experiment.py 11.4 KB
Newer Older
V
Varuna Jayasiri 已提交
1 2 3 4 5
"""
This experiment runs PPO  Atari Breakout game on OpenAI Gym.
It runs the [game environments on multiple processes](game.html) to sample efficiently.
"""

V
ppo  
Varuna Jayasiri 已提交
6 7 8 9 10 11 12 13 14
from typing import Dict, List

import numpy as np
import torch
from torch import nn
from torch import optim
from torch.distributions import Categorical

from labml import monit, tracker, logger, experiment
V
Varuna Jayasiri 已提交
15
from labml_nn.rl.ppo import ClippedPPOLoss, ClippedValueFunctionLoss
V
ppo  
Varuna Jayasiri 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
from labml_nn.rl.ppo.gae import GAE
from labml_nn.rl.ppo.game import Worker

if torch.cuda.is_available():
    device = torch.device("cuda:1")
else:
    device = torch.device("cpu")


class Model(nn.Module):
    """
    ## Model
    """

    def __init__(self):
        super().__init__()

        # The first convolution layer takes a
        # 84x84 frame and produces a 20x20 frame
        self.conv1 = nn.Conv2d(in_channels=4, out_channels=32, kernel_size=8, stride=4)

        # The second convolution layer takes a
        # 20x20 frame and produces a 9x9 frame
        self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=4, stride=2)

        # The third convolution layer takes a
        # 9x9 frame and produces a 7x7 frame
        self.conv3 = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1)

        # A fully connected layer takes the flattened
        # frame from third convolution layer, and outputs
        # 512 features
        self.lin = nn.Linear(in_features=7 * 7 * 64, out_features=512)

        # A fully connected layer to get logits for $\pi$
        self.pi_logits = nn.Linear(in_features=512, out_features=4)

        # A fully connected layer to get value function
        self.value = nn.Linear(in_features=512, out_features=1)

        self.activation = nn.ReLU()

    def forward(self, obs: torch.Tensor):
        h = self.activation(self.conv1(obs))
        h = self.activation(self.conv2(h))
        h = self.activation(self.conv3(h))
        h = h.reshape((-1, 7 * 7 * 64))

        h = self.activation(self.lin(h))

        pi = Categorical(logits=self.pi_logits(h))
        value = self.value(h).reshape(-1)

        return pi, value


def obs_to_torch(obs: np.ndarray) -> torch.Tensor:
    # scale to `[0, 1]`
    return torch.tensor(obs, dtype=torch.float32, device=device) / 255.


class Main:
    def __init__(self):
        # #### Configurations

        # number of updates
        self.updates = 10000
        # number of epochs to train the model with sampled data
        self.epochs = 4
        # number of worker processes
        self.n_workers = 8
        # number of steps to run on each process for a single update
        self.worker_steps = 128
        # number of mini batches
        self.n_mini_batch = 4
        # total number of samples for a single update
        self.batch_size = self.n_workers * self.worker_steps
        # size of a mini batch
        self.mini_batch_size = self.batch_size // self.n_mini_batch
        assert (self.batch_size % self.n_mini_batch == 0)

        # #### Initialize

        # create workers
        self.workers = [Worker(47 + i) for i in range(self.n_workers)]

        # initialize tensors for observations
        self.obs = np.zeros((self.n_workers, 4, 84, 84), dtype=np.uint8)
        for worker in self.workers:
            worker.child.send(("reset", None))
        for i, worker in enumerate(self.workers):
            self.obs[i] = worker.child.recv()

        # model for sampling
        self.model = Model().to(device)

        # optimizer
        self.optimizer = optim.Adam(self.model.parameters(), lr=2.5e-4)

        # GAE
        self.gae = GAE(self.n_workers, self.worker_steps, 0.99, 0.95)

V
Varuna Jayasiri 已提交
118 119 120 121 122 123
        # PPO Loss
        self.ppo_loss = ClippedPPOLoss()

        # Value Loss
        self.value_loss = ClippedValueFunctionLoss()

V
ppo  
Varuna Jayasiri 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
    def sample(self) -> (Dict[str, np.ndarray], List):
        """### Sample data with current policy"""

        rewards = np.zeros((self.n_workers, self.worker_steps), dtype=np.float32)
        actions = np.zeros((self.n_workers, self.worker_steps), dtype=np.int32)
        done = np.zeros((self.n_workers, self.worker_steps), dtype=np.bool)
        obs = np.zeros((self.n_workers, self.worker_steps, 4, 84, 84), dtype=np.uint8)
        log_pis = np.zeros((self.n_workers, self.worker_steps), dtype=np.float32)
        values = np.zeros((self.n_workers, self.worker_steps + 1), dtype=np.float32)

        with torch.no_grad():
            # sample `worker_steps` from each worker
            for t in range(self.worker_steps):
                # `self.obs` keeps track of the last observation from each worker,
                #  which is the input for the model to sample the next action
                obs[:, t] = self.obs
                # sample actions from $\pi_{\theta_{OLD}}$ for each worker;
                #  this returns arrays of size `n_workers`
                pi, v = self.model(obs_to_torch(self.obs))
                values[:, t] = v.cpu().numpy()
                a = pi.sample()
                actions[:, t] = a.cpu().numpy()
                log_pis[:, t] = pi.log_prob(a).cpu().numpy()

                # run sampled actions on each worker
                for w, worker in enumerate(self.workers):
                    worker.child.send(("step", actions[w, t]))

                for w, worker in enumerate(self.workers):
                    # get results after executing the actions
                    self.obs[w], rewards[w, t], done[w, t], info = worker.child.recv()

                    # collect episode info, which is available if an episode finished;
                    #  this includes total reward and length of the episode -
                    #  look at `Game` to see how it works.
                    # We also add a game frame to it for monitoring.
                    if info:
                        tracker.add('reward', info['reward'])
                        tracker.add('length', info['length'])

            # Get value of after the final step
            _, v = self.model(obs_to_torch(self.obs))
            values[:, self.worker_steps] = v.cpu().numpy()

        # calculate advantages
        advantages = self.gae(done, rewards, values)
        samples = {
            'obs': obs,
            'actions': actions,
            'values': values[:, :-1],
            'log_pis': log_pis,
            'advantages': advantages
        }

        # samples are currently in [workers, time] table,
        #  we should flatten it
        samples_flat = {}
        for k, v in samples.items():
            v = v.reshape(v.shape[0] * v.shape[1], *v.shape[2:])
            if k == 'obs':
                samples_flat[k] = obs_to_torch(v)
            else:
                samples_flat[k] = torch.tensor(v, device=device)

        return samples_flat

    def train(self, samples: Dict[str, torch.Tensor], learning_rate: float, clip_range: float):
        """
        ### Train the model based on samples
        """

        # It learns faster with a higher number of epochs,
        #  but becomes a little unstable; that is,
        #  the average episode reward does not monotonically increase
        #  over time.
        # May be reducing the clipping range might solve it.
        for _ in range(self.epochs):
            # shuffle for each epoch
            indexes = torch.randperm(self.batch_size)

            # for each mini batch
            for start in range(0, self.batch_size, self.mini_batch_size):
                # get mini batch
                end = start + self.mini_batch_size
                mini_batch_indexes = indexes[start: end]
                mini_batch = {}
                for k, v in samples.items():
                    mini_batch[k] = v[mini_batch_indexes]

                # train
                loss = self._calc_loss(clip_range=clip_range,
                                       samples=mini_batch)

                # compute gradients
                for pg in self.optimizer.param_groups:
                    pg['lr'] = learning_rate
                self.optimizer.zero_grad()
                loss.backward()
                torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=0.5)
                self.optimizer.step()

    @staticmethod
    def _normalize(adv: torch.Tensor):
        """#### Normalize advantage function"""
        return (adv - adv.mean()) / (adv.std() + 1e-8)

    def _calc_loss(self, samples: Dict[str, torch.Tensor], clip_range: float) -> torch.Tensor:
        # $R_t$ returns sampled from $\pi_{\theta_{OLD}}$
        sampled_return = samples['values'] + samples['advantages']

        # $\bar{A_t} = \frac{\hat{A_t} - \mu(\hat{A_t})}{\sigma(\hat{A_t})}$,
        # where $\hat{A_t}$ is advantages sampled from $\pi_{\theta_{OLD}}$.
        # Refer to sampling function in [Main class](#main) below
        #  for the calculation of $\hat{A}_t$.
        sampled_normalized_advantage = self._normalize(samples['advantages'])

        # Sampled observations are fed into the model to get $\pi_\theta(a_t|s_t)$ and $V^{\pi_\theta}(s_t)$;
        #  we are treating observations as state
        pi, value = self.model(samples['obs'])

        # $-\log \pi_\theta (a_t|s_t)$, $a_t$ are actions sampled from $\pi_{\theta_{OLD}}$
        log_pi = pi.log_prob(samples['actions'])

V
Varuna Jayasiri 已提交
247 248
        # Calculate policy loss
        policy_loss = self.ppo_loss(log_pi, samples['log_pis'], sampled_normalized_advantage, clip_range)
V
ppo  
Varuna Jayasiri 已提交
249

V
Varuna Jayasiri 已提交
250 251
        # Calculate Entropy Bonus
        #
V
ppo  
Varuna Jayasiri 已提交
252 253 254 255 256
        # $\mathcal{L}^{EB}(\theta) =
        #  \mathbb{E}\Bigl[ S\bigl[\pi_\theta\bigr] (s_t) \Bigr]$
        entropy_bonus = pi.entropy()
        entropy_bonus = entropy_bonus.mean()

V
Varuna Jayasiri 已提交
257 258
        # Calculate value function loss
        value_loss = self.value_loss(value, samples['values'], sampled_return, clip_range)
V
ppo  
Varuna Jayasiri 已提交
259 260 261 262 263 264 265

        # $\mathcal{L}^{CLIP+VF+EB} (\theta) =
        #  \mathcal{L}^{CLIP} (\theta) -
        #  c_1 \mathcal{L}^{VF} (\theta) + c_2 \mathcal{L}^{EB}(\theta)$

        # we want to maximize $\mathcal{L}^{CLIP+VF+EB}(\theta)$
        # so we take the negative of it as the loss
V
Varuna Jayasiri 已提交
266
        loss = policy_loss + 0.5 * value_loss - 0.01 * entropy_bonus
V
ppo  
Varuna Jayasiri 已提交
267 268 269 270

        # for monitoring
        approx_kl_divergence = .5 * ((samples['log_pis'] - log_pi) ** 2).mean()

V
Varuna Jayasiri 已提交
271 272
        tracker.add({'policy_reward': -policy_loss,
                     'value_loss': value_loss,
V
ppo  
Varuna Jayasiri 已提交
273 274
                     'entropy_bonus': entropy_bonus,
                     'kl_div': approx_kl_divergence,
V
Varuna Jayasiri 已提交
275
                     'clip_fraction': self.ppo_loss.clip_fraction})
V
ppo  
Varuna Jayasiri 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321

        return loss

    def run_training_loop(self):
        """
        ### Run training loop
        """

        # last 100 episode information
        tracker.set_queue('reward', 100, True)
        tracker.set_queue('length', 100, True)

        for update in monit.loop(self.updates):
            progress = update / self.updates

            # decreasing `learning_rate` and `clip_range` $\epsilon$
            learning_rate = 2.5e-4 * (1 - progress)
            clip_range = 0.1 * (1 - progress)

            # sample with current policy
            samples = self.sample()

            # train the model
            self.train(samples, learning_rate, clip_range)

            # write summary info to the writer, and log to the screen
            tracker.save()
            if (update + 1) % 1_000 == 0:
                logger.log()

    def destroy(self):
        """
        ### Destroy
        Stop the workers
        """
        for worker in self.workers:
            worker.child.send(("close", None))


# ## Run it
if __name__ == "__main__":
    experiment.create(name='ppo')
    m = Main()
    experiment.start()
    m.run_training_loop()
    m.destroy()