_tmpl->parisdefault;

							/* MPP-6904: use storage options from template */
							if (rule_tmpl->parreloptions ||
								rule_tmpl->partemplatespaceId)
							{
								Node *tspaceName = NULL;
								AlterPartitionCmd *apc =
								makeNode(AlterPartitionCmd);

								el->storeAttr = (Node *)apc;

								if (rule_tmpl->partemplatespaceId)
									tspaceName =
									(Node*)makeString(
													  get_tablespace_name(
																		  rule_tmpl->partemplatespaceId
																		  ));

								apc->partid = NULL;
								apc->arg2	= tspaceName;
								apc->arg1	= (Node *)rule_tmpl->parreloptions;

							}

							/* LIST */
							if (rule_tmpl->parlistvalues)
							{
								PartitionValuesSpec *vspec =
								makeNode(PartitionValuesSpec);

								el->boundSpec = (Node*)vspec;

								vspec->partValues = rule_tmpl->parlistvalues;
							}

							/* RANGE */
							if (rule_tmpl->parrangestart ||
								rule_tmpl->parrangeend)
							{
								PartitionBoundSpec *bspec =
								makeNode(PartitionBoundSpec);
								PartitionRangeItem *ri;

								if (rule_tmpl->parrangestart)
								{
									ri =
									makeNode(PartitionRangeItem);

									ri->partedge =
									rule_tmpl->parrangestartincl ?
									PART_EDGE_INCLUSIVE :
									PART_EDGE_EXCLUSIVE ;

									ri->partRangeVal =
									(List *)rule_tmpl->parrangestart;

									bspec->partStart = (Node*)ri;

								}
								if (rule_tmpl->parrangeend)
								{
									ri =
									makeNode(PartitionRangeItem);

									ri->partedge =
									rule_tmpl->parrangeendincl ?
									PART_EDGE_INCLUSIVE :
									PART_EDGE_EXCLUSIVE ;

									ri->partRangeVal =
									(List *)rule_tmpl->parrangeend;

									bspec->partEnd = (Node*)ri;

								}
								if (rule_tmpl->parrangeevery)
								{
									ri =
									makeNode(PartitionRangeItem);

									ri->partRangeVal =
									(List *)rule_tmpl->parrangeevery;

									bspec->partEvery = (Node*)ri;

								}

								el->boundSpec = (Node*)bspec;

							} /* end if RANGE */

							spec_tmpl->partElem = lappend(spec_tmpl->partElem,
														  el);
						} /* end foreach */

						/* MPP-4725 */
						/* and the default partition */
						if (pNode_tmpl->default_part)
						{
							PartitionRule *rule_tmpl =
							pNode_tmpl->default_part;

							el = makeNode(PartitionElem);

5373 5374
							if (rule_tmpl->parname && strlen(rule_tmpl->parname) > 0)
								el->partName = rule_tmpl->parname;
5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428

							el->isDefault = rule_tmpl->parisdefault;

							spec_tmpl->partElem = lappend(spec_tmpl->partElem,
														  el);

						}

						/* apply storage encoding for this template */
						apply_template_storage_encodings(ct,
												 RelationGetRelid(rel),
												 pNode_tmpl->part->partid,
												 spec_tmpl);

						/* the PartitionElem should hang off the pby
						 * partspec, and subsequent templates should
						 * hang off the subspec for the prior
						 * PartitionElem.
						 */

						pBy2->partSpec	= (Node *)spec_tmpl;

					} /* end if pNode_tmpl */

					/* fixup the pnode_tmpl to get the right parlevel */
					if (pNode2 && (pNode2->rules || pNode2->default_part))
					{
						pNode_tmpl = get_parts(pNode2->part->parrelid,
											   pNode2->part->parlevel + 1,
											   InvalidOid, /* no parent for template */
											   true,
											   true /*includesubparts*/
											   );
					}

				}
				else
					pNode2 = NULL;
			}
			else
				pNode2 = NULL;

		} /* end while */
	}

	pstate = make_parsestate(NULL);
	result = validate_partition_spec(pstate, pcxt, ct, pBy, "", -1);
	free_parsestate(pstate);

	return result;
} /* end atpxPart_validate_spec */

Node *
atpxPartAddList(Relation rel,
5429 5430
				bool is_split,
				List *colencs,
5431
				PartitionNode  *pNode,
5432
				char *partName, /* pid->partiddef (or NULL) */
5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449
				bool isDefault,
				PartitionElem *pelem,
				PartitionByType part_type,
				PgPartRule* par_prule,
				char *lrelname,
				bool bSetTemplate,
				Oid ownerid)
{
	DestReceiver		*dest	   = None_Receiver;
	int					 maxpartno = 0;
	typedef enum {
		FIRST = 0,  /* New partition lies before first. */
		MIDDLE,     /* New partition lies in the middle. */
		LAST        /* New partition lies after last. */
	} NewPosition;
	NewPosition newPos = MIDDLE;
	bool				 bOpenGap  = false;
5450
	PartitionBy			*pBy;
5451 5452 5453 5454 5455
	CreateStmtContext    cxt;
	Node				*pSubSpec  = NULL;	/* return the subpartition spec */
	Relation			 par_rel   = rel;
	PartitionNode		 pNodebuf;
	PartitionNode		*pNode2 = &pNodebuf;
5456
	CreateStmt *ct;
5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513

	/* get the relation for the parent of the new partition */
	if (par_prule && par_prule->topRule)
		par_rel =
		heap_open(par_prule->topRule->parchildrelid, AccessShareLock);

	MemSet(&cxt, 0, sizeof(cxt));

	Assert( (PARTTYP_LIST == part_type) || (PARTTYP_RANGE == part_type) );

	/* XXX XXX: handle case of missing boundary spec for range with EVERY */

	if (pelem && pelem->boundSpec)
	{
		if (PARTTYP_RANGE == part_type)
		{
			PartitionBoundSpec	*pbs	   = NULL;
			PgPartRule			*prule	   = NULL;
			AlterPartitionId	 pid;
			ParseState			*pstate    = make_parsestate(NULL);
			TupleDesc			 tupledesc = RelationGetDescr(rel);

			MemSet(&pid, 0, sizeof(AlterPartitionId));

			pid.idtype = AT_AP_IDRank;
			pid.location  = -1;

			Assert (IsA(pelem->boundSpec, PartitionBoundSpec));

			pbs = (PartitionBoundSpec *)pelem->boundSpec;
			pSubSpec = pelem->subSpec; /* look for subpartition spec */

			/* no EVERY */
			if (pbs->partEvery)
				ereport(ERROR,
						(errcode(ERRCODE_UNDEFINED_OBJECT),
						 errmsg("cannot specify EVERY when adding "
								"RANGE partition to %s",
								lrelname)));

			if (!(pbs->partStart || pbs->partEnd ))
				ereport(ERROR,
						(errcode(ERRCODE_UNDEFINED_OBJECT),
						 errmsg("Need START or END when adding "
								"RANGE partition to %s",
								lrelname)));

			/* if no START, then START after last partition */
			if (!(pbs->partStart))
			{
				Datum					*d_end	   = NULL;
				bool					*isnull;
				bool					 bstat;

				pid.partiddef = (Node *)makeInteger(-1);

				prule = get_part_rule1(rel, &pid, false, false,
5514
									   NULL,
5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602
									   pNode,
									   lrelname,
									   &pNode2);

				/* ok if no prior -- just means this is first
				 * partition (XXX XXX though should always have 1
				 * partition in the table...)
				 */

				if (!(prule && prule->topRule))
				{
					maxpartno = 1;
					bOpenGap = true;
					goto L_fin_no_start;
				}

				{
					Node *n1;

					if ( !IsA(pbs->partEnd, PartitionRangeItem) )
					{
						/* pbs->partEnd isn't a PartitionRangeItem!  This probably means
						 * an invalid split of a default part, but we aren't really sure.
						 * See MPP-14613.
						 */
						ereport(ERROR,
								(errcode(ERRCODE_INVALID_TABLE_DEFINITION),
								 errmsg("invalid partition range specification.")));
					}

					PartitionRangeItem *ri =
					(PartitionRangeItem *)pbs->partEnd;
					PartitionRangeItemIsValid(NULL, ri);

					n1 = (Node *)copyObject(ri->partRangeVal);
					n1 = (Node *)transformExpressionList(pstate,
														 (List *)n1);

					d_end =
					magic_expr_to_datum(rel, pNode,
										n1, &isnull);
				}

				if (prule && prule->topRule && prule->topRule->parrangeend
					&& list_length((List *)prule->topRule->parrangeend))
				{
					bstat =
					compare_partn_opfuncid(pNode,
										   "pg_catalog",
										   "<",
										   (List *)prule->topRule->parrangeend,
										   d_end, isnull, tupledesc);

					/* if the current end is less than the new end
					 * then use it as the start of the new
					 * partition
					 */

					if (bstat)
					{
						PartitionRangeItem *ri = makeNode(PartitionRangeItem);

						ri->location = -1;

						ri->partRangeVal =
						copyObject(prule->topRule->parrangeend);

						/* invert the inclusive/exclusive */
						ri->partedge = prule->topRule->parrangeendincl ?
						PART_EDGE_EXCLUSIVE :
						PART_EDGE_INCLUSIVE;

						/* should be final partition */
						maxpartno = prule->topRule->parruleord + 1;
						newPos = LAST;
						pbs->partStart = (Node *)ri;
						goto L_fin_no_start;
					}
				}

				/* if the last partition doesn't have an end, or the
				 * end isn't less than the new end, check if new end
				 * is less than current start
				 */

				pid.partiddef = (Node *)makeInteger(1);

				prule = get_part_rule1(rel, &pid, false, false,
5603
									   NULL,
5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685
									   pNode,
									   lrelname,
									   &pNode2);

				if (!(prule && prule->topRule && prule->topRule->parrangestart
					  && list_length((List *)prule->topRule->parrangestart)))
					ereport(ERROR,
							(errcode(ERRCODE_INVALID_TABLE_DEFINITION),
							 errmsg("new partition overlaps existing "
									"partition")));

				bstat =
				compare_partn_opfuncid(pNode,
									   "pg_catalog",
									   ">",
									   (List *)prule->topRule->parrangestart,
									   d_end, isnull, tupledesc);


				if (!bstat)
				{
					/*
					 * As we support explicit inclusive and exclusive ranges
					 * we need to be even more careful.
					 *
					 * We can proceed if we have the following:
					 *
					 * END (R) EXCLUSIVE ; START (R) INCLUSIVE
					 * END (R) INCLUSIVE ; START (R) EXCLUSIVE
					 *
					 * XXX: this should be refactored into a single generic
					 * function that can be used here and in the unbounded end
					 * case, checked further down. That said, a lot of this code
					 * should be refactored.
					 */
					PartitionRangeItem *ri = (PartitionRangeItem *)pbs->partEnd;

					if ((ri->partedge == PART_EDGE_EXCLUSIVE &&
						 prule->topRule->parrangestartincl) ||
						(ri->partedge == PART_EDGE_INCLUSIVE &&
						 !prule->topRule->parrangestartincl))
					{
						bstat = compare_partn_opfuncid(pNode, "pg_catalog", "=",
													   (List *)prule->topRule->parrangestart,
													   d_end, isnull, tupledesc);
					}

				}

				if (bstat)
				{
					/* should be first partition */
					maxpartno = prule->topRule->parruleord - 1;
					if (0 == maxpartno)
					{
						maxpartno = 1;
						bOpenGap = true;
					}
					newPos = FIRST;
				}
				else
					ereport(ERROR,
							(errcode(ERRCODE_INVALID_TABLE_DEFINITION),
							 errmsg("new partition overlaps existing "
									"partition")));

			L_fin_no_start:
				bstat = false; /* fix warning */

			}
			else if (!(pbs->partEnd))
			{ /* if no END, then END before first partition
			   **ONLY IF**
			   * START of this partition is before first partition ... */

				Datum					*d_start   = NULL;
				bool					*isnull;
				bool					 bstat;

				pid.partiddef = (Node *)makeInteger(1);

				prule = get_part_rule1(rel, &pid, false, false,
5686
									   NULL,
5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771
									   pNode,
									   lrelname,
									   &pNode2);

				/* NOTE: invert all the logic of case of missing partStart */

				/* ok if no successor [?] -- just means this is first
				 * partition (XXX XXX though should always have 1
				 * partition in the table... [XXX XXX unless did a
				 * SPLIT of a single partition !! ])
				 */

				if (!(prule && prule->topRule))
				{
					maxpartno = 1;
					bOpenGap = true;
					goto L_fin_no_end;
				}

				{
					Node *n1;
					PartitionRangeItem *ri =
					(PartitionRangeItem *)pbs->partStart;

					PartitionRangeItemIsValid(NULL, ri);
					n1 = (Node *)copyObject(ri->partRangeVal);
					n1 = (Node *)transformExpressionList(pstate,
														 (List *)n1);

					d_start =
					magic_expr_to_datum(rel, pNode,
										n1, &isnull);
				}


				if (prule && prule->topRule && prule->topRule->parrangestart
					&& list_length((List *)prule->topRule->parrangestart))
				{
					bstat =
					compare_partn_opfuncid(pNode,
										   "pg_catalog",
										   ">",
										   (List *)prule->topRule->parrangestart,
										   d_start, isnull, tupledesc);

					/* if the current start is greater than the new start
					 * then use the current start as the end of the new
					 * partition
					 */

					if (bstat)
					{
						PartitionRangeItem *ri = makeNode(PartitionRangeItem);

						ri->location = -1;

						ri->partRangeVal =
						copyObject(prule->topRule->parrangestart);

						/* invert the inclusive/exclusive */
						ri->partedge = prule->topRule->parrangestartincl ?
						PART_EDGE_EXCLUSIVE :
						PART_EDGE_INCLUSIVE;

						/* should be first partition */
						maxpartno = prule->topRule->parruleord - 1;
						if (0 == maxpartno)
						{
							maxpartno = 1;
							bOpenGap = true;
						}
						newPos = FIRST;
						pbs->partEnd = (Node *)ri;
						goto L_fin_no_end;
					}
				}

				/* if the first partition doesn't have an start, or the
				 * start isn't greater than the new start, check if new start
				 * is greater than current end
				 */

				pid.partiddef = (Node *)makeInteger(-1);

				prule = get_part_rule1(rel, &pid, false, false,
5772
									   NULL,
5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857
									   pNode,
									   lrelname,
									   &pNode2);

				if (!(prule && prule->topRule && prule->topRule->parrangeend
					  && list_length((List *)prule->topRule->parrangeend)))
					ereport(ERROR,
							(errcode(ERRCODE_INVALID_TABLE_DEFINITION),
							 errmsg("new partition overlaps existing "
									"partition")));

				bstat =
				compare_partn_opfuncid(pNode,
									   "pg_catalog",
									   "<",
									   (List *)prule->topRule->parrangeend,
									   d_start, isnull, tupledesc);
				if (bstat)
				{
					/* should be final partition */
					maxpartno = prule->topRule->parruleord + 1;
					newPos = LAST;
				}
				else
				{
					PartitionRangeItem *ri =
					(PartitionRangeItem *)pbs->partStart;

					/* check for equality */
					bstat =
					compare_partn_opfuncid(pNode,
										   "pg_catalog",
										   "=",
										   (List *)prule->topRule->parrangeend,
										   d_start, isnull, tupledesc);

					/* if new start not >= to current end, then
					 * new start < current end, so it overlaps. Or if
					 * new start == current end, but the
					 * inclusivity is not opposite for the boundaries
					 * (eg inclusive end abuts inclusive start for
					 * same start/end value) then it overlaps
					 */
					if (!bstat ||
						(bstat &&
						 (prule->topRule->parrangeendincl ==
						  (ri->partedge == PART_EDGE_INCLUSIVE)))
						)
						ereport(ERROR,
								(errcode(ERRCODE_INVALID_TABLE_DEFINITION),
								 errmsg("new partition overlaps existing "
										"partition")));

					/* doesn't overlap, should be final partition */
					maxpartno = prule->topRule->parruleord + 1;

				}
			L_fin_no_end:
				bstat = false; /* fix warning */

			}
			else
			{					/* both start and end are specified */
				PartitionRangeItem		*ri;
				bool					 bOverlap  = false;
				bool					*isnull;
				int						 startSearchpoint;
				int						 endSearchpoint;
				Datum					*d_start   = NULL;
				Datum					*d_end	   = NULL;

				/* see if start or end overlaps */
				pid.idtype = AT_AP_IDValue;

				/* check the start */

				ri = (PartitionRangeItem *)pbs->partStart;
				PartitionRangeItemIsValid(NULL, ri);

				pid.partiddef = (Node *)copyObject(ri->partRangeVal);
				pid.partiddef =
				(Node *)transformExpressionList(pstate,
												(List *)pid.partiddef);

				prule = get_part_rule1(rel, &pid, false, false,
5858
									   &startSearchpoint,
5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091
									   pNode,
									   lrelname,
									   &pNode2);

				/* found match for start value in rules */
				if (prule && !(prule->topRule->parisdefault && is_split))
				{
					bool bstat;
					PartitionRule *a_rule = prule->topRule;
					d_start =
					magic_expr_to_datum(rel, pNode,
										pid.partiddef, &isnull);

					/* if start value was inclusive then it definitely
					 * overlaps
					 */
					if (ri->partedge == PART_EDGE_INCLUSIVE)
					{
						bOverlap = true;
						goto L_end_overlap;
					}

					/* not inclusive -- check harder if START really
					 * overlaps
					 */

					if (0 ==
						list_length((List *)a_rule->parrangeend))
					{
						/* infinite end > new start - overlap */
						bOverlap = true;
						goto L_end_overlap;
					}

					bstat =
					compare_partn_opfuncid(pNode,
										   "pg_catalog",
										   ">",
										   (List *)a_rule->parrangeend,
										   d_start, isnull, tupledesc);
					if (bstat)
					{
						/* end > new start - overlap */
						bOverlap = true;
						goto L_end_overlap;
					}

					/* Must be the case that new start == end of
					 * a_rule (because if the end < new start then how
					 * could we find it in the interval for prule ?)
					 * This is ok if they have opposite
					 * INCLUSIVE/EXCLUSIVE ->  New partition does not
					 * overlap.
					 */

					Assert (compare_partn_opfuncid(pNode,
												   "pg_catalog",
												   "=",
												   (List *)a_rule->parrangeend,
												   d_start, isnull, tupledesc));

					if (a_rule->parrangeendincl ==
						(ri->partedge == PART_EDGE_INCLUSIVE))
					{
						/* start and end must be of opposite
						 * types, else they overlap
						 */
						bOverlap = true;
						goto L_end_overlap;
					}

					/* opposite inclusive/exclusive, so in middle of
					 * range of existing partitions
					 */
					newPos = MIDDLE;
					goto L_check_end;
				} /* end if prule */

				/* check for basic case of START > last partition */
				if (pNode && pNode->rules && list_length(pNode->rules))
				{
					bool bstat;
					PartitionRule *a_rule = /* get last rule */
					(PartitionRule *)list_nth(pNode->rules,
											  list_length(pNode->rules) - 1);
					d_start =
					magic_expr_to_datum(rel, pNode,
										pid.partiddef, &isnull);

					if (0 ==
						list_length((List *)a_rule->parrangeend))
					{
						/* infinite end > new start */
						bstat = false;
					}
					else
						bstat =
						compare_partn_opfuncid(pNode,
											   "pg_catalog",
											   "<",
											   (List *)a_rule->parrangeend,
											   d_start, isnull, tupledesc);

					/* if the new partition start > end of the last
					 * partition then it is the new final partition.
					 * Don't bother checking the new end for overlap
					 * (just check if end > start in validation
					 * phase
					 */
					if (bstat)
					{
						newPos = LAST;
						/* should be final partition */
						maxpartno = a_rule->parruleord + 1;

						goto L_end_overlap;
					}

					/* could be the case that new start == end of
					 * last.  This is ok if they have opposite
					 * INCLUSIVE/EXCLUSIVE.  New partition is still
					 * final partition for this case
					 */

					if (0 ==
						list_length((List *)a_rule->parrangeend))
					{
						/* infinite end > new start */
						bstat = false;
					}
					else
						bstat =
						compare_partn_opfuncid(pNode,
											   "pg_catalog",
											   "=",
											   (List *)a_rule->parrangeend,
											   d_start, isnull, tupledesc);
					if (bstat)
					{
						if (a_rule->parrangeendincl ==
							(ri->partedge == PART_EDGE_INCLUSIVE))
						{
							/* start and end must be of opposite
							 * types, else they overlap */
							bOverlap = true;
							goto L_end_overlap;
						}

						newPos = LAST;
						/* should be final partition */
						maxpartno = a_rule->parruleord + 1;

						goto L_end_overlap;
					}
					else
					{
						/* tricky case: the new start is less than the
						 * end of the final partition, but it does not
						 * intersect any existing partitions.  So we
						 * are trying to add a partition in the middle
						 * of the existing partitions or before the
						 * first partition.
						 */
						a_rule = /* get first rule */
						(PartitionRule *)list_nth(pNode->rules, 0);

						if (0 ==
							list_length((List *)a_rule->parrangestart))
						{
							/* new start > negative infinite start */
							bstat = false;
						}
						else
							bstat =
							compare_partn_opfuncid(pNode,
												   "pg_catalog",
												   ">",
												   (List *)a_rule->parrangestart,
												   d_start, isnull, tupledesc);

						/* if the new partition start < start of the
						 * first partition then it is the new first
						 * partition.  Check the new end for overlap.
						 *
						 * NOTE: ignore the case where
						 * new start == 1st start and
						 * inclusive vs exclusive because that is just
						 * stupid.
						 *
						 */
						if (bstat)
						{
							newPos = FIRST;
							/* should be first partition */
							maxpartno = a_rule->parruleord - 1;
							if (0 == maxpartno)
							{
								maxpartno = 1;
								bOpenGap = true;
							}

						}
						else
						{
							newPos = MIDDLE;
						}
					}
				}
				else
				{
					/* if no "rules", then this is the first partition */

					newPos = LAST;
					/* should be final partition */
					maxpartno = 1;

					goto L_end_overlap;
				}

			L_check_end:
				/* check the end */
				/* check for basic case of END < first partition (the
				 opposite of START > last partition) */

				ri = (PartitionRangeItem *)pbs->partEnd;
				PartitionRangeItemIsValid(NULL, ri);

				pid.partiddef = (Node *)copyObject(ri->partRangeVal);
				pid.partiddef =
				(Node *)transformExpressionList(pstate,
												(List *)pid.partiddef);

				prule = get_part_rule1(rel, &pid, false, false,
6092
									   &endSearchpoint,
6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494
									   pNode,
									   lrelname,
									   &pNode2);

				/* found match for end value in rules */
				if (prule && !(prule->topRule->parisdefault &&
							   is_split))
				{
					bool bstat;
					PartitionRule *a_rule = prule->topRule;
					d_end =
					magic_expr_to_datum(rel, pNode,
										pid.partiddef, &isnull);

					/* if end value was inclusive then it definitely
					 * overlaps
					 */
					if (ri->partedge == PART_EDGE_INCLUSIVE)
					{
						bOverlap = true;
						goto L_end_overlap;
					}

					/* not inclusive -- check harder if END really
					 * overlaps
					 */
					if (0 ==
						list_length((List *)a_rule->parrangestart))
					{
						/* -infinite start < new end - overlap */
						bOverlap = true;
						goto L_end_overlap;
					}

					bstat =
					compare_partn_opfuncid(pNode,
										   "pg_catalog",
										   "<",
										   (List *)a_rule->parrangestart,
										   d_end, isnull, tupledesc);
					if (bstat)
					{
						/* start < new end - overlap */
						bOverlap = true;
						goto L_end_overlap;
					}

					/* Must be the case that new end = start of
					 * a_rule (because if the start > new end then how
					 * could we find it in the interval for prule ?)
					 * This is ok if they have opposite
					 * INCLUSIVE/EXCLUSIVE ->  New partition does not
					 * overlap.
					 */

					Assert (compare_partn_opfuncid(pNode,
												   "pg_catalog",
												   "=",
												   (List *)a_rule->parrangestart,
												   d_end, isnull, tupledesc));

					if (a_rule->parrangestartincl ==
						(ri->partedge == PART_EDGE_INCLUSIVE))
					{
						/* start and end must be of opposite
						 * types, else they overlap
						 */
						bOverlap = true;
						goto L_end_overlap;
					}
				} /* end if prule */

				/* check for case of END < first partition */
				if (pNode && pNode->rules && list_length(pNode->rules))
				{
					bool bstat;
					PartitionRule *a_rule = /* get first rule */
					(PartitionRule *)list_nth(pNode->rules, 0);
					d_end =
					magic_expr_to_datum(rel, pNode,
										pid.partiddef, &isnull);

					if (0 ==
						list_length((List *)a_rule->parrangestart))
					{
						/* new end > negative infinite start */
						bstat = false;
					}
					else
						bstat =
						compare_partn_opfuncid(pNode,
											   "pg_catalog",
											   ">",
											   (List *)a_rule->parrangestart,
											   d_end, isnull, tupledesc);

					/* if the new partition end < start of the first
					 * partition then it is the new first partition.
					 */
					if (bstat)
					{
						/* check if start was also ok for first partition */
						switch (newPos)
						{
							case FIRST:
								/* since new start < first start and
								 * new end < first start should be
								 * first.
								 */

								/* should be first partition */
								maxpartno = a_rule->parruleord - 1;
								if (0 == maxpartno)
								{
									maxpartno = 1;
									bOpenGap = true;
								}

								break;
							case MIDDLE:
							case LAST:
							default:
								/* new end is less than first
								 * partition start but new start isn't
								 * -- must be end < start
								 */
								break;
						}
						goto L_end_overlap;
					}

					/* could be the case that new end == start of
					 * first.  This is ok if they have opposite
					 * INCLUSIVE/EXCLUSIVE.  New partition is still
					 * first partition for this case
					 */

					if (0 ==
						list_length((List *)a_rule->parrangestart))
					{
						/* new end > negative infinite start */
						bstat = false;
					}
					else
						bstat =
						compare_partn_opfuncid(pNode,
											   "pg_catalog",
											   "=",
											   (List *)a_rule->parrangestart,
											   d_end, isnull, tupledesc);
					if (bstat)
					{
						if (a_rule->parrangestartincl ==
							(ri->partedge == PART_EDGE_INCLUSIVE))
						{
							/* start and end must be of opposite
							 * types, else they overlap */
							bOverlap = true;
							goto L_end_overlap;
						}
						/* check if start was also ok for first partition */
						switch (newPos)
						{
							case FIRST:
								/* since new start < first start and
								 * new end < first start should be
								 * first.
								 */

								/* should be first partition */
								maxpartno = a_rule->parruleord - 1;
								if (0 == maxpartno)
								{
									maxpartno = 1;
									bOpenGap = true;
								}

								break;
							case MIDDLE:
							case LAST:
							default:
								/* new end is less than first
								 * partition start but new start isn't
								 * -- must be end < start
								 */
								break;
						}
						goto L_end_overlap;
					}
					else
					{
						/* tricky case: the new end is greater than the
						 * start of the first partition, but it does not
						 * intersect any existing partitions.  So we
						 * are trying to add a partition in the middle
						 * of the existing partitions or after the
						 * last partition.
						 */
						a_rule = /* get last rule */
						(PartitionRule *)list_nth(pNode->rules,
												  list_length(pNode->rules) - 1);
						if (0 ==
							list_length((List *)a_rule->parrangeend))
						{
							/* new end < infinite end */
							bstat = false;
						}
						else

							bstat =
							compare_partn_opfuncid(pNode,
												   "pg_catalog",
												   "<",
												   (List *)a_rule->parrangeend,
												   d_end, isnull, tupledesc);

						/* if the new partition end > end of the
						 * last partition then it is the new last
						 * partition (maybe)
						 *
						 * NOTE: ignore the case where
						 * new end == last end and
						 * inclusive vs exclusive because that is just
						 * stupid.
						 *
						 */
						if (bstat)
						{
							switch (newPos)
							{
								case LAST:
									/* since new start > last end and
									 * new end > last end should be
									 * last.
									 */

									/* should be last partition */
									maxpartno = a_rule->parruleord + 1;

									break;
								case FIRST:
									/* since new start < first start
									 * and new end > last end we would
									 * overlap all partitions!!!
									 */
								case MIDDLE:
									/* since new start < last end
									 * and new end > last end we would
									 * overlap last partition
									 */
									bOverlap = true;
									goto L_end_overlap;
									break;
								default:
									/* new end is less than last
									 * partition end but new start isn't
									 * -- must be end < start
									 */
									break;
							}
						}
						else
						{
							switch (newPos)
							{
								case FIRST:
									/* since new start < first start
									 * and new end in middle we overlap
									 */
									bOverlap = true;
									goto L_end_overlap;

									break;
								case MIDDLE:
									/* both start and end in middle */
									break;
								case LAST:
								default:
									/* since new start > last end and
									 * new end in middle
									 * -- must be end < start
									 */
									break;
							}
						}
					}
				}
				else
				{
					/* if no "rules", then this is the first partition */

					newPos = LAST;
					/* should be final partition */
					maxpartno = 1;

					goto L_end_overlap;
				}


				/* if the individual start and end values don't
				 * intersect an existing partition, make sure they
				 * don't define a range which contains an existing
				 * partition, ie new start < existing start and new
				 * end > existing end
				 */

				if (!bOverlap && (newPos == MIDDLE))
				{
					bOpenGap = true;
					int prev_partno = 0;

					/*
					 hmm, not always true.  see MPP-3667, MPP-3636, MPP-3593

					 if (startSearchpoint != endSearchpoint)
					 {
					 bOverlap = true;
					 goto L_end_overlap;
					 }

					 */
					while (1)
					{
						bool bstat;
						PartitionRule *a_rule = /* get the rule */
						(PartitionRule *)list_nth(pNode->rules,
												  startSearchpoint);

						/* MPP-3621: fix ADD for open intervals */

						if (0 ==
							list_length((List *)a_rule->parrangeend))
						{
							/* new end < infinite end */
							bstat = false;
						}
						else
							bstat =
							compare_partn_opfuncid(pNode,
												   "pg_catalog",
												   "<=",
												   (List *)a_rule->parrangeend,
												   d_start, isnull, tupledesc);

						if (bstat)
						{
							startSearchpoint++;
							Assert(startSearchpoint
								   <= list_length(pNode->rules));
							prev_partno = a_rule->parruleord;
							continue;
						}

						/* if previous partition was less than
						 current, then this one should be larger.
						 if not, then it overlaps...
						 */
						if (
							(0 ==
							 list_length((List *)a_rule->parrangestart))
							||
							!compare_partn_opfuncid(pNode,
													"pg_catalog",
													">=",
													(List *)a_rule->parrangestart,
													d_end, isnull, tupledesc))
						{
							prule = NULL; /* could get the right prule... */
							bOverlap = true;
							goto L_end_overlap;
						}

						if (prev_partno != 0 && prev_partno + 1 < a_rule->parruleord)
						{
							/* Found gap.  No need to open it. */
							bOpenGap = false;
							maxpartno = prev_partno + 1;
						}
						else
							/* shift a_rule up so new rule has a place to fit */
							maxpartno = a_rule->parruleord;

						break;
					} /* end while */

				} /* end 0 == middle */

			L_end_overlap:
				if (bOverlap)
					ereport(ERROR,
							(errcode(ERRCODE_INVALID_TABLE_DEFINITION),
							 errmsg("new partition overlaps existing "
									"partition%s",
									(prule && prule->isName) ?
									prule->partIdStr : "")));

			}

			free_parsestate(pstate);
		} /* end if parttype_range */
	} /* end if pelem && pelem->boundspec */

6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568
	/*
	 * Create a phony CREATE TABLE statement for the parent table.
	 * The parse_analyze call later expands it, and we extract just the constituent
	 * commands we need to create the new partition, and ignore the commands for
	 * the already-existing parent table
	 */
	ct = makeNode(CreateStmt);
	ct->relation = makeRangeVar(get_namespace_name(RelationGetNamespace(par_rel)),
								RelationGetRelationName(par_rel), -1);

	/*
	 * in analyze.c, fill in tableelts with a list of inhrelation of
	 * the partition parent table, and fill in inhrelations with copy
	 * of rangevar for parent table
	 */
	InhRelation			*inh = makeNode(InhRelation);
	inh->relation = copyObject(ct->relation);
	inh->options = list_make3_int(
		CREATE_TABLE_LIKE_INCLUDING_DEFAULTS,
		CREATE_TABLE_LIKE_INCLUDING_CONSTRAINTS,
		CREATE_TABLE_LIKE_INCLUDING_INDEXES);

	/*
	 * fill in remaining fields from parse time (gram.y):
	 * the new partition is LIKE the parent and it
	 * inherits from it
	 */
	ct->tableElts = lappend(ct->tableElts, inh);
	ct->constraints = NIL;

	if (pelem->storeAttr)
		ct->options = (List *) ((AlterPartitionCmd *) pelem->storeAttr)->arg1;

	ct->tableElts = list_concat(ct->tableElts, list_copy(colencs));

	ct->oncommit = ONCOMMIT_NOOP;
	if (pelem->storeAttr && ((AlterPartitionCmd *) pelem->storeAttr)->arg2)
		ct->tablespacename = strVal(((AlterPartitionCmd *) pelem->storeAttr)->arg2);
	else
		ct->tablespacename = NULL;

	pBy = makeNode(PartitionBy);
	if (pelem->subSpec) /* treat subspec as partition by... */
	{
		pBy->partSpec = pelem->subSpec;
		pBy->partDepth = 0;
		pBy->partQuiet = PART_VERBO_NODISTRO;
		pBy->location  = -1;
		pBy->partDefault = NULL;
		pBy->parentRel = copyObject(ct->relation);
	}
	else if (bSetTemplate)
	{
		/* if creating a template, silence partition name messages */
		pBy->partQuiet = PART_VERBO_NOPARTNAME;
	}
	else
	{
		/* just silence distribution policy messages */
		pBy->partQuiet = PART_VERBO_NODISTRO;
	}

	ct->distributedBy = NULL;
	ct->partitionBy = (Node *)pBy;
	ct->relKind = RELKIND_RELATION;
	ct->policy = 0;
	ct->postCreate = NULL;

	ct->is_add_part = true; /* subroutines need to know this */
	ct->ownerid = ownerid;

	if (!ct->distributedBy)
		ct->distributedBy = make_dist_clause(rel);

6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599
	/* this function does transformExpr on the boundary specs */
	(void) atpxPart_validate_spec(pBy, &cxt, rel, ct, pelem, pNode, partName,
								  isDefault, part_type, "");

	if (pelem && pelem->boundSpec)
	{
		if (PARTTYP_LIST == part_type)
		{
			ListCell			*lc;
			PartitionValuesSpec *spec;
			AlterPartitionId	 pid;

			Assert (IsA(pelem->boundSpec, PartitionValuesSpec));

			MemSet(&pid, 0, sizeof(AlterPartitionId));

			spec = (PartitionValuesSpec *)pelem->boundSpec;

			/* only check this if we aren't doing split */
			if (1)
			{
				foreach(lc, spec->partValues)
				{
					List			*vals  = lfirst(lc);
					PgPartRule		*prule = NULL;

					pid.idtype = AT_AP_IDValue;
					pid.partiddef = (Node *)vals;
					pid.location  = -1;

					prule = get_part_rule1(rel, &pid, false, false,
6600
										   NULL,
6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668
										   pNode,
										   lrelname,
										   &pNode2);

					if (prule && !(prule->topRule->parisdefault && is_split))
						ereport(ERROR,
								(errcode(ERRCODE_UNDEFINED_OBJECT),
								 errmsg("new partition definition overlaps "
										"existing partition%s of %s",
										prule->partIdStr,
										lrelname)));

				} /* end foreach */
			}

			/* give a new maxpartno for the list partition */
			if (pNode && pNode->rules && list_length(pNode->rules))
			{
				ListCell *lc;
				PartitionRule *rule = NULL;
				maxpartno = 1;

				foreach(lc, pNode->rules)
				{
					rule = lfirst(lc);
					if (rule->parruleord > maxpartno)
						break;
					++maxpartno;
				}
			}
		}
	}

	if (maxpartno < 0)
	{
		elog(ERROR, "too many partitions, parruleord overflow");
	}

	if (newPos == FIRST && pNode && list_length(pNode->rules) > 0)
	{
		/*
		 * Adding new partition at the beginning.  Find a hole in
		 * existing parruleord sequence by scanning rules list.	 Open
		 * gap only until the hole to accommodate the new rule at
		 * parruleord = 1.
		 */
		ListCell *lc;
		PartitionRule *rule = NULL;
		int hole = 1;
		foreach(lc, pNode->rules)
		{
			rule = lfirst(lc);
			if (rule->parruleord > hole)
			{
				break;
			}
			++hole;
		}
		/*
		 * Open gap only if hole found in the middle.  If hole exists
		 * right at the beginning (first partition's parruleord > 1),
		 * the gap is already open for us.
		 */
		if (hole > 1)
		{
			parruleord_open_gap(
					pNode->part->partid, pNode->part->parlevel,
					rule->parparentoid, --hole, 1,
6669
					false /* closegap */);
6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697
		}
	}
	else if (newPos == LAST && pNode && list_length(pNode->rules) > 0)
	{
		/*
		 * Adding the new partition at the end.	 Find the hole closest
		 * to the end of the rule list.	 Close gap from the last rule
		 * only until this hole.  The new partition then gets the last
		 * partition's parruleord.
		 */
		ListCell *lc;
		PartitionRule *rule = NULL;
		int hole = 1, stopkey = -1;
		foreach(lc, pNode->rules)
		{
			rule = lfirst(lc);
			if (rule->parruleord > hole)
			{
				hole = stopkey = rule->parruleord;
			}
			++hole;
		}
		if (stopkey != -1)
		{
			PartitionRule *last_rule = (PartitionRule *) llast(pNode->rules);
			parruleord_open_gap(
					pNode->part->partid, pNode->part->parlevel,
					last_rule->parparentoid, last_rule->parruleord, stopkey,
6698
					true /* closegap */);
6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763
			/* Let the new rule reuse last rule's parruleord. */
			--maxpartno;
		}
	}
	else if (bOpenGap)
	{
		/*
		 * Adding new partition in between first and the last one.
		 * Check if a hole exists by scanning rule list.  If one
		 * exists, either open or close gap based on location of the
		 * hole relative to maxpartno.
		 */
		ListCell *lc;
		PartitionRule *rule = NULL;
		int hole = 1;
		foreach(lc, pNode->rules)
		{
			rule = lfirst(lc);
			if (rule->parruleord > hole)
				break;
			++hole;
		}
		if (maxpartno > hole)
		{
			/*
			 * Found a hole before maxpartno.  Make room for new
			 * partition in the slot previous to maxpartno.  Decrement
			 * parruleord values from this slot until the hole.
			 */
			parruleord_open_gap(
					pNode->part->partid,
					pNode->part->parlevel,
					rule->parparentoid,
					--maxpartno,
					++hole,
					true /* closegap */);
		}
		else if (maxpartno < hole)
		{
			/*
			 * Found a hole after maxpartno.  Open gap for maxpartno
			 * by incrementing parruleord values from the hole until
			 * maxpartno.
			 */
			parruleord_open_gap(
					pNode->part->partid,
					pNode->part->parlevel,
					rule->parparentoid,
					hole,
					maxpartno,
					false /* closegap */);
		}
		/* if (hole == maxpartno) we don't need to open a gap. */
	}

	{
		List			*l1;
		ListCell		*lc;
		int				 ii					 = 0;
		bool			 bFixFirstATS		 = true;
		bool			 bFirst_TemplateOnly = true;   /* ignore dummy entry */
		int				 pby_templ_depth	 = 0;	   /* template partdepth */
		Oid				 skipTableRelid		 = InvalidOid;

		/*
6764 6765 6766 6767
		 * This transformCreateStmt() expands the phony create of a partitioned
		 * table that we just build into the constituent commands we need to create
		 * the new part.  (This will include some commands for the parent that we
		 * don't need, since the parent already exists.)
6768
		 */
6769
		l1 = transformCreateStmt(ct, "ADD PARTITION", true);
6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782

		/*
		 * Look for the first CreateStmt and generate a GrantStmt
		 * based on the RangeVar in it.
		 */
		foreach(lc, l1)
		{
			Node *s = lfirst(lc);

			/* skip the first one, it's the fake create table for the parent */
			if (lc == list_head(l1))
				continue;

6783
			if (IsA(s, CreateStmt))
6784 6785 6786 6787
			{
				HeapTuple tuple;
				Datum aclDatum;
				bool isNull;
6788
				CreateStmt *t = (CreateStmt *) s;
6789

6790
				tuple = SearchSysCache1(RELOID, ObjectIdGetDatum(RelationGetRelid(rel)));
6791 6792 6793 6794
				if (!HeapTupleIsValid(tuple))
					elog(ERROR, "cache lookup failed for relation %u",
						 RelationGetRelid(rel));

6795 6796 6797
				aclDatum = SysCacheGetAttr(RELOID, tuple,
										   Anum_pg_class_relacl,
										   &isNull);
6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833
				if (!isNull)
				{
					List *cp = NIL;
					int i, num;
					Acl *acl;
					AclItem *aidat;

					acl = DatumGetAclP(aclDatum);

					num = ACL_NUM(acl);
					aidat = ACL_DAT(acl);

					for (i = 0; i < num; i++)
					{
						AclItem	*aidata = &aidat[i];
						Datum d;
						char *str;

						d = DirectFunctionCall1(aclitemout,
												PointerGetDatum(aidata));
						str = DatumGetCString(d);

						cp = lappend(cp, makeString(str));

					}

					if (list_length(cp))
					{
						GrantStmt *gs = makeNode(GrantStmt);

						gs->is_grant = true;
						gs->objtype = ACL_OBJECT_RELATION;
						gs->cooked_privs = cp;

						gs->objects = list_make1(copyObject(t->relation));

6834
						l1 = lappend(l1, gs);
6835 6836 6837
					}
				}

6838
				ReleaseSysCache(tuple);
6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854
				break;
			}
		}

		/* skip the first cell because the table already exists --
		 * don't recreate it
		 */
		lc = list_head(l1);

		if (lc)
		{
			Node *s = lfirst(lc);

			/* MPP-10421: but save the relid of the skipped table,
			 * because we skip indexes associated with it...
			 */
6855
			if (IsA(s, CreateStmt))
6856
			{
6857
				CreateStmt *t = (CreateStmt *) s;
6858 6859 6860 6861 6862 6863 6864 6865

				skipTableRelid = RangeVarGetRelid(t->relation, true);
			}
		}


		for_each_cell(lc, lnext(lc))
		{
6866
			Node *q = lfirst(lc);
6867 6868 6869 6870 6871 6872 6873 6874

			/*
			 * MPP-6379, MPP-10421: If the statement is an expanded
			 * index creation statement on the parent (or the "skipped
			 * table"), ignore it. We get into this situation when the
			 * parent has one or more indexes on it that our new
			 * partition is inheriting.
			 */
6875
			if (IsA(q, IndexStmt))
6876
			{
6877
				IndexStmt *istmt	 = (IndexStmt *)q;
6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890
				Oid		   idxRelid	 = RangeVarGetRelid(istmt->relation, true);

				if (idxRelid == RelationGetRelid(rel))
					continue;

				if (OidIsValid(skipTableRelid) &&
					(idxRelid == skipTableRelid))
					continue;
			}

			/* XXX XXX: fix the first Alter Table Statement to have
			 * the correct maxpartno.  Whoohoo!!
			 */
6891
			if (bFixFirstATS && q && IsA(q, AlterTableStmt))
6892 6893 6894 6895 6896 6897 6898 6899
			{
				PartitionSpec	*spec = NULL;
				AlterTableStmt	*ats;
				AlterTableCmd	*atc;
				List			*cmds;

				bFixFirstATS = false;

6900
				ats = (AlterTableStmt *) q;
6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931
				Assert(IsA(ats, AlterTableStmt));

				cmds = ats->cmds;

				Assert(cmds && (list_length(cmds) > 1));

				atc = (AlterTableCmd *)lsecond(cmds);

				Assert(atc->def);

				pBy = (PartitionBy *)atc->def;

				Assert(IsA(pBy, PartitionBy));

				spec = (PartitionSpec *)pBy->partSpec;

				if (spec)
				{
					List				*l2 = spec->partElem;
					PartitionElem		*pel;

					if (l2 && list_length(l2))
					{
						pel = (PartitionElem *)linitial(l2);

						pel->partno = maxpartno;
					}

				}

			} /* end first alter table fixup */
6932
			else if (IsA(q, CreateStmt))
6933 6934
			{
				/* propagate owner */
6935
				((CreateStmt *) q)->ownerid = ownerid;
6936 6937 6938 6939 6940 6941
			}

			/* normal case - add partitions using CREATE statements
			 * that get dispatched to the segments
			 */
			if (!bSetTemplate)
6942
				ProcessUtility(q,
6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955
							   synthetic_sql,
							   NULL,
							   false, /* not top level */
							   dest,
							   NULL);
			else
			{ /* setting subpartition template only */

				/* find all the alter table statements that contain
				 * partaddinternal, and extract the definitions.  Only
				 * build the catalog entries for subpartition
				 * templates, not "real" table entries.
				 */
6956
				if (IsA(q, AlterTableStmt))
6957
				{
6958
					AlterTableStmt *at2 = (AlterTableStmt *) q;
6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119
					List *l2 = at2->cmds;
					ListCell *lc2;

					foreach(lc2, l2)
					{
						AlterTableCmd *ac2 = (AlterTableCmd *) lfirst(lc2);

						if (ac2->subtype == AT_PartAddInternal)
						{
							PartitionBy *templ_pby =
							(PartitionBy *)ac2->def;

							Assert(IsA(templ_pby, PartitionBy));

							/* skip the first one because it's the
							 * fake parent partition definition for
							 * the subpartition template entries
							 */

							if (bFirst_TemplateOnly)
							{
								bFirst_TemplateOnly = false;

								/* MPP-5992: only set one level of
								 * templates -- we might have
								 * templates for subpartitions of the
								 * subpartitions, which would add
								 * duplicate templates into the table.
								 * Only add templates of the specified
								 * depth and skip deeper template
								 * definitions.
								 */
								pby_templ_depth = templ_pby->partDepth + 1;

							}
							else
							{
								if (templ_pby->partDepth == pby_templ_depth)
									add_part_to_catalog(
														RelationGetRelid(rel),
														(PartitionBy *)ac2->def,
														true);
							}

						}
					} /* end foreach lc2 l2 */
				}
			} /* end else setting subpartition templates only */

			ii++;
		} /* end for each cell */

	}

	if (par_prule && par_prule->topRule)
		heap_close(par_rel, NoLock);

	return pSubSpec;
} /* end atpxPartAddList */


List *
atpxDropList(Relation rel, PartitionNode *pNode)
{
	List *l1 = NIL;
	ListCell *lc;

	if (!pNode)
		return l1;

	/* add the child lists first */
	foreach(lc, pNode->rules)
	{
		PartitionRule *rule = lfirst(lc);
		List *l2 = NIL;

		if (rule->children)
			l2 = atpxDropList(rel, rule->children);
		else
			l2 = NIL;

		if (l2)
		{
			if (l1)
				l1 = list_concat(l1, l2);
			else
				l1 = l2;
		}
	}

	/* and the default partition */
	if (pNode->default_part)
	{
		PartitionRule *rule = pNode->default_part;
		List *l2 = NIL;

		if (rule->children)
			l2 = atpxDropList(rel, rule->children);
		else
			l2 = NIL;

		if (l2)
		{
			if (l1)
				l1 = list_concat(l1, l2);
			else
				l1 = l2;
		}
	}

	/* add entries for rules at current level */
	foreach(lc, pNode->rules)
	{
		PartitionRule *rule = lfirst(lc);
		char	*prelname;
		char	*nspname;
		Relation	rel;

		rel = heap_open(rule->parchildrelid, AccessShareLock);
		prelname = pstrdup(RelationGetRelationName(rel));
		nspname = pstrdup(get_namespace_name(RelationGetNamespace(rel)));
		heap_close(rel, NoLock);

		if (l1)
			l1 = lappend(l1, list_make2(makeString(nspname),
										makeString(prelname)));
		else
			l1 = list_make1(list_make2(makeString(nspname),
									   makeString(prelname)));
	}

	/* and the default partition */
	if (pNode->default_part)
	{
		PartitionRule *rule = pNode->default_part;
		char *prelname;
		char *nspname;
		Relation	rel;

		rel = heap_open(rule->parchildrelid, AccessShareLock);
		prelname = pstrdup(RelationGetRelationName(rel));
		nspname = pstrdup(get_namespace_name(RelationGetNamespace(rel)));
		heap_close(rel, NoLock);

		if (l1)
			l1 = lappend(l1, list_make2(makeString(nspname),
										makeString(prelname)));
		else
			l1 = list_make1(list_make2(makeString(nspname),
									   makeString(prelname)));
	}

	return l1;
} /* end atpxDropList */


void
exchange_part_rule(Oid oldrelid, Oid newrelid)
{
	HeapTuple	 tuple;
	Relation	 catalogRelation;
H
Heikki Linnakangas 已提交
7120 7121
	ScanKeyData	scankey;
	SysScanDesc sscan;
7122 7123 7124 7125 7126 7127 7128 7129

	/* pg_partition and  pg_partition_rule are populated only on the
	 * entry database, so a call to this function is only meaningful
	 * there. */
	Insist(Gp_segment == -1);

	catalogRelation = heap_open(PartitionRuleRelationId, RowExclusiveLock);

H
Heikki Linnakangas 已提交
7130 7131 7132 7133 7134 7135 7136
	/* SELECT * FROM pg_partition_rule WHERE parchildrelid = :1 FOR UPDATE */
	ScanKeyInit(&scankey, Anum_pg_partition_rule_parchildrelid,
				BTEqualStrategyNumber, F_OIDEQ,
				ObjectIdGetDatum(oldrelid));
	sscan = systable_beginscan(catalogRelation, PartitionRuleParchildrelidIndexId, true,
							   SnapshotNow, 1, &scankey);
	tuple = systable_getnext(sscan);
7137 7138
	if (HeapTupleIsValid(tuple))
	{
H
Heikki Linnakangas 已提交
7139 7140 7141 7142
		/* make a modifiable copy */
		tuple = heap_copytuple(tuple);

		((Form_pg_partition_rule) GETSTRUCT(tuple))->parchildrelid = newrelid;
7143

H
Heikki Linnakangas 已提交
7144 7145
		simple_heap_update(catalogRelation, &tuple->t_self, tuple);
		CatalogUpdateIndexes(catalogRelation, tuple);
7146 7147 7148 7149

		heap_freetuple(tuple);
	}

H
Heikki Linnakangas 已提交
7150
	systable_endscan(sscan);
7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167
	heap_close(catalogRelation, NoLock);
}

void
exchange_permissions(Oid oldrelid, Oid newrelid)
{
	HeapTuple oldtuple;
	HeapTuple newtuple;
	Datum save;
	bool saveisnull;
	Datum values[Natts_pg_class];
	bool nulls[Natts_pg_class];
	bool replaces[Natts_pg_class];
	HeapTuple replace_tuple;
	bool isnull;
	Relation rel = heap_open(RelationRelationId, RowExclusiveLock);

H
Heikki Linnakangas 已提交
7168
	oldtuple = SearchSysCache1(RELOID, ObjectIdGetDatum(oldrelid));
7169 7170 7171
	if (!HeapTupleIsValid(oldtuple))
		elog(ERROR, "cache lookup failed for relation %u", oldrelid);

H
Heikki Linnakangas 已提交
7172 7173 7174
	save = SysCacheGetAttr(RELOID, oldtuple,
						   Anum_pg_class_relacl,
						   &saveisnull);
7175

H
Heikki Linnakangas 已提交
7176
	newtuple = SearchSysCache1(RELOID, ObjectIdGetDatum(newrelid));
7177 7178 7179 7180 7181 7182 7183 7184 7185
	if (!HeapTupleIsValid(newtuple))
		elog(ERROR, "cache lookup failed for relation %u", newrelid);

	/* finished building new ACL value, now insert it */
	MemSet(values, 0, sizeof(values));
	MemSet(nulls, false, sizeof(nulls));
	MemSet(replaces, false, sizeof(replaces));

	replaces[Anum_pg_class_relacl - 1] = true;
H
Heikki Linnakangas 已提交
7186 7187 7188
	values[Anum_pg_class_relacl - 1] = SysCacheGetAttr(RELOID, newtuple,
													   Anum_pg_class_relacl,
													   &isnull);
7189 7190 7191
	if (isnull)
		nulls[Anum_pg_class_relacl - 1] = true;

H
Heikki Linnakangas 已提交
7192 7193 7194 7195 7196
	replace_tuple = heap_modify_tuple(oldtuple,
									  RelationGetDescr(rel),
									  values, nulls, replaces);
	simple_heap_update(rel, &oldtuple->t_self, replace_tuple);
	CatalogUpdateIndexes(rel, replace_tuple);
7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210

	/* XXX: Update the shared dependency ACL info */

	/* finished building new ACL value, now insert it */
	MemSet(values, 0, sizeof(values));
	MemSet(nulls, false, sizeof(nulls));
	MemSet(replaces, false, sizeof(replaces));

	replaces[Anum_pg_class_relacl - 1] = true;
	values[Anum_pg_class_relacl - 1] = save;

	if (saveisnull)
		nulls[Anum_pg_class_relacl - 1] = true;

H
Heikki Linnakangas 已提交
7211 7212 7213 7214 7215
	replace_tuple = heap_modify_tuple(newtuple,
									  RelationGetDescr(rel),
									  values, nulls, replaces);
	simple_heap_update(rel, &newtuple->t_self, replace_tuple);
	CatalogUpdateIndexes(rel, replace_tuple);
7216 7217 7218

	/* update shared dependency */

H
Heikki Linnakangas 已提交
7219 7220
	ReleaseSysCache(oldtuple);
	ReleaseSysCache(newtuple);
7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265
	heap_close(rel, NoLock);
}


bool
atpxModifyListOverlap (Relation rel,
					   AlterPartitionId *pid,
					   PgPartRule		*prule,
					   PartitionElem	*pelem,
					   bool bAdd)
{
	if (prule->pNode->default_part && bAdd)
		ereport(ERROR,
				(errcode(ERRCODE_INVALID_TABLE_DEFINITION),
				 errmsg("cannot MODIFY %s partition%s for "
						"relation \"%s\" to ADD values -- would "
						"overlap DEFAULT partition \"%s\"",
						"LIST",
						prule->partIdStr,
						RelationGetRelationName(rel),
						prule->pNode->default_part->parname),
				 errhint("need to SPLIT partition \"%s\"",
						 prule->pNode->default_part->parname)));

	{
		ListCell				*lc;
		PartitionValuesSpec		*pVSpec;
		AlterPartitionId		 pid2;
		PartitionNode			*pNode	= prule->pNode;
		CreateStmtContext		 cxt;

		MemSet(&cxt, 0, sizeof(cxt));

		Assert (IsA(pelem->boundSpec, PartitionValuesSpec));

		MemSet(&pid2, 0, sizeof(AlterPartitionId));

		/* this function does transformExpr on the boundary specs */
		(void) atpxPart_validate_spec(makeNode(PartitionBy),
									  &cxt,
									  rel,
									  NULL,		 /* CreateStmt */
									  pelem,
									  pNode,
									  (pid->idtype == AT_AP_IDName) ?
7266
									  strVal(pid->partiddef) : NULL,
7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282
									  false,		 /* isDefault */
									  PARTTYP_LIST, /* part_type */
									  prule->partIdStr);

		pVSpec = (PartitionValuesSpec *)pelem->boundSpec;

		foreach(lc, pVSpec->partValues)
		{
			List			*vals  = lfirst(lc);
			PgPartRule		*prule2 = NULL;

			pid2.idtype = AT_AP_IDValue;
			pid2.partiddef = (Node *)vals;
			pid2.location  = -1;

			prule2 = get_part_rule(rel, &pid2, false, false,
7283
								   NULL, false);
7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442

			if (bAdd)
			{
				/* if ADDing a value, should not match */

				if (prule2)
				{
					if (prule2->topRuleRank != prule->topRuleRank)
						ereport(ERROR,
								(errcode(ERRCODE_UNDEFINED_OBJECT),
								 errmsg("cannot MODIFY LIST partition%s for "
										"relation \"%s\" -- "
										"would overlap "
										"existing partition%s",
										prule->partIdStr,
										RelationGetRelationName(rel),
										prule2->isName ?
										prule2->partIdStr : "")));
					else
						ereport(ERROR,
								(errcode(ERRCODE_UNDEFINED_OBJECT),
								 errmsg("cannot MODIFY LIST partition%s for "
										"relation \"%s\" -- "
										"ADD value has duplicate in "
										"existing partition",
										prule->partIdStr,
										RelationGetRelationName(rel))));
				}
			}
			else /* DROP values */
			{
				/* if DROPping a value, it should only be in the
				 * specified partition
				 */

				if (!prule2)
				{
					ereport(ERROR,
							(errcode(ERRCODE_UNDEFINED_OBJECT),
							 errmsg("cannot MODIFY LIST partition%s for "
									"relation \"%s\" -- DROP value not found",
									prule->partIdStr,
									RelationGetRelationName(rel))));
				}

				if (prule2 && (prule2->topRuleRank != prule->topRuleRank))
				{
					ereport(ERROR,
							(errcode(ERRCODE_UNDEFINED_OBJECT),
							 errmsg("cannot MODIFY LIST partition%s for "
									"relation \"%s\" -- "
									"found DROP value in%s partition%s",
									prule->partIdStr,
									RelationGetRelationName(rel),
									prule2->isName ? "" : "other",
									prule2->isName ? prule2->partIdStr : "")));
				}
			}

		} /* end foreach */
	}

	return false;
} /* end atpxModifyListOverlap */

bool
atpxModifyRangeOverlap (Relation				 rel,
						AlterPartitionId		*pid,
						PgPartRule				*prule,
						PartitionElem			*pelem)
{
	PgPartRule			*prule2		 = NULL;
	AlterPartitionId	 pid2;
	PartitionNode		*pNode		 = prule->pNode;
	bool				 bCheckStart = true;
	PartitionBoundSpec	*pbs		 = NULL;
	ParseState			*pstate;
	bool				 bOverlap	 = false;
	bool				*isnull;
	TupleDesc			 tupledesc	 = RelationGetDescr(rel);
	Datum				*d_start	 = NULL;
	Datum				*d_end		 = NULL;
	Node *pRangeValList = NULL;
	int ii;

	Assert (IsA(pelem->boundSpec, PartitionBoundSpec));

	pbs = (PartitionBoundSpec *)pelem->boundSpec;

	for (ii = 0; ii < 2 ; ii++)
	{
		PartitionRangeItem		*ri;

		if (bCheckStart) /* check START first, then END */
		{
			if (!(pbs->partStart))
			{
				bCheckStart = false;

				if (prule->topRule->parrangestart)
				{
					PartitionRangeItem *ri = makeNode(PartitionRangeItem);

					ri->location = -1;

					ri->partRangeVal =
					copyObject(prule->topRule->parrangestart);

					ri->partedge = prule->topRule->parrangestartincl ?
					PART_EDGE_INCLUSIVE :
					PART_EDGE_EXCLUSIVE;

					/* no start, so use current start */
					pbs->partStart = (Node *)ri;
				}

				continue;
			}
			ri = (PartitionRangeItem *)pbs->partStart;
		}
		else
		{
			/* no END, so we are done */
			if (!(pbs->partEnd))
			{

				if (prule->topRule->parrangeend)
				{
					PartitionRangeItem *ri = makeNode(PartitionRangeItem);

					ri->location = -1;

					ri->partRangeVal = copyObject(prule->topRule->parrangeend);

					ri->partedge = prule->topRule->parrangeendincl ?
					PART_EDGE_INCLUSIVE :
					PART_EDGE_EXCLUSIVE;

					/* no end, so use current end */
					pbs->partEnd = (Node *)ri;
				}

				break;
			}
			ri = (PartitionRangeItem *)pbs->partEnd;
		}

		MemSet(&pid2, 0, sizeof(AlterPartitionId));

		pid2.idtype = AT_AP_IDValue;
		pstate = make_parsestate(NULL);
		pRangeValList = (Node *) copyObject(ri->partRangeVal);
		pRangeValList = (Node *)
		transformExpressionList(pstate, (List *)pRangeValList);
		free_parsestate(pstate);
		pid2.partiddef = pRangeValList;
		pid2.location  = -1;

		prule2 = get_part_rule(rel, &pid2, false, false,
7443
							   NULL, false);
7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482

		if (!prule2)
		{
			/* no rules matched -- this is ok as long as no
			 * default partition
			 */
			if (prule->pNode->default_part)
				ereport(ERROR,
						(errcode(ERRCODE_INVALID_TABLE_DEFINITION),
						 errmsg("cannot MODIFY %s partition%s for "
								"relation \"%s\" to extend range -- would "
								"overlap DEFAULT partition \"%s\"",
								"RANGE",
								prule->partIdStr,
								RelationGetRelationName(rel),
								prule->pNode->default_part->parname),
						 errhint("need to SPLIT partition \"%s\"",
								 prule->pNode->default_part->parname)));

			/* if only 1 partition no further check needed */
			if (1 == list_length(pNode->rules))
				continue;

			if (bCheckStart)
			{
				bool bstat;
				PartitionRule *a_rule;

				/* check for adjacent partition */
				if (1 == prule->topRuleRank)
					continue; /* no previous, so changing start is ok */

				MemSet(&pid2, 0, sizeof(AlterPartitionId));

				pid2.idtype = AT_AP_IDRank;
				pid2.partiddef = (Node *)makeInteger(prule->topRuleRank - 1);
				pid2.location  = -1;

				prule2 = get_part_rule(rel, &pid2, false, false,
7483
									   NULL, false);
7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546

				Assert(prule2);

				a_rule = prule2->topRule;

				/* just check against end of adjacent partition */
				d_start =
				magic_expr_to_datum(rel, pNode,
									pRangeValList, &isnull);

				bstat =
				compare_partn_opfuncid(pNode,
									   "pg_catalog",
									   ">",
									   (List *)a_rule->parrangeend,
									   d_start, isnull, tupledesc);
				if (bstat)
				{
					/* end > new start - overlap */
					bOverlap = true;
					break;
				}

				/* could be the case that new start == end of
				 * previous.  This is ok if they have opposite
				 * INCLUSIVE/EXCLUSIVE.
				 */

				bstat =
				compare_partn_opfuncid(pNode,
									   "pg_catalog",
									   "=",
									   (List *)a_rule->parrangeend,
									   d_start, isnull, tupledesc);

				if (bstat)
				{
					if (a_rule->parrangeendincl ==
						(ri->partedge == PART_EDGE_INCLUSIVE))
					{
						/* start and end must be of opposite
						 * types, else they overlap */
						bOverlap = true;
						break;
					}
				}
			}
			else /* check the end */
			{
				bool bstat;
				PartitionRule *a_rule;

				/* check for adjacent partition */
				if (list_length(pNode->rules) == prule->topRuleRank)
					continue; /* no next, so changing end is ok */

				MemSet(&pid2, 0, sizeof(AlterPartitionId));

				pid2.idtype = AT_AP_IDRank;
				pid2.partiddef = (Node *)makeInteger(prule->topRuleRank + 1);
				pid2.location  = -1;

				prule2 = get_part_rule(rel, &pid2, false, false,
7547
									   NULL, false);
7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767

				Assert(prule2);

				a_rule = prule2->topRule;

				/* just check against start of adjacent partition */
				d_end =
				magic_expr_to_datum(rel, pNode,
									pRangeValList, &isnull);

				bstat =
				compare_partn_opfuncid(pNode,
									   "pg_catalog",
									   "<",
									   (List *)a_rule->parrangestart,
									   d_end, isnull, tupledesc);
				if (bstat)
				{
					/* start < new end - overlap */
					bOverlap = true;
					break;
				}

				/* could be the case that new end == start of
				 * next.  This is ok if they have opposite
				 * INCLUSIVE/EXCLUSIVE.
				 */

				bstat =
				compare_partn_opfuncid(pNode,
									   "pg_catalog",
									   "=",
									   (List *)a_rule->parrangestart,
									   d_end, isnull, tupledesc);

				if (bstat)
				{
					if (a_rule->parrangeendincl ==
						(ri->partedge == PART_EDGE_INCLUSIVE))
					{
						/* start and end must be of opposite
						 * types, else they overlap */
						bOverlap = true;
						break;
					}
				}
			} /* end else check the end */

		}
		else
		{
			/* matched a rule - definitely a problem if the range was
			 * inclusive
			 */
			if (prule2->topRuleRank != prule->topRuleRank)
			{
				if (0 == prule2->topRuleRank)
					ereport(ERROR,
							(errcode(ERRCODE_INVALID_TABLE_DEFINITION),
							 errmsg("cannot MODIFY %s partition%s for "
									"relation \"%s\" to extend range -- would "
									"overlap DEFAULT partition \"%s\"",
									"RANGE",
									prule->partIdStr,
									RelationGetRelationName(rel),
									prule->pNode->default_part->parname),
							 errhint("need to SPLIT partition \"%s\"",
									 prule->pNode->default_part->parname)));


				if (ri->partedge == PART_EDGE_INCLUSIVE)
				{
					bOverlap = true;
					break;
				}

				/* range was exclusive -- need to do some checking */
				if (bCheckStart)
				{
					bool bstat;
					PartitionRule *a_rule = prule2->topRule;

					/* check for adjacent partition */
					if ((prule->topRuleRank - 1) != prule2->topRuleRank)
					{
						bOverlap = true;
						break;
					}

					/* just check against end of adjacent partition */
					d_start =
					magic_expr_to_datum(rel, pNode,
										pid2.partiddef, &isnull);

					bstat =
					compare_partn_opfuncid(pNode,
										   "pg_catalog",
										   ">",
										   (List *)a_rule->parrangeend,
										   d_start, isnull, tupledesc);
					if (bstat)
					{
						/* end > new start - overlap */
						bOverlap = true;
						break;
					}

					/* Must be the case that new start == end of
					 * a_rule (because if the end < new start then how
					 * could we find it in the interval for prule ?)
					 * This is ok if they have opposite
					 * INCLUSIVE/EXCLUSIVE ->  New partition does not
					 * overlap.
					 */

					Assert (compare_partn_opfuncid(pNode,
												   "pg_catalog",
												   "=",
												   (List *)a_rule->parrangeend,
												   d_start, isnull, tupledesc));

					if (a_rule->parrangeendincl ==
						(ri->partedge == PART_EDGE_INCLUSIVE))
					{
						/* start and end must be of opposite
						 * types, else they overlap
						 */
						bOverlap = true;
						break;
					}
				}
				else /* check the end */
				{
					bool bstat;
					PartitionRule *a_rule = prule2->topRule;

					/* check for adjacent partition */
					if ((prule->topRuleRank + 1) != prule2->topRuleRank)
					{
						bOverlap = true;
						break;
					}

					/* just check against start of adjacent partition */
					d_end =
					magic_expr_to_datum(rel, pNode,
										pid2.partiddef, &isnull);

					bstat =
					compare_partn_opfuncid(pNode,
										   "pg_catalog",
										   "<",
										   (List *)a_rule->parrangestart,
										   d_end, isnull, tupledesc);
					if (bstat)
					{
						/* start < new end - overlap */
						bOverlap = true;
						break;
					}

					/* Must be the case that new end = start of
					 * a_rule (because if the start > new end then how
					 * could we find it in the interval for prule ?)
					 * This is ok if they have opposite
					 * INCLUSIVE/EXCLUSIVE ->  New partition does not
					 * overlap.
					 */

					Assert (compare_partn_opfuncid(pNode,
												   "pg_catalog",
												   "=",
												   (List *)a_rule->parrangestart,
												   d_end, isnull, tupledesc));

					if (a_rule->parrangestartincl ==
						(ri->partedge == PART_EDGE_INCLUSIVE))
					{
						/* start and end must be of opposite
						 * types, else they overlap
						 */
						bOverlap = true;
						break;
					}
				} /* end else check the end */
			} /* end if (prule2->topRuleRank != prule->topRuleRank) */
		}

		/* if checked START, then check END.  If checked END, then done */
		if (!bCheckStart)
			break;
		if (bCheckStart)
			bCheckStart = false;
	} /* end for */

	if (bOverlap)
		ereport(ERROR,
				(errcode(ERRCODE_UNDEFINED_OBJECT),
				 errmsg("cannot MODIFY RANGE partition%s for "
						"relation \"%s\" -- "
						"would overlap "
						"existing partition%s",
						prule->partIdStr,
						RelationGetRelationName(rel),
						(prule2 && prule2->isName) ?
						prule2->partIdStr : "")));

	{
		CreateStmtContext		 cxt;

		MemSet(&cxt, 0, sizeof(cxt));

		/* this function does transformExpr on the boundary specs */
		(void) atpxPart_validate_spec(makeNode(PartitionBy),
									  &cxt,
									  rel,
									  NULL,		 /* CreateStmt */
									  pelem,
									  pNode,
									  (pid->idtype == AT_AP_IDName) ?
7768
									  strVal(pid->partiddef) : NULL,
7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932
									  false,		 /* isDefault */
									  PARTTYP_RANGE, /* part_type */
									  prule->partIdStr);
	}


	return false;
} /* end atpxModifyRangeOverlap */

static void atpxSkipper(PartitionNode *pNode, int *skipped)
{
	ListCell *lc;

	if (!pNode) return;

	/* add entries for rules at current level */
	foreach(lc, pNode->rules)
	{
		PartitionRule	*rule = lfirst(lc);

		if (skipped) *skipped += 1;

		if (rule->children)
			atpxSkipper(rule->children, skipped);
	} /* end foreach */

	/* and the default partition */
	if (pNode->default_part)
	{
		PartitionRule	*rule = pNode->default_part;

		if (skipped) *skipped += 1;

		if (rule->children)
			atpxSkipper(rule->children, skipped);
	}
} /* end atpxSkipper */

static List *
build_rename_part_recurse(PartitionRule *rule, const char *old_parentname,
						  const char *new_parentname,
						  int *skipped)
{

	RangeVar		*rv;
	Relation		 rel;
	char *relname = NULL;
	char newRelNameBuf[(NAMEDATALEN*2)];
	List *l1 = NIL;

	rel = heap_open(rule->parchildrelid, AccessShareLock);

	relname = pstrdup(RelationGetRelationName(rel));

	rv = makeRangeVar(get_namespace_name(RelationGetNamespace(rel)),
					  relname, -1);

	/* unlock, because we have a lock on the master */
	heap_close(rel, AccessShareLock);

	/*
	 * The child name should contain the old parent name as a
	 * prefix - check the length and compare to make sure.
	 *
	 * To build the new child name, just use the new name as a
	 * prefix, and use the remainder of the child name (the part
	 * after the old parent name prefix) as the suffix.
	 */
	if (strlen(old_parentname) > strlen(relname))
	{
		if (skipped)
			*skipped += 1;

		atpxSkipper(rule->children, skipped);
	}
	else
	{
		if (0 != (strncmp(old_parentname, relname, strlen(old_parentname))))
		{
			if (skipped)
				*skipped += 1;
			atpxSkipper(rule->children, skipped);
		}
		else
		{
			snprintf(newRelNameBuf, sizeof(newRelNameBuf), "%s%s",
					 new_parentname, relname + strlen(old_parentname));

			if (strlen(newRelNameBuf) > NAMEDATALEN)
				ereport(ERROR,
						(errcode(ERRCODE_INVALID_TABLE_DEFINITION),
						 errmsg("relation name \"%s\" for child partition "
								"is too long",
								newRelNameBuf)));

			l1 = lappend(l1, list_make2(rv, pstrdup(newRelNameBuf)));

			/* add the child lists next (not first) */
			{
				List *l2 = NIL;

				if (rule->children)
					l2 = atpxRenameList(rule->children,
										relname, newRelNameBuf, skipped);

				if (l2)
					l1 = list_concat(l1, l2);
			}
		}
	}
	return l1;
}

List *
atpxRenameList(PartitionNode *pNode,
			   char *old_parentname, const char *new_parentname, int *skipped)
{
	List *l1 = NIL;
	ListCell *lc;

	if (!pNode)
		return l1;

	/* add entries for rules at current level */
	foreach(lc, pNode->rules)
	{
		PartitionRule	*rule = lfirst(lc);

		l1 = list_concat(l1,
						 build_rename_part_recurse(rule,
												   old_parentname,
												   new_parentname,
												   skipped));
	} /* end foreach */

	/* and the default partition */
	if (pNode->default_part)
	{
		PartitionRule	*rule = pNode->default_part;

		l1 = list_concat(l1,
						 build_rename_part_recurse(rule,
												   old_parentname,
												   new_parentname,
												   skipped));
	}

	return l1;
} /* end atpxRenameList */


static Oid
get_opfuncid_by_opname(List *opname, Oid lhsid, Oid rhsid)
{
	Oid opfuncid;
	Operator op;

	op = oper(NULL, opname, lhsid, rhsid, false, -1);

	if (op == NULL)	  /* should not fail */
		elog(ERROR, "could not find operator");

	opfuncid = ((Form_pg_operator)GETSTRUCT(op))->oprcode;

7933
	ReleaseSysCache(op);
7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073
	return opfuncid;
}


/* Construct the PgPartRule for a branch of a partitioning hierarchy.
 *
 *		rel - the partitioned relation (top-level)
 *		cmd - an AlterTableCmd, possibly nested in type AT_PartAlter AlterTableCmds
 *            identifying a subset of the parts of the partitioned relation.
 */
static PgPartRule *
get_pprule_from_ATC(Relation rel, AlterTableCmd *cmd)
{
	List *pids = NIL; /* of AlterPartitionId */
	AlterPartitionId *pid = NULL;
	PgPartRule *pprule = NULL;
	AlterPartitionId *work_partid = NULL;

	AlterTableCmd *atc = cmd;


	/* Get list of enclosing ALTER PARTITION ids. */
	while ( atc->subtype == AT_PartAlter )
	{
		AlterPartitionCmd *apc = (AlterPartitionCmd*)atc->def;

		pid = (AlterPartitionId*)apc->partid;
		Insist(IsA(pid, AlterPartitionId));

		atc = (AlterTableCmd*)apc->arg1;
		Insist(IsA(atc, AlterTableCmd));

		pids = lappend(pids, pid);
	}

	/* The effective ALTER TABLE command is in atc.
	 * The pids list (of AlterPartitionId nodes) represents the path to
	 * top partitioning branch of rel.  Since we are only called for
	 * branches and leaves (never the root) of the partition, the pid
	 * list should not empty.
	 *
	 * Use the AlterPartitionId interpretter, get_part_rule, to do
	 * the interpretation.
	 */
	Insist( list_length(pids) > 0 );

	work_partid = makeNode(AlterPartitionId);

	work_partid->idtype = AT_AP_IDList;
	work_partid->partiddef = (Node*)pids;
	work_partid->location = -1;

	pprule = get_part_rule(rel,
						   work_partid,
						   true, true, /* parts must exist */
						   NULL, /* no implicit results */
						   false /* no template rules */
						   );

	return pprule;
}

/* Return the pg_class OIDs of the relations representing the parts of
 * a partitioned table designated by the given AlterTable command.
 *
 *		rel - the partitioned relation (top-level)
 *		cmd - an AlterTableCmd, possibly nested in type AT_PartAlter AlterTableCmds
 *            identifying a subset of the parts of the partitioned relation.
 */
List *
basic_AT_oids(Relation rel, AlterTableCmd *cmd)
{
	PgPartRule *pprule = get_pprule_from_ATC(rel, cmd);

	if ( ! pprule )
		return NIL;

	return all_prule_relids(pprule->topRule);
}

/*
 * Return the basic AlterTableCmd found by peeling off intervening layers of
 * ALTER PARTITION from the given AlterTableCmd.
 */
AlterTableCmd *basic_AT_cmd(AlterTableCmd *cmd)
{
	while ( cmd->subtype == AT_PartAlter )
	{
		AlterPartitionCmd *apc = (AlterPartitionCmd*)cmd->def;
		Insist(IsA(apc, AlterPartitionCmd));
		cmd = (AlterTableCmd*)apc->arg1;
		Insist(IsA(cmd, AlterTableCmd));
	}
	return cmd;
}


/* Determine whether we can implement a requested distribution on a part of
 * the specified partitioned table.
 *
 * In 3.3
 *   DISTRIBUTED RANDOMLY or distributed just like the whole partitioned
 *   table is implementable.  Anything else is not.
 *
 * rel              Pointer to cache entry for the whole partitioned table
 * dist_cnames      List of column names proposed for distribution some part
 */
bool can_implement_dist_on_part(Relation rel, List *dist_cnames)
{
	ListCell *lc;
	int i;

	if (Gp_role != GP_ROLE_DISPATCH)
	{
		ereport(DEBUG1,
				(errmsg("requesting redistribution outside dispatch - returning no")));
		return false;
	}

	/* Random is okay.  It is represented by a list of one empty list. */
	if ( list_length(dist_cnames) == 1 && linitial(dist_cnames) == NIL )
		return true;

	/* Require an exact match to the policy of the parent. */
	if ( list_length(dist_cnames) != rel->rd_cdbpolicy->nattrs )
		return false;

	i = 0;
	foreach(lc, dist_cnames)
	{
		AttrNumber     attnum;
		char *cname;
		HeapTuple tuple;
		Node *item = lfirst(lc);
		bool ok = false;

		if ( !(item && IsA(item, String)) )
			return false;

		cname = strVal((Value *)item);
8074
		tuple = SearchSysCacheAttName(RelationGetRelid(rel), cname);
8075 8076 8077 8078 8079 8080 8081 8082 8083
		if (!HeapTupleIsValid(tuple))
			ereport(ERROR,
					(errcode(ERRCODE_UNDEFINED_COLUMN),
					 errmsg("column \"%s\" of relation \"%s\" does not exist",
							cname,
							RelationGetRelationName(rel))));

		attnum = ((Form_pg_attribute) GETSTRUCT(tuple))->attnum;
		ok = attnum == rel->rd_cdbpolicy->attrs[i++];
8084 8085

		ReleaseSysCache(tuple);
8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405

		if ( ! ok )
			return false;
	}
	return true;
}



/* Test whether we can exchange newrel into oldrel's space within the
 * partitioning hierarchy of rel as far as the table schema is concerned.
 * (Does not, e.g., look into constraint agreement, etc.)
 *
 * If throw is true, throw an appropriate error in case the answer is
 * "no, can't exchange".  If throw is false, just return the answer
 * quietly.
 */
bool
is_exchangeable(Relation rel, Relation oldrel, Relation newrel, bool throw)
{
	AttrMap *map_new = NULL;
	AttrMap *map_old = NULL;
	bool congruent = TRUE;

	/* Both parts must be relations. */
	if (!(oldrel->rd_rel->relkind == RELKIND_RELATION ||
		  newrel->rd_rel->relkind == RELKIND_RELATION))
	{
		congruent = FALSE;
		if ( throw )
			ereport(ERROR,
					(errcode(ERRCODE_SYNTAX_ERROR),
					 errmsg("cannot exchange relation "
							"which is not a table")));
	}

	if (RelationIsExternal(newrel))
	{
		if (rel_is_default_partition(oldrel->rd_id))
		{
			congruent = FALSE;
			if ( throw )
				ereport(ERROR,
						(errcode(ERRCODE_SYNTAX_ERROR),
						 errmsg("cannot exchange DEFAULT partition "
								"with external table")));
		}

		ExtTableEntry *extEntry = GetExtTableEntry(newrel->rd_id);
		if (extEntry && extEntry->iswritable)
		{
			congruent = FALSE;
			if ( throw )
				ereport(ERROR,
						(errcode(ERRCODE_SYNTAX_ERROR),
						 errmsg("cannot exchange relation "
								"which is a WRITABLE external table")));
		}
	}
 
	/* Attributes of the existing part (oldrel) must be compatible with the
	 * partitioned table as a whole.  This might be an assertion, but we don't
	 * want this case to pass in a production build, so we use an internal
	 * error.
	 */
	if (congruent && ! map_part_attrs(rel, oldrel, &map_old, FALSE) )
	{
		congruent = FALSE;
		if ( throw )
			elog(ERROR, "existing part \"%s\" not congruent with"
				 "partitioned table \"%s\"",
				 RelationGetRelationName(oldrel),
				 RelationGetRelationName(rel));
	}

	/* From here on we need to be careful to free the maps. */

	/* Attributes of new part must be compatible with the partitioned table.
	 * (We assume that the attributes of the old part are compatible.)
	 */
	if ( congruent && ! map_part_attrs(rel, newrel, &map_new, throw) )
		congruent = FALSE;

	/* Both parts must have the same owner. */
	if ( congruent && oldrel->rd_rel->relowner != newrel->rd_rel->relowner)
	{
		congruent = FALSE;
		if ( throw )
			ereport(ERROR,
					(errcode(ERRCODE_SYNTAX_ERROR),
					 errmsg("owner of \"%s\" must be the same as that "
							"of \"%s\"",
							RelationGetRelationName(newrel),
							RelationGetRelationName(rel))));
	}

	/* Both part tables must have the same "WITH OID"s setting */
	if (congruent && oldrel->rd_rel->relhasoids != newrel->rd_rel->relhasoids)
	{
		congruent = FALSE;
		if ( throw )
			ereport(ERROR,
					(errcode(ERRCODE_SYNTAX_ERROR),
					 errmsg("\"%s\" and \"%s\" must have same OIDs setting",
							RelationGetRelationName(rel),
							RelationGetRelationName(newrel))));
	}

	/* The new part table must not be involved in inheritance. */
	if ( congruent && has_subclass_fast(RelationGetRelid(newrel)))
	{
		congruent = FALSE;
		if ( throw )
			ereport(ERROR,
					(errcode(ERRCODE_SYNTAX_ERROR),
					 errmsg("cannot EXCHANGE table \"%s\" as it has "
							"child table(s)",
							RelationGetRelationName(newrel))));
	}

	if (congruent && relation_has_supers(RelationGetRelid(newrel)))
	{
		congruent = FALSE;
		if ( throw )
			ereport(ERROR,
					(errcode(ERRCODE_SYNTAX_ERROR),
					 errmsg("cannot exchange table \"%s\" as it "
							"inherits other table(s)",
							RelationGetRelationName(newrel))));
	}

	/* The new part table must not have rules on it. */
	if ( congruent && ( newrel->rd_rules || oldrel->rd_rules ) )
	{
		congruent = FALSE;
		if ( throw )
			ereport(ERROR,
					(errcode(ERRCODE_SYNTAX_ERROR),
					 errmsg("cannot exchange table which has rules "
							"defined on it")));
	}

	/* The distribution policies of the existing part (oldpart) and the
	 * candidate part (newpart) must match that of the whole partitioned
	 * table.  However, we can only check this where the policy table is
	 * populated, i.e., on the entry database.  Note checking the policy
	 * of the existing part is defensive.  It SHOULD match.
	 * Skip the check when either the oldpart or the newpart is external. 
	 */
	if (congruent && Gp_role == GP_ROLE_DISPATCH &&
	    !RelationIsExternal(newrel) && !RelationIsExternal(oldrel))
	{
		GpPolicy *parpol = rel->rd_cdbpolicy;
		GpPolicy *oldpol = oldrel->rd_cdbpolicy;
		GpPolicy *newpol = newrel->rd_cdbpolicy;
		GpPolicy *adjpol = NULL;

		if ( map_old != NULL )
		{
			int i;
			AttrNumber remapped_parent_attr = 0;

			for ( i = 0; i < parpol->nattrs; i++ )
			{
				remapped_parent_attr = attrMap(map_old, parpol->attrs[i]);

				if ( ! (parpol->attrs[i] > 0  /* assert parent live */
						&& oldpol->attrs[i] > 0   /* assert old part live */
						&& remapped_parent_attr == oldpol->attrs[i] /* assert match */
						))
					elog(ERROR,
						 "discrepancy in partitioning policy of \"%s\"",
						 RelationGetRelationName(rel));
			}
		}
		else
		{
			if (! GpPolicyEqual(parpol, oldpol) )
				elog(ERROR,
					 "discrepancy in partitioning policy of \"%s\"",
					 RelationGetRelationName(rel));
		}

		if ( map_new != NULL )
		{
			int i;
			adjpol = GpPolicyCopy(CurrentMemoryContext, parpol);

			for ( i = 0; i < adjpol->nattrs; i++ )
			{
				adjpol->attrs[i] = attrMap(map_new, parpol->attrs[i]);
				Assert(newpol->attrs[i] > 0); /* check new part */
			}
		}
		else
		{
			adjpol = parpol;
		}

		if (! GpPolicyEqual(adjpol, newpol) )
		{
			congruent = FALSE;
			if ( throw )
				ereport(ERROR,
						(errcode(ERRCODE_SYNTAX_ERROR),
						 errmsg("distribution policy for \"%s\" "
								"must be the same as that for \"%s\"",
								RelationGetRelationName(newrel),
								RelationGetRelationName(rel))));
		}
		else if (false && memcmp(oldpol->attrs, newpol->attrs,
								 sizeof(AttrNumber) * adjpol->nattrs))
		{
			congruent = FALSE;
			if ( throw )
				ereport(ERROR,
						(errcode(ERRCODE_SYNTAX_ERROR),
						 errmsg("distribution policy matches but implementation lags")));
		}
	}

	if ( map_old != NULL ) pfree(map_old);
	if ( map_new != NULL ) pfree(map_new);

	return congruent;
}


/*
 * Apply the constraint represented by the argument pg_constraint tuple
 * remapped through the argument attribute map to the candidate relation.
 *
 * In addition, if validate is true and the constraint is one we enforce
 * on partitioned tables, allocate and return a NewConstraint structure
 * for use in phase 3 to validate the relation (i.e., to make sure it
 * conforms to its constraints).
 *
 * Note that pgcon (the ConstraintRelationId appropriately locked)
 * is supplied externally for efficiency.  No other relation should
 * be supplied via this argument.
 */
static NewConstraint *
constraint_apply_mapped(HeapTuple tuple, AttrMap *map, Relation cand,
						bool validate, bool is_split, Relation pgcon)
{
	Datum val;
	bool isnull;
	Datum *dats;
	int16 *keys;
	int nkeys;
	int i;
	Node *conexpr;
	char *consrc;
	char *conbin;
	Form_pg_constraint con = (Form_pg_constraint)GETSTRUCT(tuple);
	NewConstraint *newcon = NULL;

	/* Translate pg_constraint.conkey */
	val = heap_getattr(tuple, Anum_pg_constraint_conkey,
					   RelationGetDescr(pgcon), &isnull);
	Assert(!isnull);

	deconstruct_array(DatumGetArrayTypeP(val),
					  INT2OID, 2, true, 's',
					  &dats, NULL, &nkeys);

	keys = palloc(sizeof(int16) * nkeys);
	for (i = 0; i < nkeys; i++)
	{
		int16 key =  DatumGetInt16(dats[i]);
		keys[i] = (int16)attrMap(map, key);
	}

	/* Translate pg_constraint.conbin */
	val = heap_getattr(tuple, Anum_pg_constraint_conbin,
					   RelationGetDescr(pgcon), &isnull);
	if ( !isnull )
	{
		conbin = DatumGetCString(DirectFunctionCall1(textout, val));
		conexpr = stringToNode(conbin);
		conexpr = attrMapExpr(map, conexpr);
		conbin = nodeToString(conexpr);
	}
	else
	{
		conbin = NULL;
		conexpr = NULL;
	}


	/* Don't translate pg_constraint.consrc -- per doc'n, use original */
	val = heap_getattr(tuple, Anum_pg_constraint_consrc,
					   RelationGetDescr(pgcon), &isnull);
	if (!isnull)
	{
		consrc = DatumGetCString(DirectFunctionCall1(textout, val));
	}
	else
	{
		consrc = NULL;
	}

	/* Apply translated constraint to candidate. */
	switch ( con->contype )
	{
		case CONSTRAINT_CHECK:
		{
			Assert( conexpr && conbin && consrc );

			CreateConstraintEntry(NameStr(con->conname),
								  con->connamespace, // XXX should this be RelationGetNamespace(cand)?
								  con->contype,
								  con->condeferrable,
								  con->condeferred,
								  RelationGetRelid(cand),
								  keys,
								  nkeys,
								  InvalidOid,
								  InvalidOid,
								  NULL,
8406 8407 8408
								  NULL,
								  NULL,
								  NULL,
8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454
								  0,
								  ' ',
								  ' ',
								  ' ',
								  InvalidOid,
								  conexpr,
								  conbin,
								  consrc);
			break;
		}

		case CONSTRAINT_FOREIGN:
		{
			int16 *fkeys;
			int nfkeys;
			Oid indexoid = InvalidOid;
			Oid *opclasses = NULL;
			Relation frel;

			val = heap_getattr(tuple, Anum_pg_constraint_confkey,
							   RelationGetDescr(pgcon), &isnull);
			Assert(!isnull);

			deconstruct_array(DatumGetArrayTypeP(val),
							  INT2OID, 2, true, 's',
							  &dats, NULL, &nfkeys);
			fkeys = palloc(sizeof(int16) * nfkeys);
			for (i = 0; i < nfkeys; i++)
			{
				fkeys[i] =  DatumGetInt16(dats[i]);
			}

			frel = heap_open(con->confrelid, AccessExclusiveLock);
			indexoid = transformFkeyCheckAttrs(frel, nfkeys, fkeys, opclasses);

			CreateConstraintEntry(NameStr(con->conname),
								  RelationGetNamespace(cand),
								  con->contype,
								  con->condeferrable,
								  con->condeferred,
								  RelationGetRelid(cand),
								  keys,
								  nkeys,
								  InvalidOid,
								  con->confrelid,
								  fkeys,
8455 8456 8457
								  NULL,
								  NULL,
								  NULL,
8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552
								  nfkeys,
								  con->confupdtype,
								  con->confdeltype,
								  con->confmatchtype,
								  indexoid,
								  NULL,		/* no check constraint */
								  NULL,
								  NULL);

			heap_close(frel, AccessExclusiveLock);
			break;
		}
		case CONSTRAINT_PRIMARY:
		case CONSTRAINT_UNIQUE:
		{
			/* Index-backed constraints are handled as indexes.  No action here. */
			char *what = (con->contype == CONSTRAINT_PRIMARY)? "PRIMARY KEY" :"UNIQUE";
			char *who = NameStr(con->conname);

			if (is_split)
			{
				; /* nothing */
			}
			else if (validate)
			{
				ereport(ERROR,
						(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
						 errmsg("%s constraint \"%s\" missing", what, who),
						 errhint("Add %s constraint \"%s\" to the candidate table"
								 " or drop it from the partitioned table."
								 , what, who)));
			}
			else
			{
				ereport(ERROR,
						(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
						 errmsg("WITHOUT VALIDATION incompatible with missing %s constraint \"%s\"",
								what, who),
						 errhint("Add %s constraint %s to the candidate table"
								 " or drop it from the partitioned table."
								 , what, who)));

			}
			break;
		}
		default:
			/* Defensive, can't occur. */
			elog(ERROR,"invalid constraint type: %c", con->contype);
			break;
	}

	newcon = NULL;

	if ( validate )
	{
		switch ( con->contype )
		{
			case CONSTRAINT_CHECK:
			{
				newcon = (NewConstraint*) palloc0(sizeof(NewConstraint));
				newcon->name = pstrdup(NameStr(con->conname));
				/* ExecQual wants implicit-AND format */
				newcon->qual = (Node *)make_ands_implicit((Expr *)conexpr);
				newcon->contype = CONSTR_CHECK;
				break;
			}
			case CONSTRAINT_FOREIGN:
			{
				elog(WARNING, "Won't enforce FK constraint.");
				break;
			}
			case CONSTRAINT_PRIMARY:
			{
				elog(WARNING, "Won't enforce PK constraint.");
				break;
			}
			case CONSTRAINT_UNIQUE:
			{
				elog(WARNING, "Won't enforce ND constraint.");
				break;
			}
			default:
			{
				elog(WARNING, "!! NOT READY FOR TYPE %c CONSTRAINT !!", con->contype);
				break;
			}
		}
	}
	return newcon;
}


static bool
relation_has_supers(Oid relid)
{
H
Heikki Linnakangas 已提交
8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573
	ScanKeyData	scankey;
	Relation	rel;
	SysScanDesc sscan;
	bool		result;

	rel = heap_open(InheritsRelationId, AccessShareLock);

	ScanKeyInit(&scankey, Anum_pg_inherits_inhrelid,
				BTEqualStrategyNumber, F_OIDEQ,
				ObjectIdGetDatum(relid));

	sscan = systable_beginscan(rel, InheritsRelidSeqnoIndexId, true,
							   SnapshotNow, 1, &scankey);

	result = (systable_getnext(sscan) != NULL);

	systable_endscan(sscan);

	heap_close(rel, AccessShareLock);

	return result;
8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961
}

/*
 * Preprocess a CreateStmt for a partitioned table before letting it
 * fall into the regular tranformation code.  This is an analyze-time
 * function.
 *
 * At the moment, the only fixing needed is to change default constraint
 * names to explicit ones so that they will propagate correctly through
 * to the parts of a partitioned table.
 */
void
fixCreateStmtForPartitionedTable(CreateStmt *stmt)
{
	ListCell *lc_elt;
	Constraint *con;
	List *unnamed_cons = NIL;
	List *unnamed_cons_col = NIL;
	List *unnamed_cons_lbl = NIL;
	List *used_names = NIL;
	char *no_name = "";
	int i;

	/* Caller should check this! */
	Assert(stmt->partitionBy && !stmt->is_part_child);

	foreach( lc_elt, stmt->tableElts )
	{
		Node * elt = lfirst(lc_elt);

		switch (nodeTag(elt))
		{
			case T_ColumnDef:
			{
				ListCell *lc_con;

				ColumnDef *cdef = (ColumnDef*)elt;

				foreach( lc_con, cdef->constraints )
				{
					Node *conelt = lfirst(lc_con);

					if ( IsA(conelt, Constraint) )
					{
						con = (Constraint*)conelt;

						if ( con->name )
						{
							used_names = lappend(used_names, con->name);
							continue;
						}
						switch (con->contype)
						{
							case CONSTR_CHECK:
								unnamed_cons = lappend(unnamed_cons, con);
								unnamed_cons_col = lappend(unnamed_cons_col, cdef->colname);
								unnamed_cons_lbl = lappend(unnamed_cons_lbl, "check");
								break;
							case CONSTR_PRIMARY:
								unnamed_cons = lappend(unnamed_cons, con);
								unnamed_cons_col = lappend(unnamed_cons_col, cdef->colname);
								unnamed_cons_lbl = lappend(unnamed_cons_lbl, "pkey");
								break;
							case CONSTR_UNIQUE:
								unnamed_cons = lappend(unnamed_cons, con);
								unnamed_cons_col = lappend(unnamed_cons_col, cdef->colname);
								unnamed_cons_lbl = lappend(unnamed_cons_lbl, "key");
								break;
							default:
								break;
						}
					}
					else
					{
						FkConstraint *fkcon = (FkConstraint*)conelt;

						Insist( IsA(fkcon, FkConstraint) );

						if ( fkcon->constr_name )
						{
							used_names = lappend(used_names, fkcon->constr_name);
							continue;
						}

						unnamed_cons = lappend(unnamed_cons, fkcon);
						unnamed_cons_col = lappend(unnamed_cons_col, cdef->colname);
						unnamed_cons_lbl = lappend(unnamed_cons_lbl, "fkey");
					}
				}
				break;
			}
			case T_Constraint:
			{
				con = (Constraint*)elt;

				if ( con->name )
				{
					used_names = lappend(used_names, con->name);
				}
				else
				{
					switch (con->contype)
					{
						case CONSTR_CHECK:
							unnamed_cons = lappend(unnamed_cons, con);
							unnamed_cons_col = lappend(unnamed_cons_col, no_name);
							unnamed_cons_lbl = lappend(unnamed_cons_lbl, "check");
							break;
						case CONSTR_PRIMARY:
							unnamed_cons = lappend(unnamed_cons, con);
							unnamed_cons_col = lappend(unnamed_cons_col, no_name);
							unnamed_cons_lbl = lappend(unnamed_cons_lbl, "pkey");
							break;
						case CONSTR_UNIQUE:
							unnamed_cons = lappend(unnamed_cons, con);
							unnamed_cons_col = lappend(unnamed_cons_col, no_name);
							unnamed_cons_lbl = lappend(unnamed_cons_lbl, "key");
							break;
						default:
							break;
					}
				}
				break;
			}
			case T_FkConstraint:
			{
				FkConstraint *fkcon = (FkConstraint*)elt;

				unnamed_cons = lappend(unnamed_cons, fkcon);
				unnamed_cons_col = lappend(unnamed_cons_col, no_name);
				unnamed_cons_lbl = lappend(unnamed_cons_lbl, "fkey");

				if ( fkcon->constr_name )
				{
					used_names = lappend(used_names, fkcon->constr_name);
				}
				break;
			}
			case T_InhRelation:
			{
				break;
			}
			default:
				break;
		}
	}

	used_names = list_union(used_names, NIL); /* eliminate dups */

	for ( i = 0; i < list_length(unnamed_cons); i++ )
	{
		char *label = list_nth(unnamed_cons_lbl, i);
		char *colname = NULL;
		Node *elt = list_nth(unnamed_cons, i);

		switch ( nodeTag(elt) )
		{
			case T_FkConstraint:
			{
				FkConstraint *fcon = list_nth(unnamed_cons, i);

				fcon->constr_name =
					ChooseConstraintNameForPartitionCreate(stmt->relation->relname,
														   colname,
														   label,
														   used_names);
				used_names = lappend(used_names, fcon->constr_name);
				break;
			}

			case T_Constraint:
			{
				Constraint *con = list_nth(unnamed_cons, i);

				/* Conventionally, no column name for PK. */
				if ( 0 != strcmp(label, "pkey") )
					colname = list_nth(unnamed_cons_col, i);

				con->name = ChooseConstraintNameForPartitionCreate(stmt->relation->relname,
																   colname,
																   label,
																   used_names);
				used_names = lappend(used_names,con->name);

				break;
			}
			default:
				break;
		}
	}
}


/*
 * Subroutine for fixCreateStmtForPartitionedTable.
 *
 * Similar to ChooseConstraintNameForPartitionEarly but doesn't use the
 * catalogs since we're dealing with a currently non-existent namespace
 * (the space of constraint names on the table to be created).
 *
 * Modelled on ChooseConstraintName, though synchronization isn't a
 * requirement, just a nice idea.
 *
 * Caller is responsible for supplying the (unqualified) relation name,
 * optional column name (NULL or "" is okay for a table constraint),
 * label (e.g. "check"), and list of names to avoid.
 *
 * Result is palloc'd and caller's responsibility.
 */
char *
ChooseConstraintNameForPartitionCreate(const char *rname,
									   const char *cname,
									   const char *label,
									   List *used_names)
{
	int pass = 0;
	char *conname = NULL;
	char modlabel[NAMEDATALEN];
	bool found = false;
	ListCell *lc;

	Assert(rname && *rname);

	/* Allow caller to pass "" instead of NULL for non-singular cname */
	if ( cname && *cname == '\0' )
		cname = NULL;

	/* try the unmodified label first */
	StrNCpy(modlabel, label, sizeof(modlabel));

	for (;;)
	{
		conname = makeObjectName(rname, cname, modlabel);
		found = false;

		foreach(lc, used_names)
		{
			if (strcmp((char*)lfirst(lc), conname) == 0)
			{
				found = true;
				break;
			}
		}
		if ( ! found )
			break;  /* we have a winner */

		pfree(conname);
		snprintf(modlabel, sizeof(modlabel), "%s%d", label, ++pass);
	}
	return conname;
}

/*
 * Determine whether the given attributes can be enforced unique within
 * the partitioning policy of the given partitioned table.  If not, issue
 * an error.  The argument primary just conditions the message text.
 */
void
checkUniqueConstraintVsPartitioning(Relation rel, AttrNumber *indattr, int nidxatts, bool primary)
{
	int i;
	bool contains;
	Bitmapset *ikey = NULL;
	Bitmapset *pkey = get_partition_key_bitmapset(RelationGetRelid(rel));

	for (i = 0; i < nidxatts; i++)
		ikey = bms_add_member(ikey, indattr[i]);

	contains = bms_is_subset(pkey, ikey);

	if (pkey)
		bms_free(pkey);
	if (ikey)
		bms_free(ikey);

	if (! contains )
	{
		char *what = "UNIQUE";

		if ( primary )
			what = "PRIMARY KEY";

		ereport(ERROR,
				(errcode(ERRCODE_WRONG_OBJECT_TYPE),
				 errmsg("%s constraint must contain all columns in the "
						"partition key of relation \"%s\".",
						what, RelationGetRelationName(rel)),
				 errhint("Include the partition key or create a part-wise UNIQUE index instead.")));
	}
}

/**
 * Does a partition node correspond to a leaf partition?
 */
static bool IsLeafPartitionNode(PartitionNode *p)
{
	Assert(p);

	/**
	 * If all of the rules have no children, this is a leaf partition.
	 */
	ListCell *lc = NULL;
	foreach (lc, p->rules)
	{
		PartitionRule *rule = (PartitionRule *) lfirst(lc);
		if (rule->children)
		{
			return false;
		}
	}

	/**
	 * If default partition has children then, this is not a leaf
	 */
	if (p->default_part
				&& p->default_part->children)
	{
		return false;
	}

	return true;
}

/*
 * Given a partition node, return all the associated rules, including the default partition rule if present
 */
static List*
get_partition_rules(PartitionNode *pn)
{
	Assert(pn);

	List *result = NIL;
	if (pn->default_part)
	{
		result = lappend(result, pn->default_part);
	}

	result = list_concat(result, pn->rules);

	return result;
}

/**
 * Given a partition node, return list of children. Should not be called on a leaf partition node.
 *
 * Input:
 *	p - input partition node
 * Output:
 *	List of partition nodes corresponding to its children across all rules.
 */
static List *PartitionChildren(PartitionNode *p)
{
	Assert(p);
	Assert(!IsLeafPartitionNode(p));

	List *result = NIL;

	ListCell *lc = NULL;
	foreach (lc, p->rules)
	{
		PartitionRule *rule = (PartitionRule *) lfirst(lc);

		if (rule->children)
		{
			result = lappend(result, rule->children);
		}
	}

	/**
	 * Also add default child
	 */
	if (p->default_part
			&& p->default_part->children)
	{
		result = lappend(result, p->default_part->children);
	}

	return result;
}

/*
 * selectPartitionMulti()
 *
 * Given an input partition node, values and nullness, and partition state,
 * find matching leaf partitions. This is similar to selectPartition() with one
 * big difference around nulls. If there is a null value corresponding to a partitioning attribute,
 * then all children are considered matches.
 *
8962 8963 8964
 * The input values/isnull should match the layout of tuples in the
 * partitioned table.
 *
8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058
 * Output:
 *	leafPartitionOids - list of leaf partition oids, null if there are no matches
 */
List *
selectPartitionMulti(PartitionNode *partnode, Datum *values, bool *isnull,
				 TupleDesc tupdesc, PartitionAccessMethods *accessMethods)
{
	Assert(partnode);

	List *leafPartitionOids = NIL;

	List *inputList = list_make1(partnode);

	while (list_length(inputList) > 0)
	{
		List *levelOutput = NIL;

		ListCell *lc = NULL;
		foreach (lc, inputList)
		{
			PartitionNode *candidatePartNode = (PartitionNode *) lfirst(lc);
			bool foundNull = false;

			for (int i = 0; i < candidatePartNode->part->parnatts; i++)
			{
				AttrNumber attno = candidatePartNode->part->paratts[i];

				/**
				 * If corresponding value is null, then we should pick all of its
				 * children (or itself if it is a leaf partition)
				 */
				if (isnull[attno - 1])
				{
					foundNull = true;
					if (IsLeafPartitionNode(candidatePartNode))
					{
						/**
						 * Extract out Oids of all children
						 */
						leafPartitionOids = list_concat(leafPartitionOids, all_partition_relids(candidatePartNode));
					}
					else
					{
						levelOutput = list_concat(levelOutput, PartitionChildren(candidatePartNode));
					}
				}
			}

			/**
			 * If null was not found on the attribute, and if this is a leaf partition,
			 * then there will be an exact match. If it is not a leaf partition, then
			 * we have to find the right child to investigate.
			 */
			if (!foundNull)
			{
				if (IsLeafPartitionNode(candidatePartNode))
				{
					Oid matchOid = selectPartition1(candidatePartNode, values, isnull, tupdesc, accessMethods, NULL, NULL);
					if (matchOid != InvalidOid)
					{
						leafPartitionOids = lappend_oid(leafPartitionOids, matchOid);
					}
				}
				else
				{
					PartitionNode *childPartitionNode = NULL;
					selectPartition1(candidatePartNode, values, isnull, tupdesc, accessMethods, NULL, &childPartitionNode);
					if (childPartitionNode)
					{
						levelOutput = lappend(levelOutput, childPartitionNode);
					}
				}
			}

		}

		/**
		 * Start new level
		 */
		list_free(inputList);
		inputList = levelOutput;
	}

	return leafPartitionOids;
}

/*
 * Add a partition encoding clause for a subpartition template. We need to be
 * able to recall these for when we later add partitions which inherit the
 * subpartition template definition.
 */
static void
add_partition_encoding(Oid relid, Oid paroid, AttrNumber attnum, List *encoding)
{
H
Heikki Linnakangas 已提交
9059
	Relation	rel;
9060 9061 9062 9063 9064
	Datum		 partoptions;
	Datum		 values[Natts_pg_partition_encoding];
	bool		 nulls[Natts_pg_partition_encoding];
	HeapTuple	 tuple;

H
Heikki Linnakangas 已提交
9065
	rel = heap_open(PartitionEncodingRelationId, RowExclusiveLock);
9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079

	Insist(attnum > 0);

	partoptions = transformRelOptions(PointerGetDatum(NULL),
									  encoding,
									  true,
									  false);

	MemSet(nulls, 0, sizeof(nulls));

	values[Anum_pg_partition_encoding_parencoid - 1] = ObjectIdGetDatum(paroid);
	values[Anum_pg_partition_encoding_parencattnum - 1] = Int16GetDatum(attnum);
	values[Anum_pg_partition_encoding_parencattoptions - 1] = partoptions;

H
Heikki Linnakangas 已提交
9080
	tuple = heap_form_tuple(RelationGetDescr(rel), values, nulls);
9081 9082

	/* Insert tuple into the relation */
H
Heikki Linnakangas 已提交
9083 9084
	simple_heap_insert(rel, tuple);
	CatalogUpdateIndexes(rel, tuple);
9085 9086 9087

	heap_freetuple(tuple);

H
Heikki Linnakangas 已提交
9088
	heap_close(rel, RowExclusiveLock);
9089 9090 9091 9092 9093
}

static void
remove_partition_encoding_entry(Oid paroid, AttrNumber attnum)
{
H
Heikki Linnakangas 已提交
9094 9095 9096 9097
	Relation rel;
	HeapTuple	tup;
	ScanKeyData	scankey;
	SysScanDesc sscan;
9098

H
Heikki Linnakangas 已提交
9099
	rel = heap_open(PartitionEncodingRelationId, RowExclusiveLock);
9100

H
Heikki Linnakangas 已提交
9101 9102 9103 9104 9105 9106 9107 9108
	ScanKeyInit(&scankey,
				Anum_pg_partition_encoding_parencoid,
				BTEqualStrategyNumber, F_OIDEQ,
				ObjectIdGetDatum(paroid));

	sscan = systable_beginscan(rel, PartitionEncodingParencoidAttnumIndexId,
							   true, SnapshotNow, 1, &scankey);
	while (HeapTupleIsValid(tup = systable_getnext(sscan)))
9109 9110 9111 9112 9113 9114 9115 9116 9117
	{
		if (attnum != InvalidAttrNumber)
		{
			Form_pg_partition_encoding ppe =
				(Form_pg_partition_encoding)GETSTRUCT(tup);

			if (ppe->parencattnum != attnum)
				continue;
		}
H
Heikki Linnakangas 已提交
9118
		simple_heap_delete(rel, &tup->t_self);
9119 9120
	}

H
Heikki Linnakangas 已提交
9121 9122
	systable_endscan(sscan);
	heap_close(rel, RowExclusiveLock);
9123 9124 9125 9126 9127 9128 9129 9130 9131
}

/*
 * Remove all trace of partition encoding for a relation. This is the DROP TABLE
 * case. May be called even if there's no entry for the partition.
 */
static void
remove_partition_encoding_by_key(Oid relid, AttrNumber attnum)
{
9132 9133 9134 9135
	Relation	partrel;
	ScanKeyData scankey;
	SysScanDesc sscan;
	HeapTuple	tup;
9136 9137 9138

	/* XXX XXX: not FOR UPDATE because update a child table... */

9139
	partrel = heap_open(PartitionRelationId, AccessShareLock);
9140

9141 9142 9143
	ScanKeyInit(&scankey, Anum_pg_partition_parrelid,
				BTEqualStrategyNumber, F_OIDEQ,
				ObjectIdGetDatum(relid));
9144

9145 9146 9147
	sscan = systable_beginscan(partrel, PartitionParrelidIndexId, true,
							   SnapshotNow, 1, &scankey);
	while (HeapTupleIsValid(tup = systable_getnext(sscan)))
9148 9149 9150 9151 9152 9153 9154
	{
		Form_pg_partition part = (Form_pg_partition)GETSTRUCT(tup);

		if (part->paristemplate)
			remove_partition_encoding_entry(HeapTupleGetOid(tup), attnum);
	}

9155 9156
	systable_endscan(sscan);
	heap_close(partrel, AccessShareLock);
9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194
}

void
RemovePartitionEncodingByRelid(Oid relid)
{
	remove_partition_encoding_by_key(relid, InvalidAttrNumber);
}

/*
 * Remove a partition encoding entry for a specific attribute number.
 * May be called when no such entry actually exists.
 */
void
RemovePartitionEncodingByRelidAttribute(Oid relid, AttrNumber attnum)
{
	remove_partition_encoding_by_key(relid, attnum);
}

/*
 * For all encoding clauses, create a pg_partition_encoding entry
 */
static void
add_template_encoding_clauses(Oid relid, Oid paroid, List *stenc)
{
	ListCell *lc;

	foreach(lc, stenc)
	{
		ColumnReferenceStorageDirective *c = lfirst(lc);
		AttrNumber attnum;

		/*
		 * Don't store default clauses since we have no need of them
		 * when we add partitions later.
		 */
		if (c->deflt)
			continue;

9195
		attnum = get_attnum(relid, c->column);
9196 9197 9198 9199 9200 9201 9202 9203 9204 9205

		Insist(attnum > 0);

		add_partition_encoding(relid, paroid, attnum,  c->encoding);
	}
}

Datum *
get_partition_encoding_attoptions(Relation rel, Oid paroid)
{
9206 9207 9208 9209 9210
	Relation	pgpeenc;
	ScanKeyData scankey;
	SysScanDesc sscan;
	HeapTuple	tup;
	Datum	   *opts;
9211

9212 9213
	/*
	 * XXX XXX: should be FOR UPDATE ? why ? probably should be an
9214 9215
	 * AccessShare
	 */
9216 9217 9218
	pgpeenc  = heap_open(PartitionEncodingRelationId, RowExclusiveLock);

	opts = palloc0(sizeof(Datum) * RelationGetNumberOfAttributes(rel));
9219

9220 9221 9222 9223 9224 9225 9226
	/* SELECT * FROM pg_partition_encoding WHERE parencoid = :1 */
	ScanKeyInit(&scankey, Anum_pg_partition_encoding_parencoid,
				BTEqualStrategyNumber, F_OIDEQ,
				ObjectIdGetDatum(paroid));
	sscan = systable_beginscan(pgpeenc, PartitionEncodingParencoidIndexId, true,
							   SnapshotNow, 1, &scankey);
	while (HeapTupleIsValid(tup = systable_getnext(sscan)))
9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243
	{
		Datum paroptions;
		AttrNumber attnum;
		bool isnull;

		attnum = ((Form_pg_partition_encoding)GETSTRUCT(tup))->parencattnum;
		paroptions = heap_getattr(tup,
								  Anum_pg_partition_encoding_parencattoptions,
								  RelationGetDescr(pgpeenc),
								  &isnull);

		Insist(!isnull);
		Insist((attnum - 1) >= 0);

		opts[attnum - 1] = datumCopy(paroptions, false, -1);
	}

9244
	systable_endscan(sscan);
9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265
	heap_close(pgpeenc, RowExclusiveLock);

	return opts;
}

static List *
get_deparsed_partition_encodings(Oid relid, Oid paroid)
{
	int i;
	List *out = NIL;
	Relation rel = heap_open(relid, AccessShareLock);
	Datum *opts = get_partition_encoding_attoptions(rel, paroid);

	for (i = 0; i < RelationGetNumberOfAttributes(rel); i++)
	{
		if (opts[i] && !rel->rd_att->attrs[i]->attisdropped)
		{
			ColumnReferenceStorageDirective *c =
				makeNode(ColumnReferenceStorageDirective);

			c->encoding = untransformRelOptions(opts[i]);
9266
			c->column = get_attname(relid, i + 1);
9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405
			out = lappend(out, c);
		}
	}

	heap_close(rel, AccessShareLock);

	return out;
}

/**
 * Function that returns a string representation of partition oids.
 *
 * elements: an array of datums, containing oids of partitions.
 * n: length of the elements array.
 *
 * Result is allocated in the current memory context.
 */
char*
DebugPartitionOid(Datum *elements, int n)
{

	StringInfoData str;
	initStringInfo(&str);
	appendStringInfo(&str, "{");
	for (int i=0; i<n; i++)
	{
		Oid o = DatumGetObjectId(elements[i]);
		appendStringInfo(&str, "%s, ", get_rel_name(o));
	}
	appendStringInfo(&str, "}");
	return str.data;
}

/*
 * findPartitionMetadataEntry
 *   Find PartitionMetadata object for a given partition oid from a list.
 *
 * Input arguments:
 * partsMetadata: list of PartitionMetadata
 * partOid: Part Oid
 * partsAndRules: output parameter for matched PartitionNode
 * accessMethods: output parameter for PartitionAccessMethods
 *
 */
void
findPartitionMetadataEntry(List *partsMetadata, Oid partOid, PartitionNode **partsAndRules, PartitionAccessMethods **accessMethods)
{
	ListCell *lc = NULL;
	foreach (lc, partsMetadata)
	{
		PartitionMetadata *metadata = (PartitionMetadata *)lfirst(lc);
		*partsAndRules = findPartitionNodeEntry(metadata->partsAndRules, partOid);

		if (NULL != *partsAndRules)
		{
			// accessMethods define the lookup access methods for partitions, one for each level
			*accessMethods = metadata->accessMethods;
			return;
		}
	}
}

/*
 * findPartitionNodeEntry
 *   Find PartitionNode object for a given partition oid
 *
 * Input arguments:
 * partsMetadata: list of PartitionMetadata
 * partOid: Part Oid
 * return: matched PartitionNode
 */
static PartitionNode *
findPartitionNodeEntry(PartitionNode *partitionNode, Oid partOid)
{
	if (NULL == partitionNode)
	{
		return NULL;
	}

	Assert(NULL != partitionNode->part);
	if (partitionNode->part->parrelid == partOid)
	{
		return partitionNode;
	}

	/*
	 * check recursively in child parts in case we have the oid of an
	 * intermediate node
	 */
	PartitionNode *childNode = NULL;
	ListCell *lcChild = NULL;
	foreach (lcChild, partitionNode->rules)
	{
		PartitionRule *childRule = (PartitionRule *) lfirst(lcChild);
		childNode = findPartitionNodeEntry(childRule->children, partOid);
		if (NULL != childNode)
		{
			return childNode;
		}
	}

	/*
	 * check recursively in the default part, if any
	 */
	if (NULL != partitionNode->default_part)
	{
		childNode = findPartitionNodeEntry(partitionNode->default_part->children, partOid);
	}

	return childNode;
}

/*
 * createValueArrays
 *   Create an Datum/bool array that will be used to populate partition key value.
 *
 * The size of this array is based on the attribute number of the partition key.
 */
void
createValueArrays(int keyAttno, Datum **values, bool **isnull)
{
	*values = palloc0(keyAttno * sizeof(Datum));
	*isnull = palloc(keyAttno * sizeof(bool));

	MemSet(*isnull, true, keyAttno * sizeof(bool));
}

/*
 * freeValueArrays
 *    Free Datum/bool array.
 */
void
freeValueArrays(Datum *values, bool *isnull)
{
	Assert (NULL != values);
	Assert (NULL != isnull);
	pfree(values);
	pfree(isnull);
}