cube.c 24.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
/******************************************************************************
  This file contains routines that can be bound to a Postgres backend and
  called by the backend in the process of processing queries.  The calling
  format for these routines is dictated by Postgres architecture.
******************************************************************************/

#include "postgres.h"

#include <math.h>

#include "access/gist.h"
#include "access/rtree.h"
#include "utils/elog.h"
#include "utils/palloc.h"
#include "utils/builtins.h"

#include "cubedata.h"

#define max(a,b)        ((a) >  (b) ? (a) : (b))
#define min(a,b)        ((a) <= (b) ? (a) : (b))
#define abs(a)          ((a) <  (0) ? (-a) : (a))

extern void  set_parse_buffer(char *str);
extern int   cube_yyparse();

/*
** Input/Output routines
*/
NDBOX *      cube_in(char *str);
char *       cube_out(NDBOX *cube);


/* 
** GiST support methods
*/
bool             g_cube_consistent(GISTENTRY *entry, NDBOX *query, StrategyNumber strategy); 
GISTENTRY *      g_cube_compress(GISTENTRY *entry);
GISTENTRY *      g_cube_decompress(GISTENTRY *entry);
float *          g_cube_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result);
GIST_SPLITVEC *  g_cube_picksplit(bytea *entryvec, GIST_SPLITVEC *v);
bool             g_cube_leaf_consistent(NDBOX *key, NDBOX *query, StrategyNumber strategy);
bool             g_cube_internal_consistent(NDBOX *key, NDBOX *query, StrategyNumber strategy);
NDBOX *          g_cube_union(bytea *entryvec, int *sizep);
NDBOX *          g_cube_binary_union(NDBOX *r1, NDBOX *r2, int *sizep);
bool *           g_cube_same(NDBOX *b1, NDBOX *b2, bool *result);

/*
** R-tree suport functions
*/
bool         cube_same(NDBOX *a, NDBOX *b);
bool         cube_different(NDBOX *a, NDBOX *b);
bool         cube_contains(NDBOX *a, NDBOX *b);
bool         cube_contained (NDBOX *a, NDBOX *b);
bool         cube_overlap(NDBOX *a, NDBOX *b);
NDBOX *      cube_union(NDBOX *a, NDBOX *b);
NDBOX *      cube_inter(NDBOX *a, NDBOX *b);
float *      cube_size(NDBOX *a);
void         rt_cube_size(NDBOX *a, float *sz);

/*
** These make no sense for this type, but R-tree wants them
*/
bool         cube_over_left(NDBOX *a, NDBOX *b);
bool         cube_over_right(NDBOX *a, NDBOX *b);
bool         cube_left(NDBOX *a, NDBOX *b);
bool         cube_right(NDBOX *a, NDBOX *b);

/*
** miscellaneous
*/
bool         cube_lt(NDBOX *a, NDBOX *b);
bool         cube_gt(NDBOX *a, NDBOX *b);
float *      cube_distance(NDBOX *a, NDBOX *b);

/* 
** Auxiliary funxtions
*/
static       float distance_1D(float a1, float a2, float b1, float b2);
static       NDBOX *swap_corners (NDBOX *a);


/*****************************************************************************
 * Input/Output functions
 *****************************************************************************/

/* NdBox = [(lowerleft),(upperright)] */
/* [(xLL(1)...xLL(N)),(xUR(1)...xUR(n))] */
NDBOX *
cube_in(char *str)
{
  void * result;

  set_parse_buffer( str );

  if ( cube_yyparse(&result) != 0 ) {
    return NULL;
  } 

  return ( (NDBOX *)result );
}

/*
 * You might have noticed a slight inconsistency between the following
 * declaration and the SQL definition:
 *     CREATE FUNCTION cube_out(opaque) RETURNS opaque ...
 * The reason is that the argument pass into cube_out is really just a
 * pointer. POSTGRES thinks all output functions are:
 *     char *out_func(char *);
 */
char *
cube_out(NDBOX *cube)
{
    char *result;
    char *p;
    int equal = 1;
    int dim = cube->dim;
    int i;

    if (cube == NULL)
	return(NULL);

    p = result = (char *) palloc(100);

    /* while printing the first (LL) corner, check if it is equal
    to the scond one */
    p += sprintf(p, "(");
    for ( i=0; i < dim; i++ ) {
      p += sprintf(p, "%g", cube->x[i]);
      p += sprintf(p, ", ");
      if ( cube->x[i] != cube->x[i+dim] ) {
	equal = 0;
      }
    }
    p -= 2; /* get rid of the last ", " */
    p += sprintf(p, ")");

    if ( !equal ) {
    p += sprintf(p, ",(");
      for ( i=dim; i < dim * 2; i++ ) {
	p += sprintf(p, "%g", cube->x[i]);
	p += sprintf(p, ", ");
      }
      p -= 2; 
      p += sprintf(p, ")");
    }
      
    return(result);
}


/*****************************************************************************
 *                         GiST functions
 *****************************************************************************/

/*
** The GiST Consistent method for boxes
** Should return false if for all data items x below entry,
** the predicate x op query == FALSE, where op is the oper
** corresponding to strategy in the pg_amop table.
*/
bool 
g_cube_consistent(GISTENTRY *entry,
	       NDBOX *query,
	       StrategyNumber strategy)
{
    /*
    ** if entry is not leaf, use g_cube_internal_consistent,
    ** else use g_cube_leaf_consistent
    */
    if (GIST_LEAF(entry))
      return(g_cube_leaf_consistent((NDBOX *)(entry->pred), query, strategy));
    else
      return(g_cube_internal_consistent((NDBOX *)(entry->pred), query, strategy));
}


/*
** The GiST Union method for boxes
** returns the minimal bounding box that encloses all the entries in entryvec
*/
NDBOX *
g_cube_union(bytea *entryvec, int *sizep)
{
    int numranges, i;
    NDBOX *out = (NDBOX *)NULL;
    NDBOX *tmp;

    /*
    fprintf(stderr, "union\n");
    */
    numranges = (VARSIZE(entryvec) - VARHDRSZ)/sizeof(GISTENTRY); 
    tmp = (NDBOX *)(((GISTENTRY *)(VARDATA(entryvec)))[0]).pred;
    /*
    *sizep = sizeof(NDBOX); -- NDBOX has variable size
    */
    *sizep = tmp->size;

    for (i = 1; i < numranges; i++) {
      out = g_cube_binary_union(tmp, (NDBOX *)
				 (((GISTENTRY *)(VARDATA(entryvec)))[i]).pred,
				 sizep);
      /*
	fprintf(stderr, "\t%s ^ %s -> %s\n", cube_out(tmp), cube_out((NDBOX *)(((GISTENTRY *)(VARDATA(entryvec)))[i]).pred), cube_out(out));
      */
      if (i > 1) pfree(tmp);
      tmp = out;
    }

    return(out);
}

/*
** GiST Compress and Decompress methods for boxes
** do not do anything.
*/
GISTENTRY *
g_cube_compress(GISTENTRY *entry)
{
    return(entry);
}

GISTENTRY *
g_cube_decompress(GISTENTRY *entry)
{
    return(entry);
}

/*
** The GiST Penalty method for boxes
** As in the R-tree paper, we use change in area as our penalty metric
*/
float *
g_cube_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result)
{
    Datum ud;
    float tmp1, tmp2;
    
    ud = (Datum)cube_union((NDBOX *)(origentry->pred), (NDBOX *)(newentry->pred));
    rt_cube_size((NDBOX *)ud, &tmp1);
    rt_cube_size((NDBOX *)(origentry->pred), &tmp2);
    *result = tmp1 - tmp2;
    pfree((char *)ud);
    /*
    fprintf(stderr, "penalty\n");
    fprintf(stderr, "\t%g\n", *result);
    */
    return(result);
}



/*
** The GiST PickSplit method for boxes
** We use Guttman's poly time split algorithm 
*/
GIST_SPLITVEC *
g_cube_picksplit(bytea *entryvec,
	      GIST_SPLITVEC *v)
{
    OffsetNumber i, j;
    NDBOX *datum_alpha, *datum_beta;
    NDBOX *datum_l, *datum_r;
    NDBOX *union_d, *union_dl, *union_dr;
    NDBOX *inter_d;
    bool firsttime;
    float size_alpha, size_beta, size_union, size_inter;
    float size_waste, waste;
    float size_l, size_r;
    int nbytes;
    OffsetNumber seed_1 = 0, seed_2 = 0;
    OffsetNumber *left, *right;
    OffsetNumber maxoff;

    /*
    fprintf(stderr, "picksplit\n");
    */
    maxoff = ((VARSIZE(entryvec) - VARHDRSZ)/sizeof(GISTENTRY)) - 2;
    nbytes =  (maxoff + 2) * sizeof(OffsetNumber);
    v->spl_left = (OffsetNumber *) palloc(nbytes);
    v->spl_right = (OffsetNumber *) palloc(nbytes);
    
    firsttime = true;
    waste = 0.0;
    
    for (i = FirstOffsetNumber; i < maxoff; i = OffsetNumberNext(i)) {
	datum_alpha = (NDBOX *)(((GISTENTRY *)(VARDATA(entryvec)))[i].pred);
	for (j = OffsetNumberNext(i); j <= maxoff; j = OffsetNumberNext(j)) {
	    datum_beta = (NDBOX *)(((GISTENTRY *)(VARDATA(entryvec)))[j].pred);
	    
	    /* compute the wasted space by unioning these guys */
	    /* size_waste = size_union - size_inter; */
	    union_d = (NDBOX *)cube_union(datum_alpha, datum_beta);
	    rt_cube_size(union_d, &size_union);
	    inter_d = (NDBOX *)cube_inter(datum_alpha, datum_beta);
	    rt_cube_size(inter_d, &size_inter);
	    size_waste = size_union - size_inter;
	    
	    pfree(union_d);
	    
	    if (inter_d != (NDBOX *) NULL)
		pfree(inter_d);
	    
	    /*
	     *  are these a more promising split than what we've
	     *  already seen?
	     */
	    
	    if (size_waste > waste || firsttime) {
		waste = size_waste;
		seed_1 = i;
		seed_2 = j;
		firsttime = false;
	    }
	}
    }
    
    left = v->spl_left;
    v->spl_nleft = 0;
    right = v->spl_right;
    v->spl_nright = 0;
    
    datum_alpha = (NDBOX *)(((GISTENTRY *)(VARDATA(entryvec)))[seed_1].pred);
    datum_l = (NDBOX *)cube_union(datum_alpha, datum_alpha);
    rt_cube_size((NDBOX *)datum_l, &size_l);
    datum_beta = (NDBOX *)(((GISTENTRY *)(VARDATA(entryvec)))[seed_2].pred);;
    datum_r = (NDBOX *)cube_union(datum_beta, datum_beta);
    rt_cube_size((NDBOX *)datum_r, &size_r);
    
    /*
     *  Now split up the regions between the two seeds.  An important
     *  property of this split algorithm is that the split vector v
     *  has the indices of items to be split in order in its left and
     *  right vectors.  We exploit this property by doing a merge in
     *  the code that actually splits the page.
     *
     *  For efficiency, we also place the new index tuple in this loop.
     *  This is handled at the very end, when we have placed all the
     *  existing tuples and i == maxoff + 1.
     */
    
    maxoff = OffsetNumberNext(maxoff);
    for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i)) {
	
	/*
	 *  If we've already decided where to place this item, just
	 *  put it on the right list.  Otherwise, we need to figure
	 *  out which page needs the least enlargement in order to
	 *  store the item.
	 */
	
	if (i == seed_1) {
	    *left++ = i;
	    v->spl_nleft++;
	    continue;
	} else if (i == seed_2) {
	    *right++ = i;
	    v->spl_nright++;
	    continue;
	}
	
	/* okay, which page needs least enlargement? */ 
	datum_alpha = (NDBOX *)(((GISTENTRY *)(VARDATA(entryvec)))[i].pred);
	union_dl = (NDBOX *)cube_union(datum_l, datum_alpha);
	union_dr = (NDBOX *)cube_union(datum_r, datum_alpha);
	rt_cube_size((NDBOX *)union_dl, &size_alpha);
	rt_cube_size((NDBOX *)union_dr, &size_beta);
	
	/* pick which page to add it to */
	if (size_alpha - size_l < size_beta - size_r) {
	    pfree(datum_l);
	    pfree(union_dr);
	    datum_l = union_dl;
	    size_l = size_alpha;
	    *left++ = i;
	    v->spl_nleft++;
	} else {
	    pfree(datum_r);
	    pfree(union_dl);
	    datum_r = union_dr;
	    size_r = size_alpha;
	    *right++ = i;
	    v->spl_nright++;
	}
    }
    *left = *right = FirstOffsetNumber;	/* sentinel value, see dosplit() */
    
    v->spl_ldatum = (char *)datum_l;
    v->spl_rdatum = (char *)datum_r;

    return v;
}

/*
** Equality method
*/
bool *
g_cube_same(NDBOX *b1, NDBOX *b2, bool *result)
{
  if (cube_same(b1, b2))
    *result = TRUE;
  else *result = FALSE;
  /*
  fprintf(stderr, "same: %s\n", (*result ? "TRUE" : "FALSE" ));
  */
  return(result);
}

/* 
** SUPPORT ROUTINES
*/
bool 
g_cube_leaf_consistent(NDBOX *key,
		     NDBOX *query,
		     StrategyNumber strategy)
{
  bool retval;

  /*
  fprintf(stderr, "leaf_consistent, %d\n", strategy);
  */
  switch(strategy) {
  case RTLeftStrategyNumber:
    retval = (bool)cube_left(key, query);
    break;
  case RTOverLeftStrategyNumber:
    retval = (bool)cube_over_left(key,query);
    break;
  case RTOverlapStrategyNumber:
    retval = (bool)cube_overlap(key, query);
    break;
  case RTOverRightStrategyNumber:
    retval = (bool)cube_over_right(key, query);
    break;
  case RTRightStrategyNumber:
    retval = (bool)cube_right(key, query);
    break;
  case RTSameStrategyNumber:
    retval = (bool)cube_same(key, query);
    break;
  case RTContainsStrategyNumber:
    retval = (bool)cube_contains(key, query);
    break;
  case RTContainedByStrategyNumber:
    retval = (bool)cube_contained(key,query);
    break;
  default:
    retval = FALSE;
  }
  return(retval);
}

bool 
g_cube_internal_consistent(NDBOX *key,
			NDBOX *query,
			StrategyNumber strategy)
{
  bool retval;
  
  /*
  fprintf(stderr, "internal_consistent, %d\n", strategy);
  */
  switch(strategy) {
  case RTLeftStrategyNumber:
  case RTOverLeftStrategyNumber:
    retval = (bool)cube_over_left(key,query);
    break;
  case RTOverlapStrategyNumber:
    retval = (bool)cube_overlap(key, query);
    break;
  case RTOverRightStrategyNumber:
  case RTRightStrategyNumber:
    retval = (bool)cube_right(key, query);
    break;
  case RTSameStrategyNumber:
  case RTContainsStrategyNumber:
    retval = (bool)cube_contains(key, query);
    break;
  case RTContainedByStrategyNumber:
    retval = (bool)cube_overlap(key, query);
    break;
  default:
    retval = FALSE;
    }
  return(retval);
}

NDBOX *
g_cube_binary_union(NDBOX *r1, NDBOX *r2, int *sizep)
{
    NDBOX *retval;

    retval = cube_union(r1, r2);
    *sizep = retval->size;

    return (retval);
}


/* cube_union */
NDBOX *cube_union(NDBOX *box_a, NDBOX *box_b)
{
  int i;
  NDBOX *result;
  NDBOX *a = swap_corners(box_a);
  NDBOX *b = swap_corners(box_b);

  if ( a->dim >= b->dim ) {
    result = palloc(a->size);
    result->size = a->size;
    result->dim = a->dim;
  }
  else {
    result = palloc(b->size);
    result->size = b->size;
    result->dim = b->dim;
  }

  /* swap the box pointers if needed */
  if ( a->dim < b->dim ) {
    NDBOX * tmp = b; b = a; a = tmp;
  }

  /* use the potentially smaller of the two boxes (b) to fill in 
     the result, padding absent dimensions with zeroes*/
  for ( i = 0; i < b->dim; i++ ) {
    result->x[i] = b->x[i];
    result->x[i + a->dim] = b->x[i + b->dim];
  }
  for ( i = b->dim; i < a->dim; i++ ) {
    result->x[i] = 0;
    result->x[i + a->dim] = 0;
  }
    
  /* compute the union */
  for ( i = 0; i < a->dim; i++ ) {
    result->x[i] = min(a->x[i], result->x[i]);
  }
  for ( i = a->dim; i < a->dim * 2; i++ ) {
    result->x[i] = max(a->x[i], result->x[i]);
  }

  pfree(a);
  pfree(b);

  return(result);
}

/* cube_inter */
NDBOX *cube_inter(NDBOX *box_a, NDBOX *box_b)
{
  int i;
  NDBOX * result;
  NDBOX *a = swap_corners(box_a);
  NDBOX *b = swap_corners(box_b);
  
  if ( a->dim >= b->dim ) {
    result = palloc(a->size);
    result->size = a->size;
    result->dim = a->dim;
  }
  else {
    result = palloc(b->size);
    result->size = b->size;
    result->dim = b->dim;
  }

  /* swap the box pointers if needed */
  if ( a->dim < b->dim ) {
    NDBOX * tmp = b; b = a; a = tmp;
  }

  /* use the potentially  smaller of the two boxes (b) to fill in 
     the result, padding absent dimensions with zeroes*/
  for ( i = 0; i < b->dim; i++ ) {
    result->x[i] = b->x[i];
    result->x[i + a->dim] = b->x[i + b->dim];
  }
  for ( i = b->dim; i < a->dim; i++ ) {
    result->x[i] = 0;
    result->x[i + a->dim] = 0;
  }
    
  /* compute the intersection */
  for ( i = 0; i < a->dim; i++ ) {
    result->x[i] = max(a->x[i], result->x[i]);
  }
  for ( i = a->dim; i < a->dim * 2; i++ ) {
    result->x[i] = min(a->x[i], result->x[i]);
  }
  
  pfree(a);
  pfree(b);

  /* Is it OK to return a non-null intersection for non-overlapping boxes? */
  return(result);
}

/* cube_size */
float *cube_size(NDBOX *a)
{
  int i,j;
  float *result;

  result = (float *) palloc(sizeof(float));
  
  *result = 1.0;
  for ( i = 0, j = a->dim; i < a->dim; i++,j++ ) {
    *result=(*result)*abs((a->x[j] - a->x[i]));
  }
  
  return(result);
}

void
rt_cube_size(NDBOX *a, float *size)
{
  int i,j;
  if (a == (NDBOX *) NULL)
    *size = 0.0;
  else {
    *size = 1.0;
    for ( i = 0, j = a->dim; i < a->dim; i++,j++ ) {
      *size=(*size)*abs((a->x[j] - a->x[i]));
    }
  }
  return;
}

/* The following four methods compare the projections of the boxes
   onto the 0-th coordinate axis. These methods are useless for dimensions
   larger than 2, but it seems that R-tree requires all its strategies
   map to real functions that return something */

/*  is the right edge of (a) located to the left of 
    the right edge of (b)? */
bool cube_over_left(NDBOX *box_a, NDBOX *box_b)
{
  NDBOX *a;
  NDBOX *b;
  
  if ( (box_a==NULL) || (box_b==NULL) )
    return(FALSE);

  a = swap_corners(box_a);
  b = swap_corners(box_b);

  return( a->x[a->dim - 1] <= b->x[b->dim - 1] && !cube_left(a, b) && !cube_right(a, b) );
}

/*  is the left edge of (a) located to the right of 
    the left edge of (b)? */
bool cube_over_right(NDBOX *box_a, NDBOX *box_b)
{
  NDBOX *a;
  NDBOX *b;
  
  if ( (box_a==NULL) || (box_b==NULL) )
    return(FALSE);

  a = swap_corners(box_a);
  b = swap_corners(box_b);

  return( a->x[a->dim - 1] >= b->x[b->dim - 1] && !cube_left(a, b) && !cube_right(a, b) );
}


/* return 'true' if the projection of 'a' is
   entirely on the left of the projection of 'b' */
bool cube_left(NDBOX *box_a, NDBOX *box_b)
{
  NDBOX *a;
  NDBOX *b;
  
  if ( (box_a==NULL) || (box_b==NULL) )
    return(FALSE);

  a = swap_corners(box_a);
  b = swap_corners(box_b);

  return( a->x[a->dim - 1] < b->x[0]);
}

/* return 'true' if the projection of 'a' is
   entirely on the right  of the projection of 'b' */
bool cube_right(NDBOX *box_a, NDBOX *box_b)
{
  NDBOX *a;
  NDBOX *b;
  
  if ( (box_a==NULL) || (box_b==NULL) )
    return(FALSE);

  a = swap_corners(box_a);
  b = swap_corners(box_b);

  return( a->x[0] > b->x[b->dim - 1]);
}

/* make up a metric in which one box will be 'lower' than the other
   -- this can be useful for srting and to determine uniqueness */
bool cube_lt(NDBOX *box_a, NDBOX *box_b)
{
  int i;
  int dim;
  NDBOX *a;
  NDBOX *b;
  
  if ( (box_a==NULL) || (box_b==NULL) )
    return(FALSE);

  a = swap_corners(box_a);
  b = swap_corners(box_b);
  dim = min(a->dim, b->dim);

  /* if all common dimensions are equal, the cube with more dimensions wins */
  if ( cube_same(a, b) ) {
    if (a->dim < b->dim) {
      return(TRUE);
    }
    else {
      return(FALSE);
    }
  }

  /* compare the common dimensions */
  for ( i = 0; i < dim; i++ ) {
    if ( a->x[i] > b->x[i] )
      return(FALSE); 
    if ( a->x[i] < b->x[i] )
      return(TRUE); 
  }
  for ( i = 0; i < dim; i++ ) {
    if ( a->x[i + a->dim] > b->x[i + b->dim] )
      return(FALSE); 
    if ( a->x[i + a->dim] < b->x[i + b->dim] )
      return(TRUE); 
  }

  /* compare extra dimensions to zero */
  if ( a->dim > b->dim ) {
    for ( i = dim; i < a->dim; i++ ) {
      if ( a->x[i] > 0 )
	return(FALSE); 
      if ( a->x[i] < 0 )
	return(TRUE); 
    }
    for ( i = 0; i < dim; i++ ) {
      if ( a->x[i + a->dim] > 0 )
	return(FALSE); 
      if ( a->x[i + a->dim] < 0 )
	return(TRUE); 
    }
  }
  if ( a->dim < b->dim ) {
    for ( i = dim; i < b->dim; i++ ) {
      if ( b->x[i] > 0 )
	return(TRUE); 
      if ( b->x[i] < 0 )
	return(FALSE); 
    }
    for ( i = 0; i < dim; i++ ) {
      if ( b->x[i + b->dim] > 0 )
	return(TRUE); 
      if ( b->x[i + b->dim] < 0 )
	return(FALSE);
    }
  }
    
  return(FALSE);
}


bool cube_gt(NDBOX *box_a, NDBOX *box_b)
{
  int i;
  int dim;
  NDBOX *a;
  NDBOX *b;
  
  if ( (box_a==NULL) || (box_b==NULL) )
    return(FALSE);

  a = swap_corners(box_a);
  b = swap_corners(box_b);
  dim = min(a->dim, b->dim);

  /* if all common dimensions are equal, the cube with more dimensions wins */
  if ( cube_same(a, b) ) {
    if (a->dim > b->dim) {
      return(TRUE);
    }
    else {
      return(FALSE);
    }
  }

  /* compare the common dimensions */
  for ( i = 0; i < dim; i++ ) {
    if ( a->x[i] < b->x[i] )
      return(FALSE); 
    if ( a->x[i] > b->x[i] )
      return(TRUE); 
  }
  for ( i = 0; i < dim; i++ ) {
    if ( a->x[i + a->dim] < b->x[i + b->dim] )
      return(FALSE); 
    if ( a->x[i + a->dim] > b->x[i + b->dim] )
      return(TRUE); 
  }


  /* compare extra dimensions to zero */
  if ( a->dim > b->dim ) {
    for ( i = dim; i < a->dim; i++ ) {
      if ( a->x[i] < 0 )
	return(FALSE); 
      if ( a->x[i] > 0 )
	return(TRUE); 
    }
    for ( i = 0; i < dim; i++ ) {
      if ( a->x[i + a->dim] < 0 )
	return(FALSE); 
      if ( a->x[i + a->dim] > 0 )
	return(TRUE); 
    }
  }
  if ( a->dim < b->dim ) {
    for ( i = dim; i < b->dim; i++ ) {
      if ( b->x[i] < 0 )
	return(TRUE); 
      if ( b->x[i] > 0 )
	return(FALSE); 
    }
    for ( i = 0; i < dim; i++ ) {
      if ( b->x[i + b->dim] < 0 )
	return(TRUE); 
      if ( b->x[i + b->dim] > 0 )
	return(FALSE);
    }
  }

  return(FALSE);
}


/* Equal */
bool cube_same(NDBOX *box_a, NDBOX *box_b)
{
  int i;
  NDBOX *a;
  NDBOX *b;
  
  if ( (box_a==NULL) || (box_b==NULL) )
    return(FALSE);

  a = swap_corners(box_a);
  b = swap_corners(box_b);

  /* swap the box pointers if necessary */
  if ( a->dim < b->dim ) {
    NDBOX * tmp = b; b = a; a = tmp;
  }

  for ( i = 0; i < b->dim; i++ ) {
    if ( a->x[i] != b->x[i] )
      return(FALSE);
    if ( a->x[i + a->dim] != b->x[i + b->dim] )
      return(FALSE);
  }

  /* all dimensions of (b) are compared to those of (a);
     instead of those in (a) absent in (b), compare (a) to zero */
  for ( i = b->dim; i < a->dim; i++ ) {
     if ( a->x[i] != 0 )
      return(FALSE);
     if ( a->x[i + a->dim] != 0 )
      return(FALSE);
  }

  pfree(a);
  pfree(b);

  return(TRUE);
}

/* Different */
bool cube_different(NDBOX *box_a, NDBOX *box_b)
{
  return(!cube_same(box_a, box_b));
}


/* Contains */
/* Box(A) CONTAINS Box(B) IFF pt(A) < pt(B) */
bool cube_contains(NDBOX *box_a, NDBOX *box_b)
{
  int i;
  NDBOX *a;
  NDBOX *b;

  if ( (box_a==NULL) || (box_b==NULL) )
    return(FALSE);

  a = swap_corners(box_a);
  b = swap_corners(box_b);

  if ( a->dim < b->dim ) {
    /* the further comparisons will make sense if the 
       excess dimensions of (b) were zeroes */
    for ( i = a->dim; i < b->dim; i++ ) {
      if ( b->x[i] != 0 )
	return(FALSE);
      if ( b->x[i + b->dim] != 0 )
	return(FALSE);
    }
  }

  /* Can't care less about the excess dimensions of (a), if any */
  for ( i = 0; i < min(a->dim, b->dim); i++ ) {
    if ( a->x[i] > b->x[i] )
      return(FALSE);
    if ( a->x[i + a->dim] < b->x[i + b->dim] )
      return(FALSE);
  }

  pfree(a);
  pfree(b);

  return(TRUE);
}

/* Contained */
/* Box(A) Contained by Box(B) IFF Box(B) Contains Box(A) */
bool cube_contained (NDBOX *a, NDBOX *b)
{
  if (cube_contains(b,a) == TRUE)
    return(TRUE);
  else
    return(FALSE);
}

/* Overlap */
/* Box(A) Overlap Box(B) IFF (pt(a)LL < pt(B)UR) && (pt(b)LL < pt(a)UR) */
bool cube_overlap(NDBOX *box_a, NDBOX *box_b)
{
  int i;
  NDBOX *a;
  NDBOX *b;

  /* This *very bad* error was found in the source: 
	if ( (a==NULL) || (b=NULL) )
		return(FALSE);
  */
  if ( (box_a==NULL) || (box_b==NULL) )
    return(FALSE);

  a = swap_corners(box_a);
  b = swap_corners(box_b);

  /* swap the box pointers if needed */
  if ( a->dim < b->dim ) {
    NDBOX * tmp = b; b = a; a = tmp;
  }

  /* compare within the dimensions of (b) */
  for ( i = 0; i < b->dim; i++ ) {
    if ( a->x[i] > b->x[i + b->dim] )
      return(FALSE);
    if ( a->x[i + a->dim] < b->x[i] )
      return(FALSE);
  }

  /* compare to zero those dimensions in (a) absent in (b) */
  for ( i = b->dim; i < a->dim; i++ ) {
     if ( a->x[i] > 0 )
      return(FALSE);
     if ( a->x[i + a->dim] < 0 )
      return(FALSE);
  }

  pfree(a);
  pfree(b);

  return(TRUE);
}


/* Distance */
/* The distance is computed as a per axis sum of the squared distances
   between 1D projections of the boxes onto Cartesian axes. Assuming zero 
   distance between overlapping projections, this metric coincides with the 
   "common sense" geometric distance */
float *cube_distance(NDBOX *a, NDBOX *b)
{
  int i;
  double d, distance;
  float *result;

  result = (float *) palloc(sizeof(float));
  
  /* swap the box pointers if needed */
  if ( a->dim < b->dim ) {
    NDBOX * tmp = b; b = a; a = tmp;
  }

  distance = 0.0;
  /* compute within the dimensions of (b) */
  for ( i = 0; i < b->dim; i++ ) {
    d = distance_1D(a->x[i], a->x[i + a->dim], b->x[i], b->x[i + b->dim]);
    distance += d*d;
  }

  /* compute distance to zero for those dimensions in (a) absent in (b) */
  for ( i = b->dim; i < a->dim; i++ ) {
    d = distance_1D(a->x[i], a->x[i + a->dim], 0.0, 0.0);
    distance += d*d;
  }
  
  *result = (float)sqrt(distance);

  return(result);
}

static float distance_1D(float a1, float a2, float b1, float b2)
{
  /* interval (a) is entirely on the left of (b) */
  if( (a1 <= b1) && (a2 <= b1) && (a1 <= b2) && (a2 <= b2) ) {
    return ( min( b1, b2 ) - max( a1, a2 ) );
  }

  /* interval (a) is entirely on the right of (b) */
  if( (a1 > b1) && (a2 > b1) && (a1 > b2) && (a2 > b2) ) {
    return ( min( a1, a2 ) - max( b1, b2 ) );
  }
  
  /* the rest are all sorts of intersections */
  return(0.0);
}

/* normalize the box's co-ordinates by placing min(xLL,xUR) to LL
   and max(xLL,xUR) to UR 
*/
static NDBOX *swap_corners ( NDBOX *a )
{
  int i, j;
  NDBOX * result;
  
  result = palloc(a->size);
  result->size = a->size;
  result->dim = a->dim;

  for ( i = 0, j = a->dim; i < a->dim; i++, j++ ) {
    result->x[i] = min(a->x[i],a->x[j]);
    result->x[j] = max(a->x[i],a->x[j]);
  }

  return(result);
}