pathnode.c 15.4 KB
Newer Older
1 2 3
/*-------------------------------------------------------------------------
 *
 * pathnode.c--
4
 *	  Routines to manipulate pathlists and create path nodes
5 6 7 8 9
 *
 * Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
10
 *	  $Header: /cvsroot/pgsql/src/backend/optimizer/util/pathnode.c,v 1.5 1997/09/08 02:24:59 momjian Exp $
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 *
 *-------------------------------------------------------------------------
 */
#include <math.h>

#include "postgres.h"

#include "nodes/relation.h"
#include "utils/elog.h"

#include "optimizer/internal.h"
#include "optimizer/pathnode.h"
#include "optimizer/clauseinfo.h"
#include "optimizer/plancat.h"
#include "optimizer/cost.h"
#include "optimizer/keys.h"
#include "optimizer/xfunc.h"
#include "optimizer/ordering.h"

30
#include "parser/parsetree.h"	/* for getrelid() */
31

32
static Path *better_path(Path * new_path, List * unique_paths, bool * noOther);
33 34 35


/*****************************************************************************
36
 *		MISC. PATH UTILITIES
37 38
 *****************************************************************************/

39
/*
40
 * path-is-cheaper--
41 42
 *	  Returns t iff 'path1' is cheaper than 'path2'.
 *
43 44
 */
bool
45
path_is_cheaper(Path * path1, Path * path2)
46
{
47 48
	Cost		cost1 = path1->path_cost;
	Cost		cost2 = path2->path_cost;
49

50
	return ((bool) (cost1 < cost2));
51 52
}

53
/*
54
 * set_cheapest--
55 56
 *	  Finds the minimum cost path from among a relation's paths.
 *
57 58
 * 'parent-rel' is the parent relation
 * 'pathlist' is a list of path nodes corresponding to 'parent-rel'
59 60
 *
 * Returns and sets the relation entry field with the pathnode that
61
 * is minimum.
62
 *
63
 */
64
Path	   *
65
set_cheapest(Rel * parent_rel, List * pathlist)
66
{
67 68
	List	   *p;
	Path	   *cheapest_so_far;
69

70 71
	Assert(pathlist != NIL);
	Assert(IsA(parent_rel, Rel));
72

73
	cheapest_so_far = (Path *) lfirst(pathlist);
74

75 76
	foreach(p, lnext(pathlist))
	{
77
		Path	   *path = (Path *) lfirst(p);
78

79 80 81 82
		if (path_is_cheaper(path, cheapest_so_far))
		{
			cheapest_so_far = path;
		}
83 84
	}

85
	parent_rel->cheapestpath = cheapest_so_far;
86

87
	return (cheapest_so_far);
88 89
}

90
/*
91
 * add_pathlist--
92 93 94 95 96 97
 *	  For each path in the list 'new-paths', add to the list 'unique-paths'
 *	  only those paths that are unique (i.e., unique ordering and ordering
 *	  keys).  Should a conflict arise, the more expensive path is thrown out,
 *	  thereby pruning the plan space.  But we don't prune if xfunc
 *	  told us not to.
 *
98
 * 'parent-rel' is the relation entry to which these paths correspond.
99
 *
100
 * Returns the list of unique pathnodes.
101
 *
102
 */
103
List	   *
104
add_pathlist(Rel * parent_rel, List * unique_paths, List * new_paths)
105
{
106 107 108 109
	List	   *x;
	Path	   *new_path;
	Path	   *old_path;
	bool		noOther;
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

	foreach(x, new_paths)
	{
		new_path = (Path *) lfirst(x);
		if (member(new_path, unique_paths))
			continue;
		old_path = better_path(new_path, unique_paths, &noOther);

		if (noOther)
		{
			/* Is a brand new path.  */
			new_path->parent = parent_rel;
			unique_paths = lcons(new_path, unique_paths);
		}
		else if (old_path == NULL)
		{
			;					/* do nothing if path is not cheaper */
		}
		else if (old_path != NULL)
		{						/* (IsA(old_path,Path)) { */
			new_path->parent = parent_rel;
			if (!parent_rel->pruneable)
			{
				unique_paths = lcons(new_path, unique_paths);
			}
			else
				unique_paths = lcons(new_path,
									 LispRemove(old_path, unique_paths));
		}
139
	}
140
	return (unique_paths);
141 142
}

143
/*
144
 * better_path--
145 146 147 148
 *	  Determines whether 'new-path' has the same ordering and keys as some
 *	  path in the list 'unique-paths'.	If there is a redundant path,
 *	  eliminate the more expensive path.
 *
149
 * Returns:
150 151 152 153 154
 *	  The old path - if 'new-path' matches some path in 'unique-paths' and is
 *				cheaper
 *	  nil - if 'new-path' matches but isn't cheaper
 *	  t - if there is no path in the list with the same ordering and keys
 *
155
 */
156
static Path *
157
better_path(Path * new_path, List * unique_paths, bool * noOther)
158
{
159 160 161 162
	Path	   *old_path = (Path *) NULL;
	Path	   *path = (Path *) NULL;
	List	   *temp = NIL;
	Path	   *retval = NULL;
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

	/*
	 * XXX - added the following two lines which weren't int the lisp
	 * planner, but otherwise, doesn't seem to work for the case where
	 * new_path is 'nil
	 */
	foreach(temp, unique_paths)
	{
		path = (Path *) lfirst(temp);

		if ((equal_path_path_ordering(&new_path->p_ordering,
									  &path->p_ordering) &&
			 samekeys(new_path->keys, path->keys)))
		{
			old_path = path;
			break;
		}
180
	}
181 182 183 184 185 186 187 188 189 190 191 192

	if (old_path == NULL)
	{
		*noOther = true;
	}
	else
	{
		*noOther = false;
		if (path_is_cheaper(new_path, old_path))
		{
			retval = old_path;
		}
193
	}
194 195

	return (retval);
196 197 198 199 200
}



/*****************************************************************************
201
 *		PATH NODE CREATION ROUTINES
202 203
 *****************************************************************************/

204
/*
205
 * create_seqscan_path--
206 207 208
 *	  Creates a path corresponding to a sequential scan, returning the
 *	  pathnode.
 *
209
 */
210
Path	   *
211
create_seqscan_path(Rel * rel)
212
{
213
	int			relid = 0;
214

215
	Path	   *pathnode = makeNode(Path);
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236

	pathnode->pathtype = T_SeqScan;
	pathnode->parent = rel;
	pathnode->path_cost = 0.0;
	pathnode->p_ordering.ordtype = SORTOP_ORDER;
	pathnode->p_ordering.ord.sortop = NULL;
	pathnode->keys = NIL;

	/*
	 * copy clauseinfo list into path for expensive function processing --
	 * JMH, 7/7/92
	 */
	pathnode->locclauseinfo =
		(List *) copyObject((Node *) rel->clauseinfo);

	if (rel->relids != NULL)
		relid = lfirsti(rel->relids);

	pathnode->path_cost = cost_seqscan(relid,
									   rel->pages, rel->tuples);
	/* add in expensive functions cost!  -- JMH, 7/7/92 */
237
#if 0
238 239 240 241 242
	if (XfuncMode != XFUNC_OFF)
	{
		pathnode->path_cost +=
			xfunc_get_path_cost(pathnode);
	}
243
#endif
244
	return (pathnode);
245 246
}

247
/*
248
 * create_index_path--
249 250
 *	  Creates a single path node for an index scan.
 *
251 252 253 254
 * 'rel' is the parent rel
 * 'index' is the pathnode for the index on 'rel'
 * 'restriction-clauses' is a list of restriction clause nodes.
 * 'is-join-scan' is a flag indicating whether or not the index is being
255 256
 *		considered because of its sort order.
 *
257
 * Returns the new path node.
258
 *
259
 */
260
IndexPath  *
261 262 263 264 265
create_index_path(Query * root,
				  Rel * rel,
				  Rel * index,
				  List * restriction_clauses,
				  bool is_join_scan)
266
{
267
	IndexPath  *pathnode = makeNode(IndexPath);
268 269 270 271 272 273 274 275 276 277

	pathnode->path.pathtype = T_IndexScan;
	pathnode->path.parent = rel;
	pathnode->path.p_ordering.ordtype = SORTOP_ORDER;
	pathnode->path.p_ordering.ord.sortop = index->ordering;

	pathnode->indexid = index->relids;
	pathnode->indexkeys = index->indexkeys;
	pathnode->indexqual = NIL;

278
	/*
279 280
	 * copy clauseinfo list into path for expensive function processing --
	 * JMH, 7/7/92
281
	 */
282 283 284
	pathnode->path.locclauseinfo =
		set_difference((List *) copyObject((Node *) rel->clauseinfo),
					   (List *) restriction_clauses);
285 286

	/*
287 288
	 * The index must have an ordering for the path to have (ordering)
	 * keys, and vice versa.
289
	 */
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
	if (pathnode->path.p_ordering.ord.sortop)
	{
		pathnode->path.keys = collect_index_pathkeys(index->indexkeys,
													 rel->targetlist);

		/*
		 * Check that the keys haven't 'disappeared', since they may no
		 * longer be in the target list (i.e., index keys that are not
		 * relevant to the scan are not applied to the scan path node, so
		 * if no index keys were found, we can't order the path).
		 */
		if (pathnode->path.keys == NULL)
		{
			pathnode->path.p_ordering.ord.sortop = NULL;
		}
	}
	else
	{
		pathnode->path.keys = NULL;
	}

	if (is_join_scan || restriction_clauses == NULL)
	{

		/*
		 * Indices used for joins or sorting result nodes don't restrict
		 * the result at all, they simply order it, so compute the scan
		 * cost accordingly -- use a selectivity of 1.0.
		 */
/* is the statement above really true?	what about IndexScan as the
320
   inner of a join? */
321 322 323 324 325 326 327 328 329 330
		pathnode->path.path_cost =
			cost_index(lfirsti(index->relids),
					   index->pages,
					   1.0,
					   rel->pages,
					   rel->tuples,
					   index->pages,
					   index->tuples,
					   false);
		/* add in expensive functions cost!  -- JMH, 7/7/92 */
331
#if 0
332 333 334 335 336 337
		if (XfuncMode != XFUNC_OFF)
		{
			pathnode->path_cost =
				(pathnode->path_cost +
				 xfunc_get_path_cost((Path *) pathnode));
		}
338
#endif
339 340 341 342 343 344 345 346
	}
	else
	{

		/*
		 * Compute scan cost for the case when 'index' is used with a
		 * restriction clause.
		 */
347 348 349 350 351 352
		List	   *attnos;
		List	   *values;
		List	   *flags;
		float		npages;
		float		selec;
		Cost		clausesel;
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383

		get_relattvals(restriction_clauses,
					   &attnos,
					   &values,
					   &flags);
		index_selectivity(lfirsti(index->relids),
						  index->classlist,
						  get_opnos(restriction_clauses),
						  getrelid(lfirsti(rel->relids),
								   root->rtable),
						  attnos,
						  values,
						  flags,
						  length(restriction_clauses),
						  &npages,
						  &selec);
		/* each clause gets an equal selectivity */
		clausesel =
			pow(selec,
				1.0 / (double) length(restriction_clauses));

		pathnode->indexqual = restriction_clauses;
		pathnode->path.path_cost =
			cost_index(lfirsti(index->relids),
					   (int) npages,
					   selec,
					   rel->pages,
					   rel->tuples,
					   index->pages,
					   index->tuples,
					   false);
384 385

#if 0
386 387 388 389 390 391
		/* add in expensive functions cost!  -- JMH, 7/7/92 */
		if (XfuncMode != XFUNC_OFF)
		{
			pathnode->path_cost +=
				xfunc_get_path_cost((Path *) pathnode);
		}
392 393
#endif

394 395 396 397 398 399 400 401 402 403
		/*
		 * Set selectivities of clauses used with index to the selectivity
		 * of this index, subdividing the selectivity equally over each of
		 * the clauses.
		 */

		/* XXX Can this divide the selectivities in a better way? */
		set_clause_selectivities(restriction_clauses, clausesel);
	}
	return (pathnode);
404 405
}

406
/*
407
 * create_nestloop_path--
408 409 410
 *	  Creates a pathnode corresponding to a nestloop join between two
 *	  relations.
 *
411 412 413 414 415
 * 'joinrel' is the join relation.
 * 'outer_rel' is the outer join relation
 * 'outer_path' is the outer join path.
 * 'inner_path' is the inner join path.
 * 'keys' are the keys of the path
416
 *
417
 * Returns the resulting path node.
418
 *
419
 */
420
JoinPath   *
421 422 423 424 425
create_nestloop_path(Rel * joinrel,
					 Rel * outer_rel,
					 Path * outer_path,
					 Path * inner_path,
					 List * keys)
426
{
427
	JoinPath   *pathnode = makeNode(JoinPath);
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452

	pathnode->path.pathtype = T_NestLoop;
	pathnode->path.parent = joinrel;
	pathnode->outerjoinpath = outer_path;
	pathnode->innerjoinpath = inner_path;
	pathnode->pathclauseinfo = joinrel->clauseinfo;
	pathnode->path.keys = keys;
	pathnode->path.joinid = NIL;
	pathnode->path.outerjoincost = (Cost) 0.0;
	pathnode->path.locclauseinfo = NIL;

	if (keys)
	{
		pathnode->path.p_ordering.ordtype =
			outer_path->p_ordering.ordtype;
		if (outer_path->p_ordering.ordtype == SORTOP_ORDER)
		{
			pathnode->path.p_ordering.ord.sortop =
				outer_path->p_ordering.ord.sortop;
		}
		else
		{
			pathnode->path.p_ordering.ord.merge =
				outer_path->p_ordering.ord.merge;
		}
453
	}
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
	else
	{
		pathnode->path.p_ordering.ordtype = SORTOP_ORDER;
		pathnode->path.p_ordering.ord.sortop = NULL;
	}

	pathnode->path.path_cost =
		cost_nestloop(outer_path->path_cost,
					  inner_path->path_cost,
					  outer_rel->size,
					  inner_path->parent->size,
					  page_size(outer_rel->size,
								outer_rel->width),
					  IsA(inner_path, IndexPath));
	/* add in expensive function costs -- JMH 7/7/92 */
469
#if 0
470 471 472 473
	if (XfuncMode != XFUNC_OFF)
	{
		pathnode->path_cost += xfunc_get_path_cost((Path *) pathnode);
	}
474
#endif
475
	return (pathnode);
476 477
}

478
/*
479
 * create_mergesort_path--
480 481 482
 *	  Creates a pathnode corresponding to a mergesort join between
 *	  two relations
 *
483 484 485 486 487 488 489 490 491 492 493 494
 * 'joinrel' is the join relation
 * 'outersize' is the number of tuples in the outer relation
 * 'innersize' is the number of tuples in the inner relation
 * 'outerwidth' is the number of bytes per tuple in the outer relation
 * 'innerwidth' is the number of bytes per tuple in the inner relation
 * 'outer_path' is the outer path
 * 'inner_path' is the inner path
 * 'keys' are the new keys of the join relation
 * 'order' is the sort order required for the merge
 * 'mergeclauses' are the applicable join/restriction clauses
 * 'outersortkeys' are the sort varkeys for the outer relation
 * 'innersortkeys' are the sort varkeys for the inner relation
495
 *
496
 */
497
MergePath  *
498 499 500 501 502 503 504 505 506 507 508 509
create_mergesort_path(Rel * joinrel,
					  int outersize,
					  int innersize,
					  int outerwidth,
					  int innerwidth,
					  Path * outer_path,
					  Path * inner_path,
					  List * keys,
					  MergeOrder * order,
					  List * mergeclauses,
					  List * outersortkeys,
					  List * innersortkeys)
510
{
511
	MergePath  *pathnode = makeNode(MergePath);
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534

	pathnode->jpath.path.pathtype = T_MergeJoin;
	pathnode->jpath.path.parent = joinrel;
	pathnode->jpath.outerjoinpath = outer_path;
	pathnode->jpath.innerjoinpath = inner_path;
	pathnode->jpath.pathclauseinfo = joinrel->clauseinfo;
	pathnode->jpath.path.keys = keys;
	pathnode->jpath.path.p_ordering.ordtype = MERGE_ORDER;
	pathnode->jpath.path.p_ordering.ord.merge = order;
	pathnode->path_mergeclauses = mergeclauses;
	pathnode->jpath.path.locclauseinfo = NIL;
	pathnode->outersortkeys = outersortkeys;
	pathnode->innersortkeys = innersortkeys;
	pathnode->jpath.path.path_cost =
		cost_mergesort(outer_path->path_cost,
					   inner_path->path_cost,
					   outersortkeys,
					   innersortkeys,
					   outersize,
					   innersize,
					   outerwidth,
					   innerwidth);
	/* add in expensive function costs -- JMH 7/7/92 */
535
#if 0
536 537 538 539 540
	if (XfuncMode != XFUNC_OFF)
	{
		pathnode->path_cost +=
			xfunc_get_path_cost((Path *) pathnode);
	}
541
#endif
542
	return (pathnode);
543 544
}

545 546 547 548
/*
 * create_hashjoin_path--						XXX HASH
 *	  Creates a pathnode corresponding to a hash join between two relations.
 *
549 550 551 552 553 554 555 556 557 558 559 560
 * 'joinrel' is the join relation
 * 'outersize' is the number of tuples in the outer relation
 * 'innersize' is the number of tuples in the inner relation
 * 'outerwidth' is the number of bytes per tuple in the outer relation
 * 'innerwidth' is the number of bytes per tuple in the inner relation
 * 'outer_path' is the outer path
 * 'inner_path' is the inner path
 * 'keys' are the new keys of the join relation
 * 'operator' is the hashjoin operator
 * 'hashclauses' are the applicable join/restriction clauses
 * 'outerkeys' are the sort varkeys for the outer relation
 * 'innerkeys' are the sort varkeys for the inner relation
561
 *
562
 */
563
HashPath   *
564 565 566 567 568 569 570 571 572 573 574 575
create_hashjoin_path(Rel * joinrel,
					 int outersize,
					 int innersize,
					 int outerwidth,
					 int innerwidth,
					 Path * outer_path,
					 Path * inner_path,
					 List * keys,
					 Oid operator,
					 List * hashclauses,
					 List * outerkeys,
					 List * innerkeys)
576
{
577
	HashPath   *pathnode = makeNode(HashPath);
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601

	pathnode->jpath.path.pathtype = T_HashJoin;
	pathnode->jpath.path.parent = joinrel;
	pathnode->jpath.outerjoinpath = outer_path;
	pathnode->jpath.innerjoinpath = inner_path;
	pathnode->jpath.pathclauseinfo = joinrel->clauseinfo;
	pathnode->jpath.path.locclauseinfo = NIL;
	pathnode->jpath.path.keys = keys;
	pathnode->jpath.path.p_ordering.ordtype = SORTOP_ORDER;
	pathnode->jpath.path.p_ordering.ord.sortop = NULL;
	pathnode->jpath.path.outerjoincost = (Cost) 0.0;
	pathnode->jpath.path.joinid = (Relid) NULL;
	/* pathnode->hashjoinoperator = operator;  */
	pathnode->path_hashclauses = hashclauses;
	pathnode->outerhashkeys = outerkeys;
	pathnode->innerhashkeys = innerkeys;
	pathnode->jpath.path.path_cost =
		cost_hashjoin(outer_path->path_cost,
					  inner_path->path_cost,
					  outerkeys,
					  innerkeys,
					  outersize, innersize,
					  outerwidth, innerwidth);
	/* add in expensive function costs -- JMH 7/7/92 */
602
#if 0
603 604 605 606 607
	if (XfuncMode != XFUNC_OFF)
	{
		pathnode->path_cost +=
			xfunc_get_path_cost((Path *) pathnode);
	}
608
#endif
609
	return (pathnode);
610
}