stage2.py 76.9 KB
Newer Older
J
Jeff Rasley 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
'''
Copyright 2019 The Microsoft DeepSpeed Team
'''

import torch
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
from torch.distributed.distributed_c10d import _get_global_rank
import torch.distributed as dist
import math
from torch._six import inf
from torch.autograd import Variable

import collections

from deepspeed.runtime.fp16.loss_scaler import LossScaler, DynamicLossScaler
from deepspeed.runtime.utils import see_memory_usage, is_model_parallel_parameter
from deepspeed.runtime.zero.config import ZERO_OPTIMIZATION_GRADIENTS

from deepspeed.utils import logger
#Toggle this to true to enable correctness test
#with gradient partitioning and without
pg_correctness_test = False

try:
    from apex_C import flatten
    from apex_C import unflatten
except ImportError:
    try:
        _ = warned_flatten
    except NameError:
        logger.warning(
            "apex was installed without --cpp_ext.  Falling back to Python flatten and unflatten."
        )
        warned_flatten = True
    from torch._utils import _flatten_dense_tensors as flatten
    from torch._utils import _unflatten_dense_tensors as unflatten


def input(msg):
    return


def split_half_float_double(tensors):
    dtypes = [
        "torch.cuda.HalfTensor",
        "torch.cuda.FloatTensor",
        "torch.cuda.DoubleTensor"
    ]
    buckets = []
    for i, dtype in enumerate(dtypes):
        bucket = [t for t in tensors if t.type() == dtype]
        if bucket:
            buckets.append(bucket)
    return buckets


def isclose(a, b, rtol=1e-09, atol=0.0):
    return abs(a - b) <= max(rtol * max(abs(a), abs(b)), atol)


def lcm(x, y):
    from fractions import gcd  # or can import gcd from `math` in Python 3
    return x * y // gcd(x, y)


# create a flat tensor aligned at the alignment boundary
def flatten_dense_tensors_aligned(tensor_list, alignment):
    num_elements = 0
    for tensor in tensor_list:
        num_elements = num_elements + tensor.numel()

    remaining = num_elements % alignment

    if remaining:
        elements_to_add = alignment - remaining
        pad_tensor = torch.zeros(elements_to_add,
                                 device=tensor_list[0].device,
                                 dtype=tensor_list[0].dtype)
        padded_tensor_list = tensor_list + [pad_tensor]

        num_elements = num_elements + elements_to_add
    else:
        padded_tensor_list = tensor_list

    return _flatten_dense_tensors(padded_tensor_list)


def get_alignment_padding(tensor_list, alignment):
    num_elements = sum([tensor.numel() for tensor in tensor_list])
    remainder = num_elements % alignment
    return (alignment - remainder) if remainder else remainder


def move_to_cpu(tensor_list):
    for tensor in tensor_list:
        tensor.data = tensor.data.cpu()


def print_rank_msg(msg):
    print(f"rank {dist.get_rank()} - {msg}")


class FP16_DeepSpeedZeroOptimizer(object):
    """
    DeepSpeedZeroOptimizer designed to reduce the memory footprint
    required for training large deep learning models.

    For more details please see ZeRO: Memory Optimization Towards Training A Trillion Parameter Models
    https://arxiv.org/abs/1910.02054

    For usage examples, refer to TODO: DeepSpeed Tutorial

    """
    def __init__(self,
                 init_optimizer,
                 timers,
                 static_loss_scale=1.0,
                 dynamic_loss_scale=False,
                 dynamic_loss_args=None,
                 verbose=True,
                 contiguous_gradients=True,
                 reduce_bucket_size=500000000,
                 allgather_bucket_size=5000000000,
                 dp_process_group=None,
                 reduce_scatter=True,
                 overlap_comm=False,
                 cpu_offload=False,
                 mpu=None,
                 clip_grad=0.0,
                 allreduce_always_fp32=False,
                 postscale_gradients=True,
                 gradient_predivide_factor=1.0,
                 gradient_accumulation_steps=1):

        if dist.get_rank() == 0:
            logger.info(f"Reduce bucket size {reduce_bucket_size}")
            logger.info(f"Allgather bucket size {allgather_bucket_size}")
            logger.info(f"CPU Offload: {cpu_offload}")
        # The fused optimizer does all the work. We need this layer for two reason:
        # 1. maintain same user API from apex.fp16_utils
        # 2. keep common stuff here in case we need to add ne552w fused optimizer later

        # differences from apex.fp16_utils:
        # - assume all model params in fp16
        # - assume all params requires grad
        # - flat by groups, not keeping state. TODO: remove state explicitly?
        # - master gard and unflat master weight never exist. TODO: a way to save out unflat master?
        if not torch.cuda.is_available:
            raise SystemError("Cannot use fp16 without CUDA.")
        self.optimizer = init_optimizer

        self.timers = timers

        self.reduce_scatter = reduce_scatter

        self.overlap_comm = overlap_comm

        self.cpu_offload = cpu_offload

        self.deepspeed_adam_offload = (cpu_offload
                                       and type(init_optimizer) == DeepSpeedCPUAdam)

        self.device = torch.cuda.current_device() if not self.cpu_offload else 'cpu'

        self.dp_process_group = dp_process_group

        self.partition_count = dist.get_world_size(group=self.dp_process_group)

        if mpu is None:
            self.model_parallel_group = None
            self.model_parallel_rank = 0
        else:
            self.model_parallel_group = mpu.get_model_parallel_group()
            self.model_parallel_rank = mpu.get_model_parallel_rank()

        self.overflow = False
        self.clip_grad = clip_grad
        self.allreduce_always_fp32 = allreduce_always_fp32
        self.gradient_predivide_factor = gradient_predivide_factor
        self.postscale_gradients = postscale_gradients
        self.gradient_accumulation_steps = gradient_accumulation_steps
        self.micro_step_id = 0

        if self.reduce_scatter:
            assert not self.allreduce_always_fp32, "allreduce_always_fp32 is not yet supported with ZeRO-2 with reduce scatter enabled"
            assert self.gradient_predivide_factor == 1.0, "gradient_predivide_factor != 1.0 is not yet supported with ZeRO-2 with reduce scatter enabled"
            assert self.postscale_gradients, "pre-scale gradients is not yet supported with ZeRO-2 with reduce scatter enabled"

        # param flattened by groups
        self.fp16_groups = []
        self.fp16_groups_flat = []

        #param partitioned by data parallel degree
        #this will contain a list of equal sized tensors
        #each of which will be updated by a different process
        self.parallel_partitioned_fp16_groups = []

        #a single 32-bit partition of the parallel partitioned parameters
        #that this process will update
        self.single_partition_of_fp32_groups = []

        #param partition info

        #These are the parameters in each group that will not be updated by this process directly
        self.params_not_in_partition = []

        #These are the parameters that will be updated by this process directly
        self.params_in_partition = []

        #Offset from the first paramter in the the self.params_in_partition
        #the parameter boundaries may not align with partition boundaries
        #so we need to keep track of the offset
        self.first_offset = []

        #number of elements per partition in each group
        self.partition_size = []

        partition_id = dist.get_rank(group=self.dp_process_group)

        self.all_reduce_print = False

        # padding on each partition for alignment purposes
        self.groups_padding = []
        # loop to deal with groups
        for i, param_group in enumerate(self.optimizer.param_groups):
            # push this group to list before modify
            self.fp16_groups.append(param_group['params'])
            # Record padding required to align group to world size
            if partition_id == dist.get_world_size(group=self.dp_process_group) - 1:
                padding = get_alignment_padding(self.fp16_groups[i],
                                                self.partition_count)
            else:
                padding = 0
            self.groups_padding.append(padding)

            #not sure why apex was cloning the weights before flattening
            #removing cloning here

            see_memory_usage(f"Before moving param group {i} to CPU")
            #move all the parameters to cpu to free up GPU space for creating flat buffer
            move_to_cpu(self.fp16_groups[i])
            see_memory_usage(f"After moving param group {i} to CPU")

            #create flat buffer in CPU and move to GPU
            self.fp16_groups_flat.append(
                flatten_dense_tensors_aligned(
                    self.fp16_groups[i],
                    dist.get_world_size(group=self.dp_process_group)).cuda(
                        torch.cuda.current_device()))
            see_memory_usage(f"After flattening and moving param group {i} to GPU")

            if dist.get_rank(group=self.dp_process_group) == 0:
                see_memory_usage(
                    f"After Flattening and after emptying param group {i} cache")

            # set model fp16 weight to slices of flattened buffer
            updated_params = _unflatten_dense_tensors(self.fp16_groups_flat[i],
                                                      self.fp16_groups[i])
            for p, q in zip(self.fp16_groups[i], updated_params):
                p.data = q.data

H
Haibin Lin 已提交
262
            #divide the flat weights into near equal partition equal to the data parallel degree
J
Jeff Rasley 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
            #each process will compute on a different part of the partition
            data_parallel_partitions = self.get_data_parallel_partitions(
                self.fp16_groups_flat[i])
            self.parallel_partitioned_fp16_groups.append(data_parallel_partitions)

            # a partition of the fp32 master weights that will be updated by this process
            self.single_partition_of_fp32_groups.append(
                self.parallel_partitioned_fp16_groups[i][partition_id].to(
                    self.device).clone().float().detach())

            # modify optimizer of have flat master weight
            self.single_partition_of_fp32_groups[
                i].requires_grad = True  # keep this in case internal optimizer uses it
            param_group['params'] = [self.single_partition_of_fp32_groups[i]]

            partition_size = len(self.fp16_groups_flat[i]) / dist.get_world_size(
                group=self.dp_process_group)
            params_in_partition, params_not_in_partition, first_offset = self.get_partition_info(self.fp16_groups[i], partition_size, partition_id)

            self.partition_size.append(partition_size)
            self.params_in_partition.append(params_in_partition)
            self.params_not_in_partition.append(params_not_in_partition)
            self.first_offset.append(first_offset)

        self.reduce_bucket_size = int(reduce_bucket_size)
        self.allgather_bucket_size = int(allgather_bucket_size)

        self.reduction_event = torch.cuda.Event(enable_timing=False, blocking=False)
        self.reduction_stream = torch.cuda.Stream()
        self.cpu_computation_stream = torch.cuda.Stream()
        self.migration_stream = torch.cuda.Stream()
        self.callback_queued = False

        self.param_dict = {}

        #map between param_id and bool to specify if a param is in this partition
        self.is_param_in_current_partition = {}

        # CPU-Offload requires contiguous gradients
        self.contiguous_gradients = contiguous_gradients or cpu_offload
        self.grads_in_ipg_bucket = []
        self.params_in_ipg_bucket = []
        self.elements_in_ipg_bucket = 0
        self.params_already_reduced = []
        self._release_ipg_buffers()
        self.previous_reduced_grads = None

        #simplified param id
        self.param_id = {}

        largest_param_numel = 0
        count = 0
        for i, params_group in enumerate(self.fp16_groups):
            for param in params_group:
                unique_id = id(param)
                self.param_id[unique_id] = count
                self.param_dict[count] = param
                self.params_already_reduced.append(False)
                if param.numel() > largest_param_numel:
                    largest_param_numel = param.numel()
                count = count + 1

        for param_group in self.params_in_partition:
            for param in param_group:
                self.is_param_in_current_partition[self.get_param_id(param)] = True

        for param_group in self.params_not_in_partition:
            for param in param_group:
                self.is_param_in_current_partition[self.get_param_id(param)] = False

        if self.cpu_offload:
            self.accumulated_grads_in_cpu = {}
            self.norm_for_param_grads = {}
            self.local_overflow = False
            self.grad_position = {}
            self.temp_grad_buffer_for_cpu_offload = torch.zeros(
                largest_param_numel,
                device=self.device).half().pin_memory()
            self.temp_grad_buffer_for_gpu_offload = torch.zeros(
                largest_param_numel,
                device=torch.cuda.current_device()).half()

            for i, params_group in enumerate(self.fp16_groups):
                self.get_grad_position(i,
                                       self.params_in_partition[i],
                                       self.first_offset[i],
                                       self.partition_size[i])

        #mapping from parameter to partition that it belongs to
        self.param_to_partition_ids = {}

        #stores if a partition has been reduced in this step
        self.is_partition_reduced = {}

        #number of grads in partition that still need to be computed
        self.remaining_grads_in_partition = {}

        #total number of grads in partition
        self.total_grads_in_partition = {}

        #stores if a grad in a partition has been computed or not
        self.is_grad_computed = {}

        #stores the offset at which a parameter gradient needs to be inserted in a partition
        self.grad_partition_insertion_offset = {}

H
Haibin Lin 已提交
369
        #the offset in the gradient at which it must be inserted at the beginning of the partition
J
Jeff Rasley 已提交
370 371
        self.grad_start_offset = {}

H
Haibin Lin 已提交
372
        #will store the averaged gradients required by this partition
J
Jeff Rasley 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
        self.averaged_gradients = {}

        # store index of first parameter in each partition
        self.first_param_index_in_partition = {}

        #initializes all data structures for implementing gradient partitioning
        self.initialize_gradient_partitioning_data_structures()

        #resets the data structure value for the next backward propagation
        self.reset_partition_gradient_structures()

        #creates backward hooks for gradient partitioning
        self.create_reduce_and_remove_grad_hooks()

        # we may have a way of fusing dynamic scale. Do not support for now
        if dynamic_loss_scale:
            if dynamic_loss_args is None:
                self.loss_scaler = DynamicLossScaler()
            else:
                self.loss_scaler = DynamicLossScaler(**dynamic_loss_args)

            self.dynamic_loss_scale = True

        else:
            self.dynamic_loss_scale = False
            self.loss_scaler = LossScaler(scale=static_loss_scale)
            self.cur_iter = 0

        see_memory_usage("Before initializing optimizer states")
        self.initialize_optimizer_states()
        see_memory_usage("After initializing optimizer states")

        if dist.get_rank() == 0:
            logger.info(f"optimizer state initialized")

        if dist.get_rank(group=self.dp_process_group) == 0:
            see_memory_usage(f"After initializing ZeRO optimizer")

    def _release_ipg_buffers(self):
        if self.contiguous_gradients:
            self.ipg_buffer = None
            self.grads_in_partition = None
            self.grads_in_partition_offset = 0

    def initialize_optimizer_states(self):

        for i, group in enumerate(self.fp16_groups):
            single_grad_partition = torch.zeros(
                int(self.partition_size[i]),
                dtype=self.single_partition_of_fp32_groups[i].dtype,
                device=self.device)
            self.single_partition_of_fp32_groups[
                i].grad = single_grad_partition.pin_memory(
                ) if self.cpu_offload else single_grad_partition

        self.optimizer.step()

        if not self.cpu_offload:
            for group in self.single_partition_of_fp32_groups:
                group.grad = None

        return

    #########################################################################
    #########################ZeRO Partition Gradients########################
    #########################################################################

    def get_first_param_index(self, group_id, param_group, partition_id):
        for index, param in enumerate(param_group):
            param_id = self.get_param_id(param)
            if partition_id in self.param_to_partition_ids[group_id][param_id]:
                return index
        return None

    def initialize_gradient_partitioning_data_structures(self):

        total_partitions = dist.get_world_size(group=self.dp_process_group)

        for i, param_group in enumerate(self.fp16_groups):

            self.param_to_partition_ids[i] = {}
            self.is_partition_reduced[i] = {}
            self.total_grads_in_partition[i] = {}
            self.remaining_grads_in_partition[i] = {}
            self.is_grad_computed[i] = {}
            self.grad_partition_insertion_offset[i] = {}
            self.grad_start_offset[i] = {}
            self.first_param_index_in_partition[i] = {}

            for partition_id in range(total_partitions):
                self.is_grad_computed[i][partition_id] = {}
                self.grad_partition_insertion_offset[i][partition_id] = {}
                self.grad_start_offset[i][partition_id] = {}
                self.total_grads_in_partition[i][partition_id] = 0
                self.initialize_gradient_partition(i, param_group, partition_id)
                self.is_partition_reduced[i][partition_id] = False
                self.first_param_index_in_partition[i][
                    partition_id] = self.get_first_param_index(
                        i,
                        param_group,
                        partition_id)

    def independent_gradient_partition_epilogue(self):
        self.report_ipg_memory_usage(f"In ipg_epilogue before reduce_ipg_grads", 0)
        self.reduce_ipg_grads()
        self.report_ipg_memory_usage(f"In ipg_epilogue after reduce_ipg_grads", 0)

        #if dist.get_rank() == 0:
        #    logger.info("Params already reduced %s", self.params_already_reduced)
        for i in range(len(self.params_already_reduced)):
            self.params_already_reduced[i] = False

        if self.overlap_comm:
            torch.cuda.synchronize()

        if self.cpu_offload is False:
            for i, _ in enumerate(self.fp16_groups):

                if not i in self.averaged_gradients or self.averaged_gradients[i] is None:
                    self.averaged_gradients[i] = self.get_flat_partition(
                        self.params_in_partition[i],
                        self.first_offset[i],
                        self.partition_size[i],
                        dtype=torch.half,
                        device=torch.cuda.current_device(),
                        return_tensor_list=True)
                else:
                    avg_new = self.get_flat_partition(self.params_in_partition[i],
                                                      self.first_offset[i],
                                                      self.partition_size[i],
                                                      dtype=torch.half,
                                                      device=torch.cuda.current_device(),
                                                      return_tensor_list=True)

                    for accumulated_grad, new_avg_grad in zip(self.averaged_gradients[i],avg_new):
                        accumulated_grad.add_(new_avg_grad)

        self._release_ipg_buffers()

        # No need to keep the gradients anymore.
        # All gradients required by the step
        # are in self.averaged_gradients
        self.zero_grad()
        see_memory_usage(f"End ipg_epilogue")

    # resets all partition to no reduced
H
Haibin Lin 已提交
519
    # sets remaining grads to the total number of grads in each partition
J
Jeff Rasley 已提交
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
    # set is grad computed to false for all grads in partition
    def reset_partition_gradient_structures(self):
        total_partitions = dist.get_world_size(group=self.dp_process_group)
        for i, _ in enumerate(self.fp16_groups):
            for partition_id in range(total_partitions):
                self.is_partition_reduced[i][partition_id] = False
                self.remaining_grads_in_partition[i][
                    partition_id] = self.total_grads_in_partition[i][partition_id]

                for param_id in self.is_grad_computed[i][partition_id]:
                    self.is_grad_computed[i][partition_id][param_id] = False

    def initialize_gradient_partition(self, i, param_group, partition_id):
        def set_key_value_list(dictionary, key, value):
            if key in dictionary:
                dictionary[key].append(value)
            else:
                dictionary[key] = [value]

        def increment_value(dictionary, key):
            if key in dictionary:
                dictionary[key] += 1
            else:
                dictionary[key] = 1

        partition_size = self.partition_size[i]

        start_index = partition_size * partition_id
        end_index = partition_size * (partition_id + 1)

        current_index = 0
        first_offset = 0

        for param in param_group:

            param_size = param.numel()
            param_id = self.get_param_id(param)

            if (current_index >= start_index and current_index < end_index):
                set_key_value_list(self.param_to_partition_ids[i],
                                   param_id,
                                   partition_id)
                increment_value(self.total_grads_in_partition[i], partition_id)

                self.is_grad_computed[i][partition_id][param_id] = False

                self.grad_partition_insertion_offset[i][partition_id][
                    param_id] = current_index - start_index
                self.grad_start_offset[i][partition_id][param_id] = 0

            elif start_index > current_index and start_index < (current_index +
                                                                param_size):
                assert (first_offset==0), "This can happen either zero or only once as this must be the first tensor in the partition"
                first_offset = start_index - current_index

                set_key_value_list(self.param_to_partition_ids[i],
                                   param_id,
                                   partition_id)
                increment_value(self.total_grads_in_partition[i], partition_id)

                self.is_grad_computed[i][partition_id][param_id] = False

                self.grad_partition_insertion_offset[i][partition_id][param_id] = 0
                self.grad_start_offset[i][partition_id][param_id] = first_offset

            current_index = current_index + param_size

    def overlapping_partition_gradients_reduce_epilogue(self):
        self.independent_gradient_partition_epilogue()

    def create_reduce_and_remove_grad_hooks(self):
        self.grad_accs = []
        for i, param_group in enumerate(self.fp16_groups):
            for param in param_group:
                if param.requires_grad:

                    def wrapper(param, i):
                        param_tmp = param.expand_as(param)
                        grad_acc = param_tmp.grad_fn.next_functions[0][0]

                        def reduce_partition_and_remove_grads(*notneeded):
                            self.reduce_ready_partitions_and_remove_grads(param, i)

                        grad_acc.register_hook(reduce_partition_and_remove_grads)
                        self.grad_accs.append(grad_acc)

                    wrapper(param, i)

    def get_param_id(self, param):
        unique_id = id(param)
        return self.param_id[unique_id]

    def report_ipg_memory_usage(self, tag, param_elems):
        elem_count = self.elements_in_ipg_bucket + param_elems
        percent_of_bucket_size = (100.0 * elem_count) // self.reduce_bucket_size
        see_memory_usage(
            f"{tag}: elems in_bucket {self.elements_in_ipg_bucket} param {param_elems} max_percent {percent_of_bucket_size}"
        )

H
Haibin Lin 已提交
619
    ############### Independent Partition Gradient ########################
J
Jeff Rasley 已提交
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
    def reduce_independent_p_g_buckets_and_remove_grads(self, param, i):
        if self.elements_in_ipg_bucket + param.numel() > self.reduce_bucket_size:
            self.report_ipg_memory_usage("In ipg_remove_grads before reduce_ipg_grads",
                                         param.numel())
            self.reduce_ipg_grads()
            if self.contiguous_gradients and self.overlap_comm:
                # Swap ipg_index between 0 and 1
                self.ipg_index = 1 - self.ipg_index
            self.report_ipg_memory_usage("In ipg_remove_grads after reduce_ipg_grads",
                                         param.numel())

        param_id = self.get_param_id(param)

        assert self.params_already_reduced[param_id] == False, \
            f"The parameter {param_id} has already been reduced. \
            Gradient computed twice for this partition. \
            Multiple gradient reduction is currently not supported"

        #keeping the gradients contiguous to prevent memory fragmentation, and avoid flattening
        if self.contiguous_gradients:
            new_grad_tensor = self.ipg_buffer[self.ipg_index].narrow(
                0,
                self.elements_in_ipg_bucket,
                param.numel())
            new_grad_tensor.copy_(param.grad.view(-1))
            param.grad.data = new_grad_tensor.data.view_as(param.grad)

        self.elements_in_ipg_bucket += param.numel()
        self.grads_in_ipg_bucket.append(param.grad)
        self.params_in_ipg_bucket.append((i, param, param_id))

        self.report_ipg_memory_usage("End ipg_remove_grads", 0)

    def print_rank_0(self, message):
        if dist.get_rank() == 0:
            logger.info(message)

    def gradient_reduction_w_predivide(self, tensor):
        dp_world_size = dist.get_world_size(group=self.dp_process_group)

        tensor_to_allreduce = tensor

        if self.allreduce_always_fp32:
            tensor_to_allreduce = tensor.float()

        if self.postscale_gradients:
            if self.gradient_predivide_factor != 1.0:
                tensor_to_allreduce.mul_(1. / self.gradient_predivide_factor)

            dist.all_reduce(tensor_to_allreduce, group=self.dp_process_group)

            if self.gradient_predivide_factor != dp_world_size:
                tensor_to_allreduce.mul_(self.gradient_predivide_factor / dp_world_size)
        else:
            tensor_to_allreduce.div_(dp_world_size)
            dist.all_reduce(tensor_to_allreduce, group=self.dp_process_group)

        if self.allreduce_always_fp32 and tensor is not tensor_to_allreduce:
            tensor.copy_(tensor_to_allreduce)

        return tensor

    def average_tensor(self, tensor):
        if self.overlap_comm:
            torch.cuda.synchronize()
            stream = self.reduction_stream
        else:
            stream = torch.cuda.current_stream()

        with torch.cuda.stream(stream):
            if not self.reduce_scatter:
                self.gradient_reduction_w_predivide(tensor)
                return

            # Accumulate destination ranks and bucket offsets for each gradient slice.
            # Note: potential future optimization, record access pattern of parameters
            # in backward pass and partition gradients w.r.t. access pattern so that our
            # bucket is guaranteed to be contiguous w.r.t. ranks
            rank_and_offsets = []
            curr_size = 0
            prev_id = -1
            for i, param, param_id in self.params_in_ipg_bucket:
                partition_ids = self.param_to_partition_ids[i][param_id]
                partition_size = self.partition_size[i]
                # Get all partition ids + their offsets
                partition_ids_w_offsets = []
                for partition_id in partition_ids:
                    offset = self.grad_start_offset[i][partition_id][param_id]
                    partition_ids_w_offsets.append((partition_id, offset))
                partition_ids_w_offsets.sort(key=lambda t: t[1])

                # Calculate rank and offsets for grad slices
                for idx in range(len(partition_ids_w_offsets)):
                    partition_id, offset = partition_ids_w_offsets[idx]

                    # Calculate numel for grad slice depending on partition location
                    if idx == len(partition_ids_w_offsets) - 1:
                        # Last partition_id uses its own offset
                        numel = param.numel() - offset
                    else:
                        # Set numel to next partition's offset
                        numel = partition_ids_w_offsets[idx + 1][1] - offset

                    # Merge bucket ranges if they belong to the same rank
                    if partition_id == prev_id:
                        prev_pid, prev_size, prev_numel = rank_and_offsets[-1]
                        rank_and_offsets[-1] = (prev_pid, prev_size, prev_numel + numel)
                    else:
                        rank_and_offsets.append((partition_id, curr_size, numel))

                    curr_size += numel
                    prev_id = partition_id
            tensor.div_(dist.get_world_size(group=self.dp_process_group))

            async_handles = []
            for dst, bucket_offset, numel in rank_and_offsets:
                grad_slice = tensor.narrow(0, int(bucket_offset), int(numel))
                dst_rank = _get_global_rank(self.dp_process_group, dst)
                async_handle = dist.reduce(grad_slice,
                                           dst=dst_rank,
                                           group=self.dp_process_group,
                                           async_op=True)
                async_handles.append(async_handle)

            for handle in async_handles:
                handle.wait()

    ##############################################################################
    ############################# CPU Offload Methods#############################
    ##############################################################################
    def get_grad_position(self, group_id, tensor_list, first_offset, partition_size):
        current_offset = 0

        for i, tensor in enumerate(tensor_list):
            param_id = self.get_param_id(tensor)
            param_start_offset = 0

            num_elements = tensor.numel()
            tensor_offset = 0

            #we need to offset to get to the right element
            if i == 0 and first_offset > 0:
                tensor_offset = first_offset
                num_elements = num_elements - tensor_offset
                param_start_offset = first_offset

            #we dont need all elements of the tensor
            if num_elements > (partition_size - current_offset):
                num_elements = partition_size - current_offset

            self.grad_position[param_id] = [
                int(group_id),
                int(param_start_offset),
                int(current_offset),
                int(num_elements)
            ]
            current_offset += num_elements

    def update_overflow_tracker_for_param_grad(self, param):
        if param.grad is not None and self._has_inf_or_nan(param.grad.data):
            self.local_overflow = True

    def async_accumulate_grad_in_cpu(self, param):
        param_id = self.get_param_id(param)

        #copy to a preexisiting buffer to avoid memory allocation penalty
        dest_buffer = self.temp_grad_buffer_for_cpu_offload.view(-1).narrow(
            0,
            0,
            param.numel())
        dest_buffer.copy_(param.grad.view(-1), non_blocking=True)

        if param_id not in self.accumulated_grads_in_cpu:
            self.accumulated_grads_in_cpu[param_id] = torch.zeros(
                param.numel(),
                dtype=param.dtype,
                device=self.device).pin_memory()

        self.accumulated_grads_in_cpu[param_id].add_(dest_buffer)

    def async_accumulate_grad_in_cpu_via_gpu(self, param):
        param_id = self.get_param_id(param)

        #copy to a preexisiting buffer to avoid memory allocation penalty
        dest_buffer = self.temp_grad_buffer_for_gpu_offload.view(-1).narrow(
            0,
            0,
            param.numel())

        if param_id not in self.accumulated_grads_in_cpu:
            self.accumulated_grads_in_cpu[param_id] = torch.zeros(
                param.numel(),
                dtype=param.dtype,
                device=self.device).pin_memory()

        if self.micro_step_id > 0:
            dest_buffer.copy_(self.accumulated_grads_in_cpu[param_id].view(-1),
                              non_blocking=True)
            param.grad.data.view(-1).add_(dest_buffer)

        #at the boundary we will send 32bit directly
        if not self.is_gradient_accumulation_boundary:
            self.accumulated_grads_in_cpu[param_id].data.copy_(param.grad.data.view(-1),
                                                               non_blocking=True)

    def set_norm_for_param_grad(self, param):
        param_id = self.get_param_id(param)
        accumulated_grad = self.accumulated_grads_in_cpu[
            param_id] if self.gradient_accumulation_steps > 1 else param.grad

        [i, source_offset, dest_offset, num_elements] = self.grad_position[param_id]

        start = source_offset
        accumulated_grad = accumulated_grad.view(-1).narrow(0, start, num_elements)

        self.norm_for_param_grads[param_id] = accumulated_grad.data.double().norm(2)

    def set_norm_for_param_grad_in_gpu(self, param):
        param_id = self.get_param_id(param)
        accumulated_grad = param.grad

        [i, source_offset, dest_offset, num_elements] = self.grad_position[param_id]

        start = source_offset
        accumulated_grad = accumulated_grad.view(-1).narrow(0, start, num_elements)

        self.norm_for_param_grads[param_id] = accumulated_grad.data.double().norm(2)

    def async_inplace_copy_grad_to_fp32_buffer(self, param):
        param_id = self.get_param_id(param)

        [i, source_offset, dest_offset, num_elements] = self.grad_position[param_id]

        dest_tensor = self.single_partition_of_fp32_groups[i].grad.view(-1).narrow(
            0,
            dest_offset,
            num_elements)
        if self.gradient_accumulation_steps > 1:
            src_tensor = self.accumulated_grads_in_cpu[param_id].view(-1).narrow(
                0,
                source_offset,
                num_elements)
        else:
            src_tensor = param.grad.view(-1).narrow(0,
                                                    source_offset,
                                                    num_elements).float()
        dest_tensor.copy_(src_tensor, non_blocking=True)

    def async_inplace_copy_grad_to_fp32_buffer_from_gpu(self, param):
        param_id = self.get_param_id(param)

        [i, source_offset, dest_offset, num_elements] = self.grad_position[param_id]

        dest_tensor = self.single_partition_of_fp32_groups[i].grad.view(-1).narrow(
            0,
            dest_offset,
            num_elements)

        src_tensor = param.grad.view(-1).narrow(0, source_offset, num_elements).float()
        dest_tensor.copy_(src_tensor, non_blocking=True)
        param.grad = None

    def complete_grad_norm_calculation_for_cpu_offload(self, params):
        total_norm = 0.0
        norm_type = 2.0
        for p in params:
            if is_model_parallel_parameter(p) or (self.model_parallel_rank == 0):
                param_id = self.get_param_id(p)
                param_norm = self.norm_for_param_grads[param_id]
                total_norm += param_norm.item()**2

        # Sum across all model parallel GPUs.
        total_norm_cuda = torch.cuda.FloatTensor([float(total_norm)])

        torch.distributed.all_reduce(total_norm_cuda,
                                     op=torch.distributed.ReduceOp.SUM,
                                     group=self.dp_process_group)

        self._model_parallel_all_reduce(tensor=total_norm_cuda,
                                        op=torch.distributed.ReduceOp.SUM)

        total_norm = total_norm_cuda[0].item()**(1. / norm_type)

        if total_norm == float(
                'inf') or total_norm == -float('inf') or total_norm != total_norm:
            total_norm = -1

        return total_norm

    ############################################################################################

    def copy_grads_in_partition(self, param):
        if self.cpu_offload:

            if self.gradient_accumulation_steps > 1:
                self.async_accumulate_grad_in_cpu_via_gpu(param)

            if self.is_gradient_accumulation_boundary:
                self.set_norm_for_param_grad_in_gpu(param)

                self.update_overflow_tracker_for_param_grad(param)

                self.async_inplace_copy_grad_to_fp32_buffer_from_gpu(param)

            return
        #print(f"ID {self.get_param_id(param)} grad norm {param.grad.norm()}")
        if self.grads_in_partition is None:
            self.grads_in_partition_offset = 0
            total_size = 0
            for group in self.params_in_partition:
                for param_in_partition in group:
                    total_size += param_in_partition.numel()

            see_memory_usage(f"before copying {total_size} gradients into partition")
            self.grads_in_partition = torch.empty(int(total_size),
                                                  dtype=torch.half,
                                                  device=torch.cuda.current_device())
            see_memory_usage(f"after copying {total_size} gradients into partition")

        #The allreduce buffer will be rewritted. Copy the gradients in partition to a new buffer
        new_grad_tensor = self.grads_in_partition.view(-1).narrow(
            0,
            self.grads_in_partition_offset,
            param.numel())
        new_grad_tensor.copy_(param.grad.view(-1))
        param.grad.data = new_grad_tensor.data.view_as(param.grad)
        #print(f"Grad norm after copy to contiguous_buffer {param.grad.data.norm()}")
        self.grads_in_partition_offset += param.numel()

    def reduce_ipg_grads(self):
        if self.overlap_comm:
            stream = self.reduction_stream
        else:
            stream = torch.cuda.current_stream()

        if self.contiguous_gradients:
            self.average_tensor(self.ipg_buffer[self.ipg_index])
        else:
            self.buffered_reduce_fallback(
                None,
                self.grads_in_ipg_bucket,
                elements_per_buffer=self.elements_in_ipg_bucket)

        with torch.cuda.stream(stream):
            for _, param, param_id in self.params_in_ipg_bucket:
                self.params_already_reduced[param_id] = True

                if not self.is_param_in_current_partition[param_id]:
                    if self.overlap_comm and self.contiguous_gradients is False:
                        # Clear the previous grads during the next reduction
                        # to avoid clearing them before the reduction is complete.
                        if self.previous_reduced_grads is None:
                            self.previous_reduced_grads = []
                        self.previous_reduced_grads.append(param)
                    else:
                        param.grad = None
                elif self.contiguous_gradients:
                    self.copy_grads_in_partition(param)

        self.grads_in_ipg_bucket = []
        self.params_in_ipg_bucket = []
        self.elements_in_ipg_bucket = 0
        #####################################################################

    def reduce_ready_partitions_and_remove_grads(self, param, i):
        self.reduce_independent_p_g_buckets_and_remove_grads(param, i)

    def zero_reduced_gradients(self, partition_id, i):
        def are_all_related_partitions_reduced(params_id):
            for partition_id in self.param_to_partition_ids[i][params_id]:
                if not self.is_partition_reduced[i][partition_id]:
                    return False
            return True

        for params_id in self.is_grad_computed[i][partition_id]:
            if are_all_related_partitions_reduced(params_id):
                self.param_dict[params_id].grad = None

    def flatten_and_print(self, message, tensors, start=0, n=5):
        flatten_tensor = _flatten_dense_tensors(tensors)

        def print_func():
            logger.info(flatten_tensor.contiguous().view(-1).narrow(0, start, n))

        self.sequential_execution(print_func, message)

    def get_grads_to_reduce(self, i, partition_id):
        def get_reducable_portion(key):
            grad = self.param_dict[key].grad
            total_elements = grad.numel()
            start = self.grad_start_offset[i][partition_id][key]
            num_elements = min(
                total_elements - start,
                self.partition_size[i] -
                self.grad_partition_insertion_offset[i][partition_id][key])
            if not pg_correctness_test:
                if num_elements == total_elements:
                    return grad
                else:
                    return grad.contiguous().view(-1).narrow(0,
                                                             int(start),
                                                             int(num_elements))
            else:
                if num_elements == total_elements:
                    return grad.clone()
                else:
                    return grad.clone().contiguous().view(-1).narrow(
                        0,
                        int(start),
                        int(num_elements))

        grads_to_reduce = []
        for key in self.is_grad_computed[i][partition_id]:
            grad = get_reducable_portion(key)
            grads_to_reduce.append(grad)
        return grads_to_reduce

    def sequential_execution(self, function, message, group=None):
        if group is None:
            group = self.dp_process_group
        if dist.get_rank(group=group) == 0:
            logger.info(message)
        for id in range(dist.get_world_size(group=group)):
            if id == dist.get_rank(group=group):
                function()
            dist.barrier(group=group)

    def set_none_gradients_to_zero(self, i, partition_id):
        for param_id in self.is_grad_computed[i][partition_id]:
            param = self.param_dict[param_id]
            if param.grad is None:
                param.grad = torch.zero_like(param)

    ######################Reduction Related Methods##############################

    def allreduce_bucket(self, bucket, allreduce_always_fp32=False, rank=None, log=None):
        rank = None
        tensor = flatten(bucket)

        tensor_to_allreduce = tensor

        if pg_correctness_test:
            allreduce_always_fp32 = True

        if allreduce_always_fp32:
            tensor_to_allreduce = tensor.float()

        tensor_to_allreduce.div_(dist.get_world_size(group=self.dp_process_group))

        if rank is None:
            #    "All Reducing"
            dist.all_reduce(tensor_to_allreduce, group=self.dp_process_group)
        else:
            global_rank = _get_global_rank(self.dp_process_group, rank)
            dist.reduce(tensor_to_allreduce, global_rank, group=self.dp_process_group)

        if allreduce_always_fp32 and tensor is not tensor_to_allreduce:
            if rank is None or rank == dist.get_rank(group=self.dp_process_group):
                tensor.copy_(tensor_to_allreduce)

        return tensor

    #if rank is specified do a reduction instead of an allreduce
    def allreduce_and_copy(self, small_bucket, rank=None, log=None):
        if self.overlap_comm:
            torch.cuda.synchronize()
            if self.previous_reduced_grads is not None:
                # previous_reduced_grads has the previous reduced grads,
                # now it is safe to clear.
                for param in self.previous_reduced_grads:
                    param.grad = None
                self.previous_reduced_grads = None
            stream = self.reduction_stream
        else:
            stream = torch.cuda.current_stream()

        with torch.cuda.stream(stream):
            allreduced = self.allreduce_bucket(small_bucket, rank=rank, log=log)
            if rank is None or rank == dist.get_rank(group=self.dp_process_group):
                for buf, synced in zip(small_bucket, unflatten(allreduced, small_bucket)):
                    buf.copy_(synced)

    def allreduce_no_retain(self,
                            bucket,
                            numel_per_bucket=500000000,
                            rank=None,
                            log=None):
        small_bucket = []
        numel = 0
        for tensor in bucket:
            small_bucket.append(tensor)
            numel = numel + tensor.numel()
            if numel > numel_per_bucket:
                self.allreduce_and_copy(small_bucket, rank=rank, log=None)
                small_bucket = []
        if len(small_bucket) > 0:
            self.allreduce_and_copy(small_bucket, rank=rank, log=log)

    #allows using reduction of gradients instead of using all_reduce
    def buffered_reduce_fallback(self,
                                 rank,
                                 grads,
                                 elements_per_buffer=500000000,
                                 log=None):
        split_buckets = split_half_float_double(grads)

        for i, bucket in enumerate(split_buckets):
            self.allreduce_no_retain(bucket,
                                     numel_per_bucket=elements_per_buffer,
                                     rank=rank,
                                     log=log)

    #############################################################################
    #############################################################################
    #############################################################################

    #views the tensor as multiple partitions and returns
    #those partitions
    def get_data_parallel_partitions(self, tensor):
        partitions = []

        dp = dist.get_world_size(group=self.dp_process_group)
        dp_id = dist.get_rank(group=self.dp_process_group)

        total_num_elements = tensor.numel()

        base_size = total_num_elements // dp
        remaining = total_num_elements % dp

        start = 0
        for id in range(dp):
            partition_size = base_size
            if id < remaining:
                partition_size = partition_size + 1
            partitions.append(tensor.narrow(0, start, partition_size))
            start = start + partition_size
        return partitions

    def get_partition_info(self, tensor_list, partition_size, partition_id):
        params_in_partition = []
        params_not_in_partition = []

        start_index = partition_size * partition_id
        end_index = partition_size * (partition_id + 1)

        current_index = 0
        first_offset = 0

        for tensor in tensor_list:

            tensor_size = tensor.numel()

            if (current_index >= start_index and current_index < end_index):
                params_in_partition.append(tensor)

            elif start_index > current_index and start_index < (current_index +
                                                                tensor_size):
                params_in_partition.append(tensor)

                assert (first_offset==0), "This can happen either zero or only once as this must be the first tensor in the partition"
                first_offset = start_index - current_index

            else:
                params_not_in_partition.append(tensor)

            current_index = current_index + tensor_size

        return params_in_partition, params_not_in_partition, first_offset

    def zero_grad(self, set_grads_to_None=True):
        """
        Zero FP16 parameter grads.
        """
        # FP32 grad should never exist.
        # For speed, set model fp16 grad to None by default
        for group in self.fp16_groups:
            for p in group:
                if set_grads_to_None:
                    p.grad = None
                else:
                    if p.grad is not None:
                        p.grad.detach_()
                        p.grad.zero_()

    def _model_parallel_all_reduce(self, tensor, op):
        """ Perform all reduce within model parallel group, if any.
        """
        if self.model_parallel_group is None:
            torch.distributed.all_reduce(tensor=tensor, op=op)
        else:
            torch.distributed.all_reduce(tensor=tensor,
                                         op=op,
                                         group=self.model_parallel_group)

    def get_grad_norm_direct(self, gradients, params, norm_type=2):
        """Clips gradient norm of an iterable of parameters.

        This is adapted from torch.nn.utils.clip_grad.clip_grad_norm_ and
        added functionality to handle model parallel parameters. Note that
        the gradients are modified in place.

        Arguments:
            parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
                single Tensor that will have gradients normalized
            max_norm (float or int): max norm of the gradients
            norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for
                infinity norm.

        Returns:
            Total norm of the parameters (viewed as a single vector).
        """
        norm_type = float(norm_type)
        if norm_type == inf:
            total_norm = max(g.data.abs().max() for g in gradients)
            total_norm_cuda = torch.cuda.FloatTensor([float(total_norm)])
            torch.distributed.all_reduce(total_norm_cuda,
                                         op=torch.distributed.ReduceOp.MAX,
                                         group=self.dp_process_group)

            # Take max across all GPUs.
            self._model_parallel_all_reduce(tensor=total_norm_cuda,
                                            op=torch.distributed.ReduceOp.MAX)
            total_norm = total_norm_cuda[0].item()
        else:
            total_norm = 0.0
            #if dist.get_rank() == 0:
            #    logger.info(f"Total Norm begining {total_norm}")
            for g, p in zip(gradients, params):
                if is_model_parallel_parameter(p) or (self.model_parallel_rank == 0):
                    param_norm = g.data.double().norm(2)
                    total_norm += param_norm.item()**2
            # Sum across all model parallel GPUs.
            total_norm_cuda = torch.cuda.FloatTensor([float(total_norm)])

            torch.distributed.all_reduce(total_norm_cuda,
                                         op=torch.distributed.ReduceOp.SUM,
                                         group=self.dp_process_group)

            self._model_parallel_all_reduce(tensor=total_norm_cuda,
                                            op=torch.distributed.ReduceOp.SUM)

            total_norm = total_norm_cuda[0].item()**(1. / norm_type)

        if total_norm == float(
                'inf') or total_norm == -float('inf') or total_norm != total_norm:
            total_norm = -1

        return total_norm

    #creates a flat fused tensor from the tensor list starting at the first_offset
    #in the first tensor of the list. If there are not enough elements in the tensor
    #list then the flat tensor will be padded with zeros
    def get_flat_partition(self,
                           tensor_list,
                           first_offset,
                           partition_size,
                           dtype,
                           device,
                           return_tensor_list=False):
        flat_tensor_list = []
        current_size = 0
        for i, tensor in enumerate(tensor_list):
            if tensor.grad is None:
                continue

            tensor = tensor.grad
            num_elements = tensor.numel()
            tensor_offset = 0

            #we need to offset to get to the right element
            if i == 0 and first_offset > 0:
                tensor_offset = first_offset
                num_elements = num_elements - tensor_offset

            #we dont need all elements of the tensor
            if num_elements > (partition_size - current_size):
                num_elements = partition_size - current_size

            #we need a narrow view of the tensor based on the tensor offset and number of elements that
            #we need from this tensor
            if tensor_offset > 0 or num_elements < tensor.numel():
                flat_tensor_list.append(tensor.contiguous().view(-1).narrow(
                    0,
                    int(tensor_offset),
                    int(num_elements)))
            else:
                flat_tensor_list.append(tensor)

            current_size = current_size + num_elements

        #this means its the last partition and does not align with the dp boundary. We need to pad before flattening
        if current_size < partition_size:
            flat_tensor_list.append(
                torch.zeros(int(partition_size - current_size),
                            dtype=dtype,
                            device=device))

        if return_tensor_list:
            return flat_tensor_list

        return _flatten_dense_tensors(flat_tensor_list)

    def free_grad_in_param_list(self, param_list):
        for p in param_list:
            p.grad = None

    def reset_cpu_buffers(self):
        self.norm_for_param_grads = {}
        self.local_overflow = False

    def step(self, closure=None):
        """
        Not supporting closure.
        """
        self.micro_step_id = -1

        if self.cpu_offload:
            torch.cuda.current_stream().wait_stream(self.migration_stream)

        see_memory_usage(f"In step before checking overflow")

        # First compute norm for all group so we know if there is overflow
        self.check_overflow()

        timers = self.timers

        prev_scale = self.loss_scale
        self._update_scale(self.overflow)
        if self.overflow:
            see_memory_usage('After overflow before clearing gradients')
            self.zero_grad()
            if self.cpu_offload:
                self.reset_cpu_buffers()
            else:
                self.averaged_gradients = {}

            see_memory_usage('After overflow after clearing gradients')

            logger.info(
                "[deepscale] OVERFLOW! Rank {} Skipping step. Attempted loss scale: {}, "
                "reducing to {}".format(dist.get_rank(),
                                        prev_scale,
                                        self.loss_scale))
            timers('optimizer_gradients').start()
            timers('optimizer_gradients').stop()
            timers('optimizer_step').start()
            timers('optimizer_step').stop()
            timers('optimizer_allgather').start()
            timers('optimizer_allgather').stop()
            return

        timers('optimizer_gradients').start()
        norm_groups = []
        single_partition_grad_groups = []
        skip = False
        partition_id = dist.get_rank(group=self.dp_process_group)
        for i, group in enumerate(self.fp16_groups):
            if self.cpu_offload:
                norm_groups.append(
                    self.complete_grad_norm_calculation_for_cpu_offload(
                        self.params_in_partition[i]))
                single_grad_partition = self.single_partition_of_fp32_groups[i].grad
            else:
                norm_groups.append(
                    self.get_grad_norm_direct(self.averaged_gradients[i],
                                              self.params_in_partition[i]))

                #free gradients for all the prameters that are not updated by this process
                self.free_grad_in_param_list(self.params_not_in_partition[i])

                #create a flat gradients for parameters updated by this process
                # If we are last partition, ensure we have same size grads and partition size, if not pad with zero tensors
                if partition_id == dist.get_world_size(group=self.dp_process_group) - 1:
                    single_grad_partition = flatten_dense_tensors_aligned(
                        self.averaged_gradients[i],
                        int(self.partition_size[i])).to(
                            self.single_partition_of_fp32_groups[i].dtype)
                else:
                    single_grad_partition = _flatten_dense_tensors(
                        self.averaged_gradients[i]).to(
                            self.single_partition_of_fp32_groups[i].dtype)
                assert single_grad_partition.numel() == self.partition_size[i], \
                    "averaged gradients have different number of elements that partition size {} {} {} {}".format(single_grad_partition.numel(), self.partition_size[i], i, partition_id)

                self.single_partition_of_fp32_groups[i].grad = single_grad_partition
                #release all the gradient since we have already created a necessary copy in dp_grad_partition
                self.free_grad_in_param_list(self.params_in_partition[i])

                self.averaged_gradients[i] = None

            single_partition_grad_groups.append(single_grad_partition)

        self.unscale_and_clip_grads(single_partition_grad_groups, norm_groups)
        timers('optimizer_gradients').stop()

        #torch.set_num_threads(12)
        timers('optimizer_step').start()
        if self.deepspeed_adam_offload:
1418
            from deepspeed.ops.adam import DeepSpeedCPUAdam
J
Jeff Rasley 已提交
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
            self.optimizer.step(fp16_param_groups=self.parallel_partitioned_fp16_groups)
            #self.optimizer.step()
            #for fp16_partitions, fp32_partition in zip(self.parallel_partitioned_fp16_groups, self.single_partition_of_fp32_groups):
            #    fp16_partitions[partition_id].data.copy_(fp32_partition.data)
        else:
            self.optimizer.step()

            #get rid of the fp32 gradients. Not needed anymore
            if not self.cpu_offload:
                for group in self.single_partition_of_fp32_groups:
                    group.grad = None

            for fp16_partitions, fp32_partition in zip(self.parallel_partitioned_fp16_groups, self.single_partition_of_fp32_groups):
                fp16_partitions[partition_id].data.copy_(fp32_partition.data)

        timers('optimizer_step').stop()

        if self.cpu_offload:
            self.reset_cpu_buffers()

        timers('optimizer_allgather').start()
        #gather the updated weights from everyone
        for group_id, partitioned_params in enumerate(self.parallel_partitioned_fp16_groups):

            #Sequential AllGather Best of both worlds
            dp_world_size = dist.get_world_size(group=self.dp_process_group)
            num_shards = max(
                1,
                partitioned_params[partition_id].numel() * dp_world_size //
                self.allgather_bucket_size)

            shard_size = partitioned_params[partition_id].numel() // num_shards
            num_elements = shard_size

            assert shard_size * num_shards <= partitioned_params[partition_id].numel()

            for shard_id in range(num_shards):

                if shard_id == (num_shards - 1):
                    num_elements = partitioned_params[partition_id].numel(
                    ) - shard_id * shard_size

                shard_list = []
                for dp_id in range(dp_world_size):
                    curr_shard = partitioned_params[dp_id].narrow(
                        0,
                        shard_id * shard_size,
                        num_elements).detach()
                    shard_list.append(curr_shard)

                dist.all_gather(shard_list,
                                shard_list[partition_id],
                                group=self.dp_process_group)
        timers('optimizer_allgather').stop()

        # TODO: we probably don't need this? just to be safe
        for i in range(len(norm_groups)):
            updated_params = _unflatten_dense_tensors(self.fp16_groups_flat[i],
                                                      self.fp16_groups[i])
            for p, q in zip(self.fp16_groups[i], updated_params):
                p.data = q.data

        timers.log(
            names=['optimizer_gradients',
                   'optimizer_step',
                   'optimizer_allgather'])
        see_memory_usage('After zero_optimizer step')
        return

    def unscale_and_clip_grads(self, grad_groups_flat, norm_groups):
        total_norm = 0.0
        for norm in norm_groups:
            total_norm += norm**2.0
        total_norm = math.sqrt(total_norm)

        # compute combined scale factor for this group
        combined_scale = self.loss_scale
        if self.clip_grad > 0.:
            # norm is in fact norm*scale
            clip = ((total_norm / self.loss_scale) + 1e-6) / self.clip_grad
            if clip > 1:
                combined_scale = clip * self.loss_scale

        for grad in grad_groups_flat:
            if isinstance(grad, list):
                sub_partitions = grad
                for g in sub_partitions:
                    g.data.mul_(1. / combined_scale)
            else:
                grad.data.mul_(1. / combined_scale)

    def _check_overflow(self, partition_gradients=True):
        self.overflow = self.has_overflow(partition_gradients)

    # `params` is a list / generator of torch.Variable
    def has_overflow_serial(self, params, is_grad_list=False):
        for p in params:
            if p.grad is not None and self._has_inf_or_nan(p.grad.data):
                return True

        return False

    def has_overflow_partitioned_grads_serial(self):
        for i in range(len(self.fp16_groups)):
            for j, grad in enumerate(self.averaged_gradients[i]):
                if grad is not None and self._has_inf_or_nan(grad.data, j):
                    return True
        return False

    def has_overflow(self, partition_gradients=True):
        if partition_gradients:
            overflow = self.local_overflow if self.cpu_offload else self.has_overflow_partitioned_grads_serial(
            )
            overflow_gpu = torch.cuda.ByteTensor([overflow])
            torch.distributed.all_reduce(overflow_gpu,
                                         op=torch.distributed.ReduceOp.MAX,
                                         group=self.dp_process_group)

        else:
            params = []
            for group in self.fp16_groups:
                for param in group:
                    params.append(param)

            overflow = self.has_overflow_serial(params, is_grad_list=partition_gradients)
            overflow_gpu = torch.cuda.ByteTensor([overflow])

        # Since each model parallel GPU carries only part of the model,
        # make sure overflow flag is synced across all the model parallel GPUs
        self._model_parallel_all_reduce(tensor=overflow_gpu,
                                        op=torch.distributed.ReduceOp.MAX)

        overflow = overflow_gpu[0].item()
        return bool(overflow)

    # `x` is a torch.Tensor
    @staticmethod
    def _has_inf_or_nan(x, j=None):
        try:
            # if x is half, the .float() incurs an additional deep copy, but it's necessary if
            # Pytorch's .sum() creates a one-element tensor of the same type as x
            # (which is true for some recent version of pytorch).
            cpu_sum = float(x.float().sum())
            # More efficient version that can be used if .sum() returns a Python scalar
            # cpu_sum = float(x.sum())
        except RuntimeError as instance:
            # We want to check if inst is actually an overflow exception.
            # RuntimeError could come from a different error.
            # If so, we still want the exception to propagate.
            if "value cannot be converted" not in instance.args[0]:
                raise
            return True
        else:
            if cpu_sum == float('inf') or cpu_sum == -float('inf') or cpu_sum != cpu_sum:
                return True
            return False

    def backward(self, loss, retain_graph=False):
        """
        :attr:`backward` performs the following steps:

        1. fp32_loss = loss.float()
        2. scaled_loss = fp32_loss*loss_scale
        3. scaled_loss.backward(), which accumulates scaled gradients into the ``.grad`` attributes of the model's fp16 leaves
        """
        self.micro_step_id += 1
        if self.cpu_offload:
            torch.cuda.current_stream().wait_stream(self.migration_stream)

J
Jeff Rasley 已提交
1588
        #TODO: we need to revist this and remove the magic 4.5x multiplier here
J
Jeff Rasley 已提交
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
        if self.contiguous_gradients:
            self.ipg_buffer = []
            buf_0 = torch.empty(int(self.reduce_bucket_size * 4.5),
                                dtype=torch.half,
                                device=torch.cuda.current_device())
            self.ipg_buffer.append(buf_0)

            # Use double buffers to avoid data access conflict when overlap_comm is enabled.
            if self.overlap_comm:
                buf_1 = torch.empty(int(self.reduce_bucket_size * 4.5),
                                    dtype=torch.half,
                                    device=torch.cuda.current_device())
                self.ipg_buffer.append(buf_1)
            self.ipg_index = 0

        self.loss_scaler.backward(loss.float(), retain_graph=retain_graph)

    def check_overflow(self, partition_gradients=True):
        self._check_overflow(partition_gradients)

    def _update_scale(self, has_overflow=False):
        self.loss_scaler.update_scale(has_overflow)

    # Promote state so it can be retrieved or set via "fp16_optimizer_instance.state"
    def _get_state(self):
        return self.optimizer.state

    def _set_state(self, value):
        self.optimizer.state = value

    state = property(_get_state, _set_state)

    # Promote param_groups so it can be retrieved or set via "fp16_optimizer_instance.param_groups"
    # (for example, to adjust the learning rate)
    def _get_param_groups(self):
        return self.optimizer.param_groups

    def _set_param_groups(self, value):
        self.optimizer.param_groups = value

    param_groups = property(_get_param_groups, _set_param_groups)

    # Promote loss scale so it can be retrieved or set via "fp16_optimizer_instance.loss_scale"
    def _get_loss_scale(self):
        return self.loss_scaler.loss_scale

    def _set_loss_scale(self, value):
        self.loss_scaler.cur_scale = value

    loss_scale = property(_get_loss_scale, _set_loss_scale)
    cur_scale = property(_get_loss_scale, _set_loss_scale)

    # Return group tensor after removing paddings that are added for alignment to DP world size.
    # This method works on the assumption that each group contains a single flattened tensor.
    def _get_groups_without_padding(self, groups_with_padding):
        groups_without_padding = []
        for i, group in enumerate(groups_with_padding):
            lean_length = group.numel() - self.groups_padding[i]
            groups_without_padding.append(group[:lean_length])

        return groups_without_padding

    # Return optimizer state after removing paddings that are added for alignment.
    def _get_state_without_padding(self, state_with_padding, padding):
        lean_state = {}
        for key, value in state_with_padding.items():
            if torch.is_tensor(value):
                lean_length = value.numel() - padding
                lean_state[key] = value[:lean_length]
            else:
                lean_state[key] = value

        return lean_state

    # Return base optimizer states.
    # This method assumes that each param group contains a single flattened tensor.
    def _get_base_optimizer_state(self):
        optimizer_groups_state = []
        for i, group in enumerate(self.optimizer.param_groups):
            p = group['params'][0]
            lean_optimizer_state = self._get_state_without_padding(
                self.optimizer.state[p],
                self.groups_padding[i])
            optimizer_groups_state.append(lean_optimizer_state)

        return optimizer_groups_state

    def state_dict(self):
        """
        Returns a dict containing the current state of this :class:`FP16_Optimizer` instance.
        This dict contains attributes of :class:`FP16_Optimizer`, as well as the state_dict
        of the contained Pytorch optimizer.
        Example::
            checkpoint = {}
            checkpoint['model'] = model.state_dict()
            checkpoint['optimizer'] = optimizer.state_dict()
            torch.save(checkpoint, "saved.pth")
        """
        state_dict = {}
        state_dict['loss_scaler'] = self.loss_scaler
        state_dict['dynamic_loss_scale'] = self.dynamic_loss_scale
        state_dict['overflow'] = self.overflow
        state_dict['base_optimizer_state'] = self._get_base_optimizer_state()

        state_dict['zero_stage'] = ZERO_OPTIMIZATION_GRADIENTS
        state_dict['partition_count'] = self.partition_count

        # Remove paddings for DP alignment to enable loading for other alignment values
        fp32_groups_without_padding = self._get_groups_without_padding(
            self.single_partition_of_fp32_groups)
        state_dict['single_partition_of_fp32_groups'] = fp32_groups_without_padding

        #        if self.cpu_offload:
        #            state_dict_tmp = async_copy_to(state_dict,
        #                                           'cpu',
        #                                           torch.cuda.current_stream())
        #            state_dict = state_dict_tmp

        return state_dict

    # Restore base optimizer fp32 weights from checkpoint by:
    # 1) Merging fp32 weights from checkpoints of all partitions
    # 2) Extracting fp32 weights for current partition from merged weights
    # 3) Using extracted weights to update base optimizer weights directly.
    def _restore_from_fp32_weights(self, all_state_dict):
        partition_id = dist.get_rank(group=self.dp_process_group)
        merged_single_partition_of_fp32_groups = []
        for i in range(len(self.single_partition_of_fp32_groups)):
            merged_partitions = [
                sd['single_partition_of_fp32_groups'][i] for sd in all_state_dict
            ]
            flat_merged_partitions = flatten_dense_tensors_aligned(
                merged_partitions,
                dist.get_world_size(group=self.dp_process_group))
            dp_partitions = self.get_data_parallel_partitions(flat_merged_partitions)
            merged_single_partition_of_fp32_groups.append(dp_partitions[partition_id])

        for current, saved in zip(self.single_partition_of_fp32_groups, merged_single_partition_of_fp32_groups):
            current.data.copy_(saved.data)

    # Restore base optimizer fp32 weights from ZeRO fp16 weights
    def _restore_from_fp16_weights(self):
        partition_id = dist.get_rank(group=self.dp_process_group)
        for fp16_partitions, fp32_partition in zip(self.parallel_partitioned_fp16_groups, self.single_partition_of_fp32_groups):
            fp32_partition.data.copy_(fp16_partitions[partition_id].data)

    # Refresh the fp32 master params from the fp16 copies.
    def refresh_fp32_params(self):
        self._restore_from_fp16_weights()

    # Extract optimizer state for current partition from merged states of all partitions
    def _partition_base_optimizer_state(self, state_key, all_partition_states):
        partition_id = dist.get_rank(group=self.dp_process_group)
        alignment = dist.get_world_size(group=self.dp_process_group)
        if torch.is_tensor(all_partition_states[0]):
            flat_merged_partitions = flatten_dense_tensors_aligned(
                all_partition_states,
                alignment)
            dp_partitions = self.get_data_parallel_partitions(flat_merged_partitions)
            return dp_partitions[partition_id]
        else:
            # Assume non-tensor states are not partitioned and equal across ranks, so return first one
            return all_partition_states[0]

    # Restore base optimizer state from checkpoint by
    # 1) Merging optimizer state from checkpoints of all partitions
    # 2) Extracting optimizer state for current partition from the merged state
    # 3) Using the extracted value to directly update the base optimizer.
    def _restore_base_optimizer_state(self, all_state_dict):
        base_optimizer_group_states = []
        for i in range(len(self.optimizer.param_groups)):
            partition_states = {}
            all_partition_group_states = [
                sd['base_optimizer_state'][i] for sd in all_state_dict
            ]
            for key in all_partition_group_states[0].keys():
                all_partition_states = [
                    all_states[key] for all_states in all_partition_group_states
                ]
                partition_states[key] = self._partition_base_optimizer_state(
                    key,
                    all_partition_states)
            base_optimizer_group_states.append(partition_states)

        for i, group in enumerate(self.optimizer.param_groups):
            p = group['params'][0]
            for key, saved in base_optimizer_group_states[i].items():
                if torch.is_tensor(self.optimizer.state[p][key]):
                    self.optimizer.state[p][key].data.copy_(saved.data)
                else:
                    self.optimizer.state[p][key] = saved

    def load_state_dict(self,
                        state_dict_list,
                        load_optimizer_states=True,
                        load_from_fp32_weights=False):
        r"""Loading ZeRO checkpoint

        Arguments:
            state_dict_list: List of all saved ZeRO checkpoints, one for each saved partition.
                Note that the number of saved partitions may differ from number of loading partitions to support
                changing GPU count, specifically DP world size, between saving and loading checkpoints.
            load_optimizer_states: Boolean indicating whether or not to load base optimizer states
            load_from_fp32_weights: Boolean indicating whether to initialize fp32 master weights from fp32
            copies in checkpoints (no precision loss) or from model's fp16 copies (with precision loss).
        """
        """
        Loads a state_dict created by an earlier call to state_dict().
        If ``fp16_optimizer_instance`` was constructed from some ``init_optimizer``,
        whose parameters in turn came from ``model``, it is expected that the user
        will call ``model.load_state_dict()`` before
        ``fp16_optimizer_instance.load_state_dict()`` is called.
        Example::
            model = torch.nn.Linear(D_in, D_out).cuda().half()
            optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
            optimizer = FP16_Optimizer(optimizer, static_loss_scale = 128.0)
            ...
            checkpoint = torch.load("saved.pth")
            model.load_state_dict(checkpoint['model'])
            optimizer.load_state_dict(checkpoint['optimizer'])
        """
        # I think it should actually be ok to reload the optimizer before the model.
        self.loss_scaler = state_dict_list[0]['loss_scaler']
        self.dynamic_loss_scale = state_dict_list[0]['dynamic_loss_scale']
        self.overflow = state_dict_list[0]['overflow']

        if load_optimizer_states:
            self._restore_base_optimizer_state(state_dict_list)

        # At this point, the optimizer's references to the model's fp32 parameters are up to date.
        # The optimizer's hyperparameters and internal buffers are also up to date.
        # However, the fp32 master copies of the model's fp16 params stored by the optimizer are still
        # out of date.  There are two options.
        # 1:  Refresh the master params from the model's fp16 params.
        # This requires less storage but incurs precision loss.
        # 2:  Save and restore the fp32 master copies separately.
        # We choose option 1 if changing DP degree and option 2 otherwise.
        #
        # Pytorch Optimizer.load_state_dict casts saved buffers (e.g. momentum) to the type and device
        # of their associated parameters, because it's possible those buffers might not exist yet in
        # the current optimizer instance.  In our case, as long as the current FP16_Optimizer has been
        # constructed in the same way as the one whose state_dict we are loading, the same master params
        # are guaranteed to exist, so we can just copy_() from the saved master params.

        if load_from_fp32_weights:
            self._restore_from_fp32_weights(state_dict_list)
        else:
            self._restore_from_fp16_weights()


def _handle_overflow(cpu_sum, x, i):
    import math
    rank = torch.distributed.get_rank()
    if rank == 0:
        t_i = -1
        for v_i, v in enumerate(x.data.contiguous().view(-1)):
            if not math.isfinite(float(v)):
                t_i = v_i
                break
        logger.info(
            f"rank {rank} detected overflow {cpu_sum} in tensor {i}:{t_i} shape {x.shape}"
        )