relation.h 6.9 KB
Newer Older
1 2 3 4 5 6 7 8
/*-------------------------------------------------------------------------
 *
 * relation.h--
 *    Definitions for internal planner nodes.
 *
 *
 * Copyright (c) 1994, Regents of the University of California
 *
9
 * $Id: relation.h,v 1.4 1997/03/18 18:41:37 scrappy Exp $
10 11 12 13 14 15
 *
 *-------------------------------------------------------------------------
 */
#ifndef RELATION_H
#define RELATION_H

M
Marc G. Fournier 已提交
16 17
#include <nodes/parsenodes.h>
#include <nodes/primnodes.h>
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152

/*
 * Relid
 *	List of relation identifiers (indexes into the rangetable).
 */

typedef	List	*Relid;

/*
 * Rel
 *	Per-base-relation information
 *
 *	Parts of this data structure are specific to various scan and join
 *	mechanisms.  It didn't seem worth creating new node types for them.
 *
 *	relids - List of relation indentifiers
 *	indexed - true if the relation has secondary indices
 *	pages - number of pages in the relation
 *	tuples - number of tuples in the relation
 *	size - number of tuples in the relation after restrictions clauses
 *	       have been applied
 *	width - number of bytes per tuple in the relation after the
 *		appropriate projections have been done
 *	targetlist - List of TargetList nodes
 *	pathlist - List of Path nodes, one for each possible method of
 *		   generating the relation
 *	unorderedpath - a Path node generating this relation whose resulting
 *			tuples are unordered (this isn't necessarily a
 *			sequential scan path, e.g., scanning with a hash index
 *			leaves the tuples unordered)
 *	cheapestpath -  least expensive Path (regardless of final order)
 *      pruneable - flag to let the planner know whether it can prune the plan
 *                  space of this Rel or not.  -- JMH, 11/11/92
 *
 *   * If the relation is a (secondary) index it will have the following
 *	three fields:
 *
 *	classlist - List of PG_AMOPCLASS OIDs for the index
 *	indexkeys - List of base-relation attribute numbers that are index keys
 *	ordering - List of PG_OPERATOR OIDs which order the indexscan result
 *      relam     - the OID of the pg_am of the index
 *
 *   * The presence of the remaining fields depends on the restrictions
 *	and joins which the relation participates in:
 *
 *	clauseinfo - List of ClauseInfo nodes, containing info about each
 *		     qualification clause in which this relation participates
 *	joininfo  - List of JoinInfo nodes, containing info about each join
 *		    clause in which this relation participates
 *	innerjoin - List of Path nodes that represent indices that may be used
 *		    as inner paths of nestloop joins
 *
 * NB. the last element of the arrays classlist, indexkeys and ordering
 *     is always 0.				2/95 - ay
 */

typedef	struct Rel {
    NodeTag	type;

    /* all relations: */
    Relid	relids;

    /* catalog statistics information */
    bool	indexed;
    int		pages;
    int		tuples;
    int		size;
    int		width;

    /* materialization information */
    List	*targetlist;
    List	*pathlist;
    struct Path	*unorderedpath;
    struct Path	*cheapestpath;
    bool    	pruneable;

    /* used solely by indices: */
    Oid		*classlist;		/* classes of AM operators */
    int		*indexkeys;		/* keys over which we're indexing */
    Oid         relam;  /* OID of the access method (in pg_am) */
				   
    Oid		indproc;
    List	*indpred;

    /* used by various scans and joins: */
    Oid		*ordering;		/* OID of operators in sort order */
    List	*clauseinfo;		/* restriction clauses */
    List	*joininfo;		/* join clauses */
    List	*innerjoin;
    List	*superrels;
} Rel;

extern Var *get_expr(TargetEntry *foo);

typedef struct MergeOrder {
    NodeTag	type;
    Oid 	join_operator;
    Oid 	left_operator;
    Oid 	right_operator;
    Oid 	left_type;
    Oid 	right_type;
} MergeOrder;

typedef enum OrderType {
    MERGE_ORDER, SORTOP_ORDER
} OrderType;

typedef struct PathOrder {
    OrderType	ordtype;
    union {
	Oid		*sortop;
	MergeOrder	*merge;
    } ord;
} PathOrder;

typedef struct Path {
    NodeTag	type;

    Rel		*parent;
    Cost	path_cost;

    NodeTag	pathtype;

    PathOrder	p_ordering;

    List	*keys;
    Cost	outerjoincost;
    Relid	joinid;
    List        *locclauseinfo;
} Path;

typedef struct IndexPath {
    Path	path;
    List	*indexid;
    List	*indexqual;
153
    int		*indexkeys;	/* to transform heap attnos into index ones */
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
} IndexPath;

typedef struct JoinPath {
    Path	path;
    List	*pathclauseinfo;
    Path	*outerjoinpath;
    Path	*innerjoinpath;
} JoinPath;

typedef struct MergePath {
    JoinPath	jpath;
    List	*path_mergeclauses;
    List	*outersortkeys;
    List	*innersortkeys;
} MergePath;

typedef struct HashPath {
    JoinPath	jpath;
    List	*path_hashclauses;
    List	*outerhashkeys;
    List	*innerhashkeys;
} HashPath;

/******
 * Keys
 ******/

typedef struct OrderKey {
    NodeTag	type;
    int 	attribute_number;
    Index	array_index;
} OrderKey;

typedef struct JoinKey {
    NodeTag	type;
    Var 	*outer;
    Var  	*inner;
} JoinKey;

/*******
 * clause info
 *******/

typedef struct CInfo {
    NodeTag	type;
    Expr	*clause;	/* should be an OP clause */
    Cost	selectivity;
    bool	notclause;
    List	*indexids;

    /* mergesort only */
    MergeOrder	*mergesortorder;

    /* hashjoin only */
    Oid		hashjoinoperator;
    Relid	cinfojoinid;
} CInfo;

typedef struct JoinMethod {
    NodeTag	type;
    List        *jmkeys;
    List        *clauses;
} JoinMethod;

typedef struct HInfo {
    JoinMethod	jmethod;
    Oid        	hashop;
} HInfo;

typedef struct MInfo {
    JoinMethod	jmethod;
    MergeOrder	*m_ordering;
} MInfo;

typedef struct JInfo {
    NodeTag	type;
    List	*otherrels;
    List	*jinfoclauseinfo;
    bool	mergesortable;
    bool	hashjoinable;
    bool	inactive;
} JInfo;

typedef struct Iter {
    NodeTag	type;
    Node	*iterexpr;
    Oid		itertype;	/* type of the iter expr (use for type
				   checking) */
} Iter;

/*
** Stream:
**   A stream represents a root-to-leaf path in a plan tree (i.e. a tree of
** JoinPaths and Paths).  The stream includes pointers to all Path nodes,
** as well as to any clauses that reside above Path nodes.  This structure
** is used to make Path nodes and clauses look similar, so that Predicate
** Migration can run.
**
**     pathptr -- pointer to the current path node
**       cinfo -- if NULL, this stream node referes to the path node.
**                Otherwise this is a pointer to the current clause.
**  clausetype -- whether cinfo is in locclauseinfo or pathclauseinfo in the 
**                path node
**    upstream -- linked list pointer upwards
**  downstream -- ditto, downwards
**     groupup -- whether or not this node is in a group with the node upstream
**   groupcost -- total cost of the group that node is in
**    groupsel -- total selectivity of the group that node is in
*/
typedef struct Stream *StreamPtr;

typedef struct Stream {
    NodeTag	type;
    Path	*pathptr;
    CInfo 	*cinfo;
    int		*clausetype;
    struct Stream *upstream;
    struct Stream *downstream;
    bool 	groupup;
    Cost 	groupcost;
    Cost	 groupsel;
} Stream;

#endif /* RELATION_H */