il.fsi 85.1 KB
Newer Older
L
latkin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
// Copyright (c) Microsoft Open Technologies, Inc.  All Rights Reserved.  Licensed under the Apache License, Version 2.0.  See License.txt in the project root for license information.

/// The "unlinked" view of .NET metadata and code.  Central to 
///  to Abstract IL library
module internal Microsoft.FSharp.Compiler.AbstractIL.IL 

open Internal.Utilities
open System.Collections.Generic

/// The type used to store relatively small lists in the Abstract IL data structures, i.e. for ILTypes, ILGenericArgs, ILParameters and ILLocals.
/// See comments in il.fs for why we've isolated this representation and the possible future choices we might use here.
#if ABSIL_USES_ARRAY_FOR_ILLIST
type ILList<'T> = 'T []
#endif

#if ABSIL_USES_THREELIST_FOR_ILLIST
type ILList<'T> = ThreeList<'T>
#endif

//#if ABSIL_USES_LIST_FOR_ILLIST
type ILList<'T> = 'T list
//#endif
D
desco 已提交
23 24 25 26 27 28

type PrimaryAssembly = 
    | Mscorlib
    | DotNetCore

    member Name: string
L
latkin 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972

// ====================================================================
// .NET binaries can be converted to the data structures below by using 
// the functions in the "Ilread" module. 
//
// Constituent types are listed in ascending order of complexity, 
// all the way up to the type ILModuleDef, representing the read of an IL 
// assembly (.dll or .exe), or part of a multi-module assembly.  Types are 
// often specified via a concrete representation for the type (e.g. a record), 
// though some types are abstract. 
//
// The second part of the file (after the definition of all the types) 
// specifies a large set of utilities for building objects belonging to 
// the types.  You will only need to become familiar with these if you 
// are transforming code or writing a code-generating compiler.
// 
// Several other utilities are also defined in this file:
//   1. A code builder for turning linear sequences of instructions 
//      augmented with exception tables into the more structured 
//      format used for code.  
//
//   2. The "typ_XYZ", "tspec_XYZ" and "mspec_XYZ" values which 
//      can be used to reference types in the "primary assembly (either System.Runtime or mscorlib)" assembly.
//
//   3. The "rescopeXYZ" functions which can be used to lift a piece of
//      metadata from one assembly and transform it to a piece of metadata
//      suitable for use from another assembly.  The transformation adjusts
//      references in the metadata to take into account the assembly
//      where the metadata will now be located.
//
//   4. The "instantiateXYZ" utilities to replace type variables
//      by types.  These are associated with generics.
//
//   5. The "intern_XYZ" tables for reducing the memory used by 
//      generated constructs.
//
//   6. The "refs_of_XYZ" utilities for finding all the assemblies 
//      referenced by a module.
//
//   7. A somewhat obscure facility to allow new instructions and types
//      to be added to the   This is only used by ILX.
// ==================================================================== 

// Guids (Note: consider adjusting these to the System.Guid type)
type Guid = byte[]

[<StructuralEquality; StructuralComparison>]
type ILPlatform = 
    | X86
    | AMD64
    | IA64

/// Debug info.  Values of type "source" can be attached at sequence 
/// points and some other locations. 
[<Sealed>]
type ILSourceDocument =
    static member Create : language: Guid option * vendor: Guid option * documentType: Guid option * file: string -> ILSourceDocument
    member Language: Guid option
    member Vendor: Guid option
    member DocumentType: Guid option
    member File: string


[<Sealed>]
type ILSourceMarker =
    static member Create : document: ILSourceDocument * line: int * column: int * endLine:int * endColumn: int-> ILSourceMarker
    member Document: ILSourceDocument
    member Line: int
    member Column: int
    member EndLine: int
    member EndColumn: int

/// Extensibility: ignore these unless you are generating ILX
/// structures directly.
[<Sealed>]
type IlxExtensionType  =
    interface System.IComparable

/// Represents an extension to the algebra of type kinds
type IlxExtensionTypeKind 

/// Represents an extension to the algebra of instructions
type IlxExtensionInstr 

[<StructuralEquality; StructuralComparison>]
type PublicKey = 
    | PublicKey of byte[]
    | PublicKeyToken of byte[]
    member IsKey: bool
    member IsKeyToken: bool
    member Key: byte[]
    member KeyToken: byte[]

type ILVersionInfo = uint16 * uint16 * uint16 * uint16

[<Sealed>]
type ILAssemblyRef =
    static member Create : name: string * hash: byte[] option * publicKey: PublicKey option * retargetable: bool * version: ILVersionInfo option * locale: string option -> ILAssemblyRef
    static member FromAssemblyName : System.Reflection.AssemblyName -> ILAssemblyRef
    member Name: string;
    /// The fully qualified name of the assembly reference, e.g. mscorlib, Version=1.0.3705 etc.
    member QualifiedName: string; 
    member Hash: byte[] option;
    member PublicKey: PublicKey option;
    /// CLI says this indicates if the assembly can be retargeted (at runtime) to be from a different publisher. 
    member Retargetable: bool;
    member Version: ILVersionInfo option;
    member Locale: string option
    interface System.IComparable

[<Sealed>]
type ILModuleRef =
    static member Create : name: string * hasMetadata: bool * hash: byte[] option -> ILModuleRef
    member Name: string
    member HasMetadata: bool
    member Hash: byte[] option
    interface System.IComparable

// Scope references
//
// Scope references are the bits of metadata attached to type names
// that indicate where a type can be found. CIL has three 
// kinds: local, module and assembly references:
//   o Local: the type must reside in the same module as the scope reference
//   o Module: the type must reside in the indicated module in the same
//     assembly as the scope reference
//   o Assembly: The type must reside in the indicated assembly.
//     These have no implicit context. Assembly references can end up 
//     binding to the assembly containing the reference, i.e. 
//     may be self or mutually referential.
//
//     Assembly reference may also resolve to type in an 
//     auxiliary module of an assembly when the assembly 
//     has an "exported types" (here called "classes elsewhere") table.
//
// We represent these references by values embedded within type
// references.  These values are usually "shared" across the data
// structures for a module, i.e. one such value is created for each
// assembly or module reference, and this value is reused within each
// type object.
//
// Note that as with method references the term structure is not 
// _linked_, i.e. a "ILScopeRef" is still a _reference_ to a scope, 
// not the scope itself.  Because the structure is not linked, 
// the Abstract IL toolset does not require 
// strongly connected inputs: you can manipulate an assembly
// without loading all its dependent assemblies.  This is the primary
// difference between Abstract IL and Reflection, and it can be both
// a blessing and a curse depending on the kind of manipulation you
// wish to perform.
//
// Similarly, you can manipulate individual modules within
// an assembly without having the whole assembly loaded.  (But note that
// most assemblies are single-module in any case).
//
// [ILScopeRef]'s _cannot_ be compared for equality in the way that
// might be expected, in these sense that two ILScopeRef's may 
// resolve to the same assembly/module even though they are not equal.  
//
//   Aside: People have suggested normalizing all scope references
//          so that this would be possible, and early versions of this
//          toolkit did this.  However, this meant that in order to load
//          each module you had to tell the toolkit which assembly it belonged to.
//          Furthermore, you had to know the exact resolved details of 
//          each assembly the module refers to.  This is
//          effectively like having a "fully-linked" view of the graph
//          of assemblies, like that provided in the Ilbind module.  This is really problematic for compile-time tools,
//          as, for example, the policy for linking at the runtime-machine
//          may actually alter the results of linking.  If such compile-time
//          assumptions are to be made then the tool built on top
//          of the toolkit rather than the toolkit itself should
//          make them.
//
// Scope references, type references, field references and method references
// can be "bound" to particular assemblies using the functions in "Ilbind".  
// This simulates the resolution/binding process performed by a Common Language
// Runtime during execution.  Various tests and derived operations
// can then be performed on the results of binding.  
[<StructuralEquality; StructuralComparison>]
[<RequireQualifiedAccess>]
type ILScopeRef = 
    /// A reference to the type in the current module
    | Local 
    /// A reference to a type in a module in the same assembly
    | Module of ILModuleRef   
    /// A reference to a type in another assembly
    | Assembly of ILAssemblyRef  
    member IsLocalRef: bool
    member IsModuleRef: bool
    member IsAssemblyRef: bool
    member ModuleRef: ILModuleRef
    member AssemblyRef: ILAssemblyRef
    member QualifiedName: string

// Calling conventions.  
//
// For nearly all purposes you simply want to use ILArgConvention.Default combined
// with ILThisConvention.Instance or ILThisConvention.Static, i.e.
//   ILCallingConv.Instance == Callconv(ILThisConvention.Instance, ILArgConvention.Default): for an instance method
//   ILCallingConv.Static   == Callconv(ILThisConvention.Static, ILArgConvention.Default): for a static method
//
// ILThisConvention.InstanceExplicit is only used by Managed C++, and indicates 
// that the 'this' pointer is actually explicit in the signature. 
[<StructuralEquality; StructuralComparison; RequireQualifiedAccess>]
type ILArgConvention = 
    | Default
    | CDecl 
    | StdCall 
    | ThisCall 
    | FastCall 
    | VarArg
      
[<StructuralEquality; StructuralComparison; RequireQualifiedAccess>]
type ILThisConvention =
    /// accepts an implicit 'this' pointer 
    | Instance           
    /// accepts an explicit 'this' pointer 
    | InstanceExplicit  
    /// no 'this' pointer is passed
    | Static             

[<StructuralEquality; StructuralComparison>]
type ILCallingConv =
    | Callconv of ILThisConvention * ILArgConvention
    member IsInstance : bool
    member IsInstanceExplicit : bool
    member IsStatic : bool
    member ThisConv : ILThisConvention
    member BasicConv : ILArgConvention
    static member Instance : ILCallingConv
    static member Static   : ILCallingConv

/// Array shapes. For most purposes, including verification, the
/// rank is the only thing that matters.
 
type ILArrayBound = int32 option 
type ILArrayBounds = ILArrayBound * ILArrayBound

[<StructuralEquality; StructuralComparison>]
type ILArrayShape =
    | ILArrayShape of ILArrayBounds list // lobound/size pairs 
    member Rank : int
    /// Bounds for a single dimensional, zero based array 
    static member SingleDimensional: ILArrayShape
    static member FromRank : int -> ILArrayShape

[<StructuralEquality; StructuralComparison>]
type ILBoxity = 
    | AsObject
    | AsValue

type ILGenericVariance = 
    | NonVariant            
    | CoVariant             
    | ContraVariant         

/// Type refs, i.e. references to types in some .NET assembly
[<Sealed>]
type ILTypeRef =
    /// Create a ILTypeRef
    static member Create : scope: ILScopeRef * enclosing: string list * name: string -> ILTypeRef

    /// Where is the type, i.e. is it in this module, in another module in this assembly or in another assembly? 
    member Scope: ILScopeRef
    /// The list of enclosing type names for a nested type. If non-nil then the first of these also contains the namespace.
    member Enclosing: string list
    /// The name of the type. This also contains the namespace if Enclosing is empty 
    member Name: string
    /// The name of the type in the assembly using the '.' notation for nested types
    member FullName: string
    /// The name of the type in the assembly using the '+' notation for nested types
    member BasicQualifiedName : string
    member QualifiedName: string
#if EXTENSIONTYPING
    member QualifiedNameWithNoShortPrimaryAssembly: string
#endif
    interface System.IComparable
    
/// Type specs and types.  
///
/// These are the types that appear syntactically in .NET binaries.  
///
/// Generic type definitions must be combined with
/// an instantiation to form a type.  Throughout this file, 
/// a "ref" refers to something that is uninstantiated, and
/// a "spec" to a ref that is combined with the relevant instantiations.
 
[<Sealed>]
type ILTypeSpec =
    static member Create : typeRef:ILTypeRef * instantiation:ILGenericArgs -> ILTypeSpec

    /// Which type is being referred to?
    member TypeRef: ILTypeRef
    /// The type instantiation if the type is generic, otherwise empty
    member GenericArgs: ILGenericArgs
    member Scope: ILScopeRef
    member Enclosing: string list
    member Name: string
    member FullName: string
    interface System.IComparable

and 
    [<RequireQualifiedAccess; StructuralEquality; StructuralComparison>]
    ILType =
    /// Used only in return and pointer types.
    | Void                   
    /// Array types 
    | Array of ILArrayShape * ILType 
    /// Unboxed types, including builtin types.
    | Value of ILTypeSpec     
    /// Reference types.  Also may be used for parents of members even if for members in value types. 
    | Boxed of ILTypeSpec     
    /// Unmanaged pointers.  Nb. the type is used by tools and for binding only, not by the verifier.
    | Ptr of ILType             
    /// Managed pointers.
    | Byref of ILType           
    /// ILCode pointers. 
    | FunctionPointer of ILCallingSignature        
    /// Reference a generic arg. 
    | TypeVar of uint16           
    /// Custom modifiers. 
    | Modified of            
          /// True if modifier is "required" 
          bool *                  
          /// The class of the custom modifier. 
          ILTypeRef *                   
          /// The type being modified. 
          ILType                     
    member TypeSpec : ILTypeSpec
    member Boxity : ILBoxity
    member TypeRef : ILTypeRef
    member IsNominal : bool
    member GenericArgs : ILGenericArgs
    member IsTyvar : bool
    member BasicQualifiedName : string
    member QualifiedNameWithNoShortPrimaryAssembly : string

and [<StructuralEquality; StructuralComparison>]
    ILCallingSignature =  
    { CallingConv: ILCallingConv;
      ArgTypes: ILTypes;
      ReturnType: ILType }

/// Actual generic parameters are  always types.  


and ILGenericArgs = ILList<ILType>
and ILTypes = ILList<ILType>


[<CompilationRepresentation(CompilationRepresentationFlags.ModuleSuffix)>]
module ILList = 
    val inline map : ('T -> 'U) -> ILList<'T> -> ILList<'U>
    val inline mapi : (int -> 'T -> 'U) -> ILList<'T> -> ILList<'U>
    val inline isEmpty : ILList<'T> -> bool
    val inline toList : ILList<'T> -> 'T list
    val inline ofList : 'T list -> ILList<'T> 
    val inline lengthsEqAndForall2 : ('T -> 'U -> bool) -> ILList<'T> -> ILList<'U> -> bool
    val inline init : int -> (int -> 'T) -> ILList<'T>
    val inline empty<'T> : ILList<'T>
    val inline toArray : ILList<'T> -> 'T[]
    val inline ofArray : 'T[] -> ILList<'T>
    val inline nth : ILList<'T> -> int -> 'T
    val inline iter : ('T -> unit) -> ILList<'T> -> unit
    val inline iteri : (int -> 'T -> unit) -> ILList<'T> -> unit
    val inline foldBack : ('T -> 'State -> 'State) -> ILList<'T> -> 'State -> 'State
    val inline exists : ('T -> bool) -> ILList<'T> -> bool


/// Formal identities of methods.  Method refs refer to methods on 
/// named types.  In general you should work with ILMethodSpec objects
/// rather than MethodRef objects, because ILMethodSpec objects carry
/// information about how generic methods are instantiated.  MethodRef
/// objects are only used at a few places in the Abstract IL syntax
/// and if analyzing or generating IL you will be unlikely to come across
/// these.

[<Sealed>]
type ILMethodRef =
     static member Create : enclosingTypeRef: ILTypeRef * callingConv: ILCallingConv * name: string * genericArity: int * argTypes: ILTypes * returnType: ILType -> ILMethodRef
     member EnclosingTypeRef: ILTypeRef
     member CallingConv: ILCallingConv
     member Name: string
     member GenericArity: int
     member ArgCount: int
     member ArgTypes: ILTypes
     member ReturnType: ILType
     member CallingSignature: ILCallingSignature
     interface System.IComparable
     
/// Formal identities of fields.
 
[<StructuralEquality; StructuralComparison>]
type ILFieldRef = 
    { EnclosingTypeRef: ILTypeRef;
      Name: string;
      Type: ILType }

/// The information at the callsite of a method
//
// A ILMethodSpec is everything given at the callsite (apart from whether the call is a tailcall and whether it is passing
// varargs - see the instruction set below).  It is made up of 
//   1) a (possibly generic) ILMethodRef
//   2) a "usage type" that indicates the how the type containing the declaration is being used (as
//      a value class, a boxed value class, an instantiated generic class or whatever - see below)
//   3) an instantiation in the case where the method is generic.
//
// In this unbound form of the metadata, the enclosing type may be ILType.Boxed even when the member is a member of a value type or
// enumeration.  This is because the binary format of the metadata does not carry enough information in a MemberRefParent to determine
// from the binary alone whether the enclosing type is a value type or not.

[<Sealed>]
type ILMethodSpec =
     static member Create : ILType * ILMethodRef * ILGenericArgs -> ILMethodSpec
     member MethodRef: ILMethodRef
     member EnclosingType: ILType 
     member GenericArgs: ILGenericArgs
     member CallingConv: ILCallingConv
     member GenericArity: int
     member Name: string
     member FormalArgTypes: ILTypes
     member FormalReturnType: ILType
     interface System.IComparable
      

/// Field specs.  The data given for a ldfld, stfld etc. instruction.
[<StructuralEquality; StructuralComparison>]    
type ILFieldSpec =
    { FieldRef: ILFieldRef;
      EnclosingType: ILType }    
    member EnclosingTypeRef: ILTypeRef
    member Name: string
    member FormalType: ILType
    member ActualType : ILType

/// ILCode labels.  In structured code each code label
/// refers to a basic block somewhere in the code of the method.

type ILCodeLabel = int

[<StructuralEquality; StructuralComparison>]
type ILBasicType =
    | DT_R
    | DT_I1
    | DT_U1
    | DT_I2
    | DT_U2
    | DT_I4
    | DT_U4
    | DT_I8
    | DT_U8
    | DT_R4
    | DT_R8
    | DT_I
    | DT_U
    | DT_REF

[<StructuralEquality; StructuralComparison; RequireQualifiedAccess>]
type ILToken = 
    | ILType of ILType 
    | ILMethod of ILMethodSpec 
    | ILField of ILFieldSpec

[<StructuralEquality; StructuralComparison; RequireQualifiedAccess>]
type ILConst = 
    | I4 of int32
    | I8 of int64
    | R4 of single
    | R8 of double

type ILTailcall = 
    | Tailcall
    | Normalcall

type ILAlignment = 
    | Aligned
    | Unaligned1
    | Unaligned2
    | Unaligned4

type ILVolatility = 
    | Volatile
    | Nonvolatile

type ILReadonly = 
    | ReadonlyAddress
    | NormalAddress

type ILVarArgs = ILTypes option

[<StructuralEquality; StructuralComparison>]
type ILComparisonInstr = 
    | BI_beq        
    | BI_bge        
    | BI_bge_un     
    | BI_bgt        
    | BI_bgt_un        
    | BI_ble        
    | BI_ble_un        
    | BI_blt        
    | BI_blt_un 
    | BI_bne_un 
    | BI_brfalse 
    | BI_brtrue 

/// The instruction set.                                                     
///
/// In general we don't categorize instructions, as different 
/// instruction groups are relevant for different types of operations. 
/// However we do collect the branch and compare instructions together 
/// because they all take an address, and the ILArithInstr ones because 
/// none of them take any direct arguments. 
[<StructuralEquality; NoComparison>]
type ILInstr = 
    // Basic 
    | AI_add    
    | AI_add_ovf
    | AI_add_ovf_un
    | AI_and    
    | AI_div   
    | AI_div_un
    | AI_ceq      
    | AI_cgt      
    | AI_cgt_un   
    | AI_clt     
    | AI_clt_un  
    | AI_conv      of ILBasicType
    | AI_conv_ovf  of ILBasicType
    | AI_conv_ovf_un  of ILBasicType
    | AI_mul       
    | AI_mul_ovf   
    | AI_mul_ovf_un
    | AI_rem       
    | AI_rem_un       
    | AI_shl       
    | AI_shr       
    | AI_shr_un
    | AI_sub       
    | AI_sub_ovf   
    | AI_sub_ovf_un   
    | AI_xor       
    | AI_or        
    | AI_neg       
    | AI_not       
    | AI_ldnull    
    | AI_dup       
    | AI_pop
    | AI_ckfinite 
    | AI_nop
    | AI_ldc       of ILBasicType * ILConst
    | I_ldarg     of uint16
    | I_ldarga    of uint16
    | I_ldind     of ILAlignment * ILVolatility * ILBasicType
    | I_ldloc     of uint16
    | I_ldloca    of uint16
    | I_starg     of uint16
    | I_stind     of  ILAlignment * ILVolatility * ILBasicType
    | I_stloc     of uint16

    // Control transfer 
    | I_br    of  ILCodeLabel
    | I_jmp   of ILMethodSpec
    | I_brcmp of ILComparisonInstr * ILCodeLabel * ILCodeLabel // second label is fall-through 
    | I_switch    of (ILCodeLabel list * ILCodeLabel) // last label is fallthrough 
    | I_ret 

     // Method call 
    | I_call     of ILTailcall * ILMethodSpec * ILVarArgs
    | I_callvirt of ILTailcall * ILMethodSpec * ILVarArgs
    | I_callconstraint of ILTailcall * ILType * ILMethodSpec * ILVarArgs
    | I_calli    of ILTailcall * ILCallingSignature * ILVarArgs
    | I_ldftn    of ILMethodSpec
    | I_newobj   of ILMethodSpec  * ILVarArgs
    
    // Exceptions 
    | I_throw
    | I_endfinally
    | I_endfilter
    | I_leave     of  ILCodeLabel
    | I_rethrow

    // Object instructions 
    | I_ldsfld      of ILVolatility * ILFieldSpec
    | I_ldfld       of ILAlignment * ILVolatility * ILFieldSpec
    | I_ldsflda     of ILFieldSpec
    | I_ldflda      of ILFieldSpec 
    | I_stsfld      of ILVolatility  *  ILFieldSpec
    | I_stfld       of ILAlignment * ILVolatility * ILFieldSpec
    | I_ldstr       of string
    | I_isinst      of ILType
    | I_castclass   of ILType
    | I_ldtoken     of ILToken
    | I_ldvirtftn   of ILMethodSpec

    // Value type instructions 
    | I_cpobj       of ILType
    | I_initobj     of ILType
    | I_ldobj       of ILAlignment * ILVolatility * ILType
    | I_stobj       of ILAlignment * ILVolatility * ILType
    | I_box         of ILType
    | I_unbox       of ILType
    | I_unbox_any   of ILType
    | I_sizeof      of ILType

    // Generalized array instructions. In AbsIL these instructions include 
    // both the single-dimensional variants (with ILArrayShape == ILArrayShape.SingleDimensional) 
    // and calls to the "special" multi-dimensional "methods" such as 
    //   newobj void string[,]::.ctor(int32, int32) 
    //   call string string[,]::Get(int32, int32) 
    //   call string& string[,]::Address(int32, int32) 
    //   call void string[,]::Set(int32, int32,string) 
    // The IL reader transforms calls of this form to the corresponding 
    // generalized instruction with the corresponding ILArrayShape 
    // argument. This is done to simplify the IL and make it more uniform. 
    // The IL writer then reverses this when emitting the binary. 
    | I_ldelem      of ILBasicType
    | I_stelem      of ILBasicType
    | I_ldelema     of ILReadonly * bool * ILArrayShape * ILType (* ILArrayShape = ILArrayShape.SingleDimensional for single dimensional arrays *)
    | I_ldelem_any  of ILArrayShape * ILType (* ILArrayShape = ILArrayShape.SingleDimensional for single dimensional arrays *)
    | I_stelem_any  of ILArrayShape * ILType (* ILArrayShape = ILArrayShape.SingleDimensional for single dimensional arrays *)
    | I_newarr      of ILArrayShape * ILType (* ILArrayShape = ILArrayShape.SingleDimensional for single dimensional arrays *)
    | I_ldlen

    // "System.TypedReference" related instructions: almost 
    // no languages produce these, though they do occur in mscorlib.dll 
    // System.TypedReference represents a pair of a type and a byref-pointer
    // to a value of that type. 
    | I_mkrefany    of ILType
    | I_refanytype  
    | I_refanyval   of ILType
    
    // Debug-specific 
    // I_seqpoint is a fake instruction to represent a sequence point: 
    // the next instruction starts the execution of the 
    // statement covered by the given range - this is a 
    // dummy instruction and is not emitted 
    | I_break 
    | I_seqpoint of ILSourceMarker 

    // Varargs - C++ only 
    | I_arglist  

    // Local aggregates, i.e. stack allocated data (alloca) : C++ only 
    | I_localloc
    | I_cpblk of ILAlignment * ILVolatility
    | I_initblk of ILAlignment  * ILVolatility

    // EXTENSIONS, e.g. MS-ILX 
    | EI_ilzero of ILType
    | EI_ldlen_multi      of int32 * int32
    | I_other    of IlxExtensionInstr

// REVIEW: remove this open-ended way of extending the IL and just combine with ILX
type ILInstrSetExtension<'Extension> = 
    { instrExtDests: ('Extension -> ILCodeLabel list);
      instrExtFallthrough: ('Extension -> ILCodeLabel option);
      instrExtIsTailcall: ('Extension -> bool);
      instrExtRelabel: (ILCodeLabel -> ILCodeLabel) -> 'Extension -> 'Extension; }

val RegisterInstructionSetExtension: ILInstrSetExtension<'Extension> -> ('Extension -> IlxExtensionInstr) * (IlxExtensionInstr -> bool) * (IlxExtensionInstr -> 'Extension)

/// A list of instructions ending in an unconditionally
/// branching instruction. A basic block has a label which must be unique
/// within the method it is located in.  Only the first instruction of
/// a basic block can be the target of a branch.
//
//   Details: The last instruction is always a control flow instruction,
//   i.e. branch, tailcall, throw etc.
// 
//   For example
//       B1:  ldarg 1
//            pop
//            ret
//
//   will be one basic block:
//       ILBasicBlock("B1", [| I_ldarg(1); I_arith(AI_pop); I_ret |])

type ILBasicBlock = 
    { Label: ILCodeLabel;
      Instructions: ILInstr[] }
    member Fallthrough: ILCodeLabel option


/// Indicates that a particular local variable has a particular source 
/// language name within a GroupBlock. This does not effect local 
/// variable numbering, which is global over the whole method. 
type ILDebugMapping =
    { LocalIndex: int;
      LocalName: string; }

/// ILCode
/// 
/// The code for a method is made up of a "code" object.  Each "code"
/// object gives the contents of the method in a "semi-structured" form, i.e.
///   1. The structure implicit in the IL exception handling tables
///      has been made explicit
///   2. No relative offsets are used in the code: all branches and
///      switch targets are made explicit as labels.
///   3. All "fallthroughs" from one basic block to the next have
///      been made explicit, by adding extra "branch" instructions to
///      the end of basic blocks which simply fallthrough to another basic
///      block.
///
/// You can convert a straight-line sequence of instructions to structured
/// code by using buildILCode and 
/// Most of the interesting code is contained in BasicBlocks. If you're
/// just interested in getting started with the format then begin
/// by simply considering methods which do not contain any branch 
/// instructions, or methods which do not contain any exception handling
/// constructs.
///
/// The above format has the great advantage that you can insert and 
/// delete new code blocks without needing to fixup relative offsets
/// or exception tables.  
///
/// ILBasicBlock(bblock)
///   See above
///
/// GroupBlock(localDebugInfo, blocks)
///   A set of blocks, with interior branching between the blocks.  For example
///       B1:  ldarg 1
///            br B2
///
///       B2:  pop
///            ret
///
///   will be two basic blocks
///       let b1 = ILBasicBlock("B1", [| I_ldarg(1); I_br("B2") |])
///       let b2 = ILBasicBlock("B2", [| I_arith(AI_pop); I_ret |])
///       GroupBlock([], [b1; b2])
///
///   A GroupBlock can include a list of debug info records for locally 
///   scoped local variables.  These indicate that within the given blocks
///   the given local variables are used for the given Debug info 
///   will only be recorded for local variables
///   declared in these nodes, and the local variable will only appear live 
///   in the debugger for the instructions covered by this node. So if you 
///   omit or erase these nodes then no debug info will be emitted for local 
///   variables.  If necessary you can have one outer ScopeBlock which specifies 
///   the information for all the local variables 
///  
///   Not all the destination labels used within a group of blocks need
///   be satisfied by that group alone.  For example, the interior "try" code
///   of "try"-"catch" construct may be:
///       B1:  ldarg 1
///            br B2
///
///       B2:  pop
///            leave B3
///
///   Again there will be two basic blocks grouped together:
///       let b1 = ILBasicBlock("B1", [| I_ldarg(1); I_br("B2") |])
///       let b2 = ILBasicBlock("B2", [| I_arith(AI_pop); I_leave("B3") |])
///       GroupBlock([], [b1; b2])
///   Here the code must be embedded in a method where "B3" is a label 
///   somewhere in the method.
///
/// RestrictBlock(labels,code) 
///   This block hides labels, i.e. the given set of labels represent
///   wiring which is purely internal to the given code block, and may not
///   be used as the target of a branch by any blocks which this block
///   is placed alongside.
///
///   For example, if a method is made up of:
///       B1:  ldarg 1
///            br B2
///
///       B2:  ret
///
///   then the label "B2" is internal.  The overall code will
///   be two basic blocks grouped together, surrounded by a RestrictBlock.
///   The label "B1" is then the only remaining visible entry to the method
///   and execution will begin at that label.
///
///       let b1 = ILBasicBlock("B1", [| I_ldarg(1); I_br("B2") |])
///       let b2 = ILBasicBlock("B2", [| I_arith(AI_pop); I_leave("B3") |])
///       let gb1 = GroupBlock([], [b1; b2])
///       RestrictBlock(["B2"], gb1)
///
///   RestrictBlock is necessary to build well-formed code.  
///
/// TryBlock(trycode,seh)
///
///   A try-catch, try-finally or try-fault block.  
///   If an exception is raised while executing
///   an instruction in 'trycode' then the exception handler given by
///   'seh' is executed.
///
/// Well-formedness conditions for code:
///
///   Well-formed code includes nodes which explicitly "hide" interior labels.
///   For example, the code object for a method may have only one entry
///   label which is not hidden, and this label will be the label where 
///   execution begins.  
///
///   Both filter and catch blocks must have one 
///   and only one entry.  These entry labels are not visible 
///   outside the filter and catch blocks. Filter has no 
///   exits (it always uses endfilter), catch may have exits. 
///   The "try" block can have multiple entries, i.e. you can branch 
///   into a try from outside.  They can have multiple exits, each of 
///   which will be a "leave".
///
type ILCode = 
    | ILBasicBlock of ILBasicBlock
    | GroupBlock of ILDebugMapping list * ILCode list
    | RestrictBlock of ILCodeLabel list * ILCode
    | TryBlock of ILCode * ILExceptionBlock

///   The 'seh' specification can have several forms:
///
///     FilterCatchBlock
///       A multi-try-filter-catch block.  Execute the
///       filters in order to determine which 'catch' block to catch the
///       exception with. There are two kinds of filters - one for 
///       filtering exceptions by type and one by an instruction sequence. 
///       Note that filter blocks can't contain any exception blocks. 
///
and ILExceptionBlock = 
    | FaultBlock of ILCode 
    | FinallyBlock of ILCode
    | FilterCatchBlock of (ILFilterBlock * ILCode) list

and ILFilterBlock = 
    | TypeFilter of ILType
    | CodeFilter of ILCode

val labelsOfCode: ILCode -> ILCodeLabel list
val uniqueEntryOfCode: ILCode -> ILCodeLabel

/// Field Init

[<RequireQualifiedAccess; StructuralEquality; StructuralComparison>]
type ILFieldInit = 
    | String of string
    | Bool of bool
    | Char of uint16
    | Int8 of sbyte
    | Int16 of int16
    | Int32 of int32
    | Int64 of int64
    | UInt8 of byte
    | UInt16 of uint16
    | UInt32 of uint32
    | UInt64 of uint64
    | Single of single
    | Double of double
    | Null

[<RequireQualifiedAccess>]
type ILNativeVariant = 
    | Empty
    | Null
    | Variant
    | Currency
    | Decimal               
    | Date               
    | BSTR               
    | LPSTR               
    | LPWSTR               
    | IUnknown               
    | IDispatch               
    | SafeArray               
    | Error               
    | HRESULT               
    | CArray               
    | UserDefined               
    | Record               
    | FileTime
    | Blob               
    | Stream               
    | Storage               
    | StreamedObject               
    | StoredObject               
    | BlobObject               
    | CF                
    | CLSID
    | Void 
    | Bool
    | Int8
    | Int16                
    | Int32                
    | Int64                
    | Single                
    | Double                
    | UInt8                
    | UInt16                
    | UInt32                
    | UInt64                
    | PTR                
    | Array of ILNativeVariant                
    | Vector of ILNativeVariant                
    | Byref of ILNativeVariant                
    | Int                
    | UInt                

/// Native Types, for marshalling to the native C interface.
/// These are taken directly from the ILASM syntax, see ECMA Spec (Partition II, 7.4).  

[<RequireQualifiedAccess; StructuralEquality; StructuralComparison>]
type ILNativeType = 
    | Empty
    | Custom of Guid * string * string * byte[] (* guid,nativeTypeName,custMarshallerName,cookieString *)
    | FixedSysString of int32
    | FixedArray of int32
    | Currency
    | LPSTR
    | LPWSTR
    | LPTSTR
    | ByValStr
    | TBSTR
    | LPSTRUCT
    | Struct
    | Void
    | Bool
    | Int8
    | Int16
    | Int32
    | Int64
    | Single
    | Double
    | Byte
    | UInt16
    | UInt32
    | UInt64
    | Array of ILNativeType option * (int32 * int32 option) option (* optional idx of parameter giving size plus optional additive i.e. num elems *)
    | Int
    | UInt
    | Method
    | AsAny
    | BSTR
    | IUnknown
    | IDispatch
    | Interface
    | Error               
    | SafeArray of ILNativeVariant * string option 
    | ANSIBSTR
    | VariantBool


/// Local variables
[<NoComparison; NoEquality>]
type ILLocal = 
    { Type: ILType;
L
latkin 已提交
973 974
      IsPinned: bool;
      DebugInfo: (string * int * int) option }
L
latkin 已提交
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
     

type ILLocals = ILList<ILLocal>

/// IL method bodies
[<NoComparison; NoEquality>]
type ILMethodBody = 
    { IsZeroInit: bool;
      /// strictly speakin should be a uint16 
      MaxStack: int32; 
      NoInlining: bool;
      Locals: ILLocals;
      Code: ILCode;
      SourceMarker: ILSourceMarker option }

/// Member Access
[<RequireQualifiedAccess>]
type ILMemberAccess = 
    | Assembly
    | CompilerControlled
    | FamilyAndAssembly
    | FamilyOrAssembly
    | Family
    | Private 
    | Public 

[<RequireQualifiedAccess>]
type ILAttribElem = 
    /// Represents a custom attribute parameter of type 'string'. These may be null, in which case they are encoded in a special
    /// way as indicated by Ecma-335 Partition II.
    | String of string  option 
    | Bool of bool
    | Char of char
    | SByte of sbyte
    | Int16 of int16
    | Int32 of int32
    | Int64 of int64
    | Byte of byte
    | UInt16 of uint16
    | UInt32 of uint32
    | UInt64 of uint64
    | Single of single
    | Double of double
    | Null 
    | Type of ILType option
    | TypeRef of ILTypeRef option
    | Array of ILType * ILAttribElem list

/// Named args: values and flags indicating if they are fields or properties 
type ILAttributeNamedArg = string * ILType * bool * ILAttribElem

/// Custom attributes.  See 'decodeILAttribData' for a helper to parse the byte[] 
/// to ILAttribElem's as best as possible.  
type ILAttribute =
1029
    { Method: ILMethodSpec;
L
latkin 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
      Data: byte[] }

[<NoEquality; NoComparison; Sealed>]
type ILAttributes =
    member AsList : ILAttribute list

/// Method parameters and return values

type ILParameter = 
    { Name: string option;
      Type: ILType;
      Default: ILFieldInit option;  
      /// Marshalling map for parameters. COM Interop only. 
      Marshal: ILNativeType option; 
      IsIn: bool;
      IsOut: bool;
      IsOptional: bool;
      CustomAttrs: ILAttributes }

type ILParameters = ILList<ILParameter>

val typesOfILParamsRaw : ILParameters -> ILTypes
val typesOfILParamsList : ILParameter list -> ILType list

/// Method return values
type ILReturn = 
    { Marshal: ILNativeType option;
      Type: ILType; 
      CustomAttrs: ILAttributes }

/// Security ILPermissions
/// 
/// Attached to various structures...

[<RequireQualifiedAccess>]
type ILSecurityAction = 
    | Request 
    | Demand
    | Assert
    | Deny
    | PermitOnly
    | LinkCheck 
    | InheritCheck
    | ReqMin
    | ReqOpt
    | ReqRefuse
    | PreJitGrant
    | PreJitDeny
    | NonCasDemand
    | NonCasLinkDemand
    | NonCasInheritance
    | LinkDemandChoice
    | InheritanceDemandChoice
    | DemandChoice

type ILPermission =
    | PermissionSet of ILSecurityAction * byte[]

/// Abstract type equivalent to ILPermission list - use helpers 
/// below to construct/destruct these 
[<NoComparison; NoEquality; Sealed>]
type ILPermissions =
    member AsList : ILPermission list

/// PInvoke attributes.
[<RequireQualifiedAccess>]
type PInvokeCallingConvention =
    | None
    | Cdecl
    | Stdcall
    | Thiscall
    | Fastcall
    | WinApi

[<RequireQualifiedAccess>]
type PInvokeCharEncoding =
    | None
    | Ansi
    | Unicode
    | Auto

[<RequireQualifiedAccess>]
type PInvokeCharBestFit =
    | UseAssembly
    | Enabled
    | Disabled

[<RequireQualifiedAccess>]
type PInvokeThrowOnUnmappableChar =
    | UseAssembly
    | Enabled
    | Disabled

[<NoComparison; NoEquality>]
type PInvokeMethod =
    { Where: ILModuleRef;
      Name: string;
      CallingConv: PInvokeCallingConvention;
      CharEncoding: PInvokeCharEncoding;
      NoMangle: bool;
      LastError: bool;
      ThrowOnUnmappableChar: PInvokeThrowOnUnmappableChar;
      CharBestFit: PInvokeCharBestFit }


/// [OverridesSpec] - refer to a method declaration in a superclass 
/// or superinterface. Used for overriding/method impls.  Includes
/// a type for the parent for the same reason that a method specs
/// includes the type of the enclosing type, i.e. the type
/// gives the "ILGenericArgs" at which the parent type is being used.

type ILOverridesSpec =
    | OverridesSpec of ILMethodRef * ILType
    member MethodRef: ILMethodRef
    member EnclosingType: ILType 

// REVIEW: fold this into ILMethodDef
type ILMethodVirtualInfo =
    { IsFinal: bool; 
      IsNewSlot: bool; 
      IsCheckAccessOnOverride: bool;
      IsAbstract: bool; }

[<RequireQualifiedAccess>]
type MethodKind =
    | Static 
    | Cctor 
    | Ctor 
    | NonVirtual 
    | Virtual of ILMethodVirtualInfo

// REVIEW: fold this into ILMethodDef
[<RequireQualifiedAccess>]
type MethodBody =
    | IL of ILMethodBody
    | PInvoke of PInvokeMethod       (* platform invoke to native  *)
    | Abstract
    | Native

// REVIEW: fold this into ILMethodDef
[<RequireQualifiedAccess>]
type MethodCodeKind =
    | IL
    | Native
    | Runtime

/// Generic parameters.  Formal generic parameter declarations
/// may include the bounds, if any, on the generic parameter.
type ILGenericParameterDef =
    { Name: string;
    /// At most one is the parent type, the others are interface types 
      Constraints: ILTypes; 
      /// Variance of type parameters, only applicable to generic parameters for generic interfaces and delegates 
      Variance: ILGenericVariance; 
      /// Indicates the type argument must be a reference type 
      HasReferenceTypeConstraint: bool;     
      CustomAttrs : ILAttributes;
      /// Indicates the type argument must be a value type, but not Nullable 
      HasNotNullableValueTypeConstraint: bool;  
      /// Indicates the type argument must have a public nullary constructor 
      HasDefaultConstructorConstraint: bool; }


type ILGenericParameterDefs = ILGenericParameterDef list

// REVIEW: fold this into ILMethodDef
[<NoComparison; NoEquality; Sealed>]
type ILLazyMethodBody = 
    member Contents : MethodBody 

/// Method definitions.
///
/// There are several different flavours of methods (constructors,
/// abstract, virtual, static, instance, class constructors).  There
/// is no perfect factorization of these as the combinations are not
/// independent.  

[<NoComparison; NoEquality>]
type ILMethodDef = 
    { Name: string;
      mdKind: MethodKind;
      CallingConv: ILCallingConv;
      Parameters: ILParameters;
      Return: ILReturn;
      Access: ILMemberAccess;
      mdBody: ILLazyMethodBody;   
      mdCodeKind: MethodCodeKind;   
      IsInternalCall: bool;
      IsManaged: bool;
      IsForwardRef: bool;
      SecurityDecls: ILPermissions;
      /// Note: some methods are marked "HasSecurity" even if there are no permissions attached, e.g. if they use SuppressUnmanagedCodeSecurityAttribute 
      HasSecurity: bool; 
      IsEntryPoint:bool;
      IsReqSecObj: bool;
      IsHideBySig: bool;
      IsSpecialName: bool;
      /// The method is exported to unmanaged code using COM interop.
      IsUnmanagedExport: bool; 
      IsSynchronized: bool;
      IsPreserveSig: bool;
      /// .NET 2.0 feature: SafeHandle finalizer must be run 
      IsMustRun: bool; 
      IsNoInline: bool;
     
      GenericParams: ILGenericParameterDefs;
      CustomAttrs: ILAttributes; }
      
    member ParameterTypes: ILTypes;
    member IsIL : bool
    member Code : ILCode option
    member Locals : ILLocals
    member MaxStack : int32
    member IsZeroInit : bool
    
    /// .cctor methods.  The predicates (IsClassInitializer,IsConstructor,IsStatic,IsNonVirtualInstance,IsVirtual) form a complete, non-overlapping classification of this type
    member IsClassInitializer: bool
    /// .ctor methods.  The predicates (IsClassInitializer,IsConstructor,IsStatic,IsNonVirtualInstance,IsVirtual) form a complete, non-overlapping classification of this type
    member IsConstructor: bool
    /// static methods.  The predicates (IsClassInitializer,IsConstructor,IsStatic,IsNonVirtualInstance,IsVirtual) form a complete, non-overlapping classification of this type
    member IsStatic: bool
    /// instance methods that are not virtual.  The predicates (IsClassInitializer,IsConstructor,IsStatic,IsNonVirtualInstance,IsVirtual) form a complete, non-overlapping classification of this type
    member IsNonVirtualInstance: bool
    /// instance methods that are virtual or abstract or implement an interface slot.  The predicates (IsClassInitializer,IsConstructor,IsStatic,IsNonVirtualInstance,IsVirtual) form a complete, non-overlapping classification of this type
    member IsVirtual: bool
    
    member IsFinal: bool
    member IsNewSlot: bool
    member IsCheckAccessOnOverride : bool
    member IsAbstract: bool
    member MethodBody : ILMethodBody
    member CallingSignature: ILCallingSignature

/// Tables of methods.  Logically equivalent to a list of methods but
/// the table is kept in a form optimized for looking up methods by 
/// name and arity.

/// abstract type equivalent to [ILMethodDef list] 
[<NoEquality; NoComparison; Sealed>]
type ILMethodDefs =
    interface IEnumerable<ILMethodDef>
1271
    member AsArray : ILMethodDef[]
L
latkin 已提交
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
    member AsList : ILMethodDef list
    member FindByName : string -> ILMethodDef list

/// Field definitions
[<NoComparison; NoEquality>]
type ILFieldDef = 
    { Name: string;
      Type: ILType;
      IsStatic: bool;
      Access: ILMemberAccess;
      Data:  byte[] option;
      LiteralValue: ILFieldInit option;  
      /// The explicit offset in bytes when explicit layout is used.
      Offset:  int32 option; 
      IsSpecialName: bool;
      Marshal: ILNativeType option; 
      NotSerialized: bool;
      IsLiteral: bool ;
      IsInitOnly: bool;
      CustomAttrs: ILAttributes; }

/// Tables of fields.  Logically equivalent to a list of fields but
/// the table is kept in a form optimized for looking up fields by 
/// name.
[<NoEquality; NoComparison; Sealed>]
type ILFieldDefs =
    member AsList : ILFieldDef list
    member LookupByName : string -> ILFieldDef list

/// Event definitions
[<NoComparison; NoEquality>]
type ILEventDef =
    { Type: ILType option; 
      Name: string;
      IsRTSpecialName: bool;
      IsSpecialName: bool;
      AddMethod: ILMethodRef; 
      RemoveMethod: ILMethodRef;
      FireMethod: ILMethodRef option;
      OtherMethods: ILMethodRef list;
      CustomAttrs: ILAttributes; }

/// Table of those events in a type definition.
[<NoEquality; NoComparison; Sealed>]
type ILEventDefs =
    member AsList : ILEventDef list
    member LookupByName : string -> ILEventDef list

/// Property definitions
[<NoComparison; NoEquality>]
type ILPropertyDef =
    { Name: string;
      IsRTSpecialName: bool;
      IsSpecialName: bool;
      SetMethod: ILMethodRef option;
      GetMethod: ILMethodRef option;
      CallingConv: ILThisConvention;
      Type: ILType;          
      Init: ILFieldInit option;
      Args: ILTypes;
      CustomAttrs: ILAttributes; }

/// Table of those properties in a type definition.
[<NoEquality; NoComparison>]
[<Sealed>]
type ILPropertyDefs =
    member AsList : ILPropertyDef list
    member LookupByName : string -> ILPropertyDef list

/// Method Impls
///
/// If there is an entry (pms --&gt; ms) in this table, then method [ms] 
/// is used to implement method [pms] for the purposes of this class 
/// and its subclasses. 
type ILMethodImplDef =
    { Overrides: ILOverridesSpec;
      OverrideBy: ILMethodSpec }

[<NoEquality; NoComparison; Sealed>]
type ILMethodImplDefs =
    member AsList : ILMethodImplDef list

/// Type Layout information
[<RequireQualifiedAccess>]
type ILTypeDefLayout =
    | Auto
    | Sequential of ILTypeDefLayoutInfo
    | Explicit of ILTypeDefLayoutInfo 

and ILTypeDefLayoutInfo =
    { Size: int32 option;
      Pack: uint16 option } 

/// Indicate the initialization semantics of a type
[<RequireQualifiedAccess>]
type ILTypeInit =
    | BeforeField
    | OnAny

/// Default Unicode encoding for P/Invoke  within a type
[<RequireQualifiedAccess>]
type ILDefaultPInvokeEncoding =
    | Ansi
    | Auto
    | Unicode

/// Type Access
[<RequireQualifiedAccess>]
type ILTypeDefAccess =
    | Public 
    | Private
    | Nested of ILMemberAccess 

/// A categorization of type definitions into "kinds"

//-------------------------------------------------------------------
// A note for the nit-picky.... In theory, the "kind" of a type 
// definition can only be  partially determined prior to binding.  
// For example, you cannot really, absolutely tell if a type is 
// really, absolutely a value type until you bind the 
// super class and test it for type equality against System.ValueType.  
// However, this is unbearably annoying, as it means you 
// have to load "primary runtime assembly (System.Runtime or mscorlib)" and perform bind operations 
// in order to be able to determine some quite simple 
// things.  So we approximate by simply looking at the name
// of the superclass when loading.
// ------------------------------------------------------------------ 

[<RequireQualifiedAccess>]
type ILTypeDefKind =
    | Class
    | ValueType
    | Interface
    | Enum 
    | Delegate 
    (* FOR EXTENSIONS, e.g. MS-ILX *)  
    | Other of IlxExtensionTypeKind

/// Tables of named type definitions.  The types and table may contain on-demand
/// (lazy) computations, e.g. the actual reading of some aspects
/// of a type definition may be delayed if the reader being used supports
/// this.
///
/// This is an abstract type equivalent to "ILTypeDef list" 
[<NoEquality; NoComparison>]
[<Sealed>]
type ILTypeDefs =
    interface IEnumerable<ILTypeDef>
1420
    member AsArray : ILTypeDef[]
L
latkin 已提交
1421 1422 1423
    member AsList : ILTypeDef list

    /// Get some information about the type defs, but do not force the read of the type defs themselves
D
Don Syme 已提交
1424
    member AsArrayOfLazyTypeDefs : (string list * string * ILAttributes * Lazy<ILTypeDef>) array
L
latkin 已提交
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677

    /// Calls to [FindByName] will result in any laziness in the overall 
    /// set of ILTypeDefs being read in in addition 
    /// to the details for the type found, but the remaining individual 
    /// type definitions will not be read. 
    member FindByName : string -> ILTypeDef

/// Type Definitions 
///
/// As for methods there are several important constraints not encoded 
/// in the type definition below, for example that the super class of
/// an interface type is always None, or that enumerations always
/// have a very specific form.
and [<NoComparison; NoEquality>]
    ILTypeDef =  
    { tdKind: ILTypeDefKind;
      Name: string;  
      GenericParams: ILGenericParameterDefs;  
      Access: ILTypeDefAccess;  
      IsAbstract: bool;
      IsSealed: bool; 
      IsSerializable: bool; 
      /// Class or interface generated for COM interop 
      IsComInterop: bool; 
      Layout: ILTypeDefLayout;
      IsSpecialName: bool;
      Encoding: ILDefaultPInvokeEncoding;
      NestedTypes: ILTypeDefs;
      Implements: ILTypes;  
      Extends: ILType option; 
      Methods: ILMethodDefs;
      SecurityDecls: ILPermissions;
    /// Note: some classes are marked "HasSecurity" even if there are no permissions attached, e.g. if they use SuppressUnmanagedCodeSecurityAttribute 
      HasSecurity: bool; 
      Fields: ILFieldDefs;
      MethodImpls: ILMethodImplDefs;
      InitSemantics: ILTypeInit;
      Events: ILEventDefs;
      Properties: ILPropertyDefs;
      CustomAttrs: ILAttributes; }
    member IsClass: bool;
    member IsInterface: bool;
    member IsEnum: bool;
    member IsDelegate: bool;
    member IsStructOrEnum : bool

[<NoEquality; NoComparison>]
[<Sealed>]
type ILNestedExportedTypes =
    member AsList : ILNestedExportedType  list

/// "Classes Elsewhere" - classes in auxiliary modules.
///
/// Manifests include declarations for all the classes in an 
/// assembly, regardless of which module they are in.
///
/// The ".class extern" construct describes so-called exported types -- 
/// these are public classes defined in the auxiliary modules of this assembly,
/// i.e. modules other than the manifest-carrying module. 
/// 
/// For example, if you have a two-module 
/// assembly (A.DLL and B.DLL), and the manifest resides in the A.DLL, 
/// then in the manifest all the public classes declared in B.DLL should
/// be defined as exported types, i.e., as ".class extern". The public classes 
/// defined in A.DLL should not be defined as ".class extern" -- they are 
/// already available in the manifest-carrying module. The union of all 
/// public classes defined in the manifest-carrying module and all 
/// exported types defined there is the set of all classes exposed by 
/// this assembly. Thus, by analysing the metadata of the manifest-carrying 
/// module of an assembly, you can identify all the classes exposed by 
/// this assembly, and where to find them.
///
/// Nested classes found in external modules should also be located in 
/// this table, suitably nested inside another "ILExportedTypeOrForwarder"
/// definition.

/// these are only found in the "Nested" field of ILExportedTypeOrForwarder objects 
// REVIEW: fold this into ILExportedTypeOrForwarder. There's not much value in keeping these distinct
and ILNestedExportedType =
    { Name: string;
      Access: ILMemberAccess;
      Nested: ILNestedExportedTypes;
      CustomAttrs: ILAttributes } 

/// these are only found in the ILExportedTypesAndForwarders table in the manifest 
[<NoComparison; NoEquality>]
type ILExportedTypeOrForwarder =
    { ScopeRef: ILScopeRef;
      /// [Namespace.]Name
      Name: string;
      IsForwarder: bool;
      Access: ILTypeDefAccess;
      Nested: ILNestedExportedTypes;
      CustomAttrs: ILAttributes } 

[<NoEquality; NoComparison>]
[<Sealed>]
type ILExportedTypesAndForwarders =
    member AsList : ILExportedTypeOrForwarder  list

[<RequireQualifiedAccess>]
type ILResourceAccess = 
    | Public 
    | Private 

[<RequireQualifiedAccess>]
type ILResourceLocation = 
    | Local of (unit -> byte[])  (* resources may be re-read each time this function is called *)
    | File of ILModuleRef * int32
    | Assembly of ILAssemblyRef

/// "Manifest ILResources" are chunks of resource data, being one of:
///   - the data section of the current module (byte[] of resource given directly) 
///  - in an external file in this assembly (offset given in the ILResourceLocation field) 
///   - as a resources in another assembly of the same name.  
type ILResource =
    { Name: string;
      Location: ILResourceLocation;
      Access: ILResourceAccess;
      CustomAttrs: ILAttributes }

/// Table of resources in a module
[<NoEquality; NoComparison>]
[<Sealed>]
type ILResources =
    member AsList : ILResource  list


[<RequireQualifiedAccess>]
type ILAssemblyLongevity =
    | Unspecified
    | Library
    | PlatformAppDomain
    | PlatformProcess
    | PlatformSystem

/// The main module of an assembly is a module plus some manifest information.
type ILAssemblyManifest = 
    { Name: string;
      /// This is ID of the algorithm used for the hashes of auxiliary 
      /// files in the assembly.   These hashes are stored in the 
      /// ILModuleRef.Hash fields of this assembly. These are not cryptographic 
      /// hashes: they are simple file hashes. The algorithm is normally 
      /// 0x00008004 indicating the SHA1 hash algorithm.  
      AuxModuleHashAlgorithm: int32; 
      SecurityDecls: ILPermissions;
      /// This is the public key used to sign this 
      /// assembly (the signature itself is stored elsewhere: see the 
      /// binary format, and may not have been written if delay signing 
      /// is used).  (member Name, member PublicKey) forms the full 
      /// public name of the assembly.  
      PublicKey: byte[] option;  
      Version: ILVersionInfo option;
      Locale: string option;
      CustomAttrs: ILAttributes;
      AssemblyLongevity: ILAssemblyLongevity; 
      DisableJitOptimizations: bool;
      JitTracking: bool;
      Retargetable: bool;
      /// Records the types impemented by this asssembly in auxiliary 
      /// modules. 
      ExportedTypes: ILExportedTypesAndForwarders;
      /// Records whether the entrypoint resides in another module. 
      EntrypointElsewhere: ILModuleRef option;
    } 
    
/// One module in the "current" assembly, either a main-module or
/// an auxiliary module.  The main module will have a manifest.
///
/// An assembly is built by joining together a "main" module plus 
/// several auxiliary modules. 
type ILModuleDef = 
    { Manifest: ILAssemblyManifest option;
      CustomAttrs: ILAttributes;
      Name: string;
      TypeDefs: ILTypeDefs;
      SubsystemVersion : int * int
      UseHighEntropyVA : bool
      SubSystemFlags: int32;
      IsDLL: bool;
      IsILOnly: bool;
      Platform: ILPlatform option;
      StackReserveSize: int32 option;
      Is32Bit: bool;
      Is32BitPreferred: bool;
      Is64Bit: bool;
      VirtualAlignment: int32;
      PhysicalAlignment: int32;
      ImageBase: int32;
      MetadataVersion: string;
      Resources: ILResources; 
      /// e.g. win86 resources, as the exact contents of a .res or .obj file 
      NativeResources: Lazy<byte[]> list;  }
    member ManifestOfAssembly: ILAssemblyManifest 
    member HasManifest : bool

/// Find the method definition corresponding to the given property or 
/// event operation. These are always in the same class as the property 
/// or event. This is useful especially if your code is not using the Ilbind 
/// API to bind references. 
val resolveILMethodRef: ILTypeDef -> ILMethodRef -> ILMethodDef

// ------------------------------------------------------------------ 
// Type Names
//
// The name of a type stored in the Name field is as follows:
//   - For outer types it is, for example, System.String, i.e.
//     the namespace followed by the type name.
//   - For nested types, it is simply the type name.  The namespace
//     must be gleaned from the context in which the nested type
//     lies.
// ------------------------------------------------------------------ 

val splitNamespace: string -> string list

val splitNamespaceToArray: string -> string[]

/// The splitILTypeName utility helps you split a string representing
/// a type name into the leading namespace elements (if any), the
/// names of any nested types and the type name itself.  This function
/// memoizes and interns the splitting of the namespace portion of
/// the type name. 
val splitILTypeName: string -> string list * string

val splitILTypeNameWithPossibleStaticArguments: string -> string[] * string

/// splitTypeNameRight is like splitILTypeName except the 
/// namespace is kept as a whole string, rather than split at dots.
val splitTypeNameRight: string -> string option * string


val typeNameForGlobalFunctions: string
val isTypeNameForGlobalFunctions: string -> bool

val ungenericizeTypeName: string -> string (* e.g. List`1 --> List *)

/// Represents the capabilities of target framework profile.
/// Different profiles may omit some types or contain them in different assemblies
type IPrimaryAssemblyTraits = 
    
    abstract TypedReferenceTypeScopeRef : ILScopeRef option
    abstract RuntimeArgumentHandleTypeScopeRef : ILScopeRef option
    abstract SerializationInfoTypeScopeRef : ILScopeRef option
    abstract SecurityPermissionAttributeTypeScopeRef : ILScopeRef option    
    abstract IDispatchConstantAttributeScopeRef : ILScopeRef option
    abstract IUnknownConstantAttributeScopeRef : ILScopeRef option
    abstract ArgIteratorTypeScopeRef : ILScopeRef option
    abstract MarshalByRefObjectScopeRef : ILScopeRef option
    abstract ThreadStaticAttributeScopeRef : ILScopeRef option
    abstract SpecialNameAttributeScopeRef : ILScopeRef option
    abstract ContextStaticAttributeScopeRef : ILScopeRef option
    abstract NonSerializedAttributeScopeRef : ILScopeRef option

1678
    abstract SystemRuntimeInteropServicesScopeRef   : Lazy<ILScopeRef option>
L
latkin 已提交
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
    abstract SystemLinqExpressionsScopeRef          : Lazy<ILScopeRef>
    abstract SystemCollectionsScopeRef              : Lazy<ILScopeRef>
    abstract SystemReflectionScopeRef               : Lazy<ILScopeRef>
    abstract SystemDiagnosticsDebugScopeRef         : Lazy<ILScopeRef>
    abstract ScopeRef : ILScopeRef

// ====================================================================
// PART 2
// 
// Making metadata.  Where no explicit constructor
// is given, you should create the concrete datatype directly, 
// e.g. by filling in all appropriate record fields.
// ==================================================================== *)

/// A table of common references to items in primary assebly (System.Runtime or mscorlib).
/// If you have already loaded a particular version of system runtime assembly you should reference items via an ILGlobals for that particular 
/// version of system runtime assembly built using mkILGlobals. 
[<NoEquality; NoComparison>]
type ILGlobals = 
    { 
      traits : IPrimaryAssemblyTraits
      primaryAssemblyName: string
      noDebugData: bool
      tref_Object: ILTypeRef
      tspec_Object: ILTypeSpec
      typ_Object: ILType
      tref_String: ILTypeRef
      typ_String: ILType
      typ_StringBuilder: ILType
      typ_AsyncCallback: ILType
      typ_IAsyncResult: ILType
      typ_IComparable: ILType
      tref_Type: ILTypeRef
      typ_Type: ILType
      typ_Missing: Lazy<ILType>
      typ_Activator: ILType
      typ_Delegate: ILType
      typ_ValueType: ILType
      typ_Enum: ILType
      tspec_TypedReference: ILTypeSpec option
      typ_TypedReference: ILType option
      typ_MulticastDelegate: ILType
      typ_Array: ILType
      tspec_Int64: ILTypeSpec
      tspec_UInt64: ILTypeSpec
      tspec_Int32: ILTypeSpec
      tspec_UInt32: ILTypeSpec
      tspec_Int16: ILTypeSpec
      tspec_UInt16: ILTypeSpec
      tspec_SByte: ILTypeSpec
      tspec_Byte: ILTypeSpec
      tspec_Single: ILTypeSpec
      tspec_Double: ILTypeSpec
      tspec_IntPtr: ILTypeSpec
      tspec_UIntPtr: ILTypeSpec
      tspec_Char: ILTypeSpec
      tspec_Bool: ILTypeSpec
      typ_int8: ILType
      typ_int16: ILType
      typ_int32: ILType
      typ_int64: ILType
      typ_uint8: ILType
      typ_uint16: ILType
      typ_uint32: ILType
      typ_uint64: ILType
      typ_float32: ILType
      typ_float64: ILType
      typ_bool: ILType
      typ_char: ILType
      typ_IntPtr: ILType
      typ_UIntPtr: ILType
      typ_RuntimeArgumentHandle: ILType option
      typ_RuntimeTypeHandle: ILType
      typ_RuntimeMethodHandle: ILType
      typ_RuntimeFieldHandle: ILType
      typ_Byte: ILType
      typ_Int16: ILType
      typ_Int32: ILType
      typ_Int64: ILType
      typ_SByte: ILType
      typ_UInt16: ILType
      typ_UInt32: ILType
      typ_UInt64: ILType
      typ_Single: ILType
      typ_Double: ILType
      typ_Bool: ILType
      typ_Char: ILType
      typ_SerializationInfo: ILType option
      typ_StreamingContext: ILType
      tref_SecurityPermissionAttribute : ILTypeRef option
      tspec_Exception: ILTypeSpec
      typ_Exception: ILType 
      mutable generatedAttribsCache: ILAttribute list 
      mutable debuggerBrowsableNeverAttributeCache : ILAttribute option 
      mutable debuggerTypeProxyAttributeCache : ILAttribute option }

      with
      member mkDebuggableAttribute: bool (* debug tracking *) * bool (* disable JIT optimizations *) -> ILAttribute
      /// Some commonly used custom attibutes 
      member mkDebuggableAttributeV2               : bool (* jitTracking *) * bool (* ignoreSymbolStoreSequencePoints *) * bool (* disable JIT optimizations *) * bool (* enable EnC *) -> ILAttribute
      member mkCompilerGeneratedAttribute          : unit -> ILAttribute
      member mkDebuggerNonUserCodeAttribute        : unit -> ILAttribute
      member mkDebuggerStepThroughAttribute        : unit -> ILAttribute
      member mkDebuggerHiddenAttribute             : unit -> ILAttribute
      member mkDebuggerDisplayAttribute            : string -> ILAttribute
      member mkDebuggerTypeProxyAttribute          : ILType -> ILAttribute
      member mkDebuggerBrowsableNeverAttribute     : unit -> ILAttribute

/// Build the table of commonly used references given a ILScopeRef for system runtime assembly. 
val mkILGlobals : IPrimaryAssemblyTraits -> string option -> bool -> ILGlobals

val mkMscorlibBasedTraits : ILScopeRef -> IPrimaryAssemblyTraits

val EcmaILGlobals : ILGlobals

/// When writing a binary the fake "toplevel" type definition (called <Module>)
/// must come first. This function puts it first, and creates it in the returned list as an empty typedef if it 
/// doesn't already exist.
D
Don Syme 已提交
1797
val destTypeDefsWithGlobalFunctionsFirst: ILGlobals -> ILTypeDefs -> ILTypeDef list
L
latkin 已提交
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958

/// Note: not all custom attribute data can be decoded without binding types.  In particular 
/// enums must be bound in order to discover the size of the underlying integer. 
/// The following assumes enums have size int32. 
val decodeILAttribData: 
    ILGlobals -> 
    ILAttribute -> 
      ILAttribElem list *  (* fixed args *)
      ILAttributeNamedArg list (* named args: values and flags indicating if they are fields or properties *) 

/// Generate simple references to assemblies and modules
val mkSimpleAssRef: string -> ILAssemblyRef
val mkSimpleModRef: string -> ILModuleRef

val emptyILGenericArgs: ILGenericArgs
val mkILTyvarTy: uint16 -> ILType

/// Make type refs
val mkILNestedTyRef: ILScopeRef * string list * string -> ILTypeRef
val mkILTyRef: ILScopeRef * string -> ILTypeRef
val mkILTyRefInTyRef: ILTypeRef * string -> ILTypeRef

type ILGenericArgsList = ILType list
val mkILGenericArgs : ILGenericArgsList -> ILGenericArgs
/// Make type specs
val mkILNonGenericTySpec: ILTypeRef -> ILTypeSpec
val mkILTySpec: ILTypeRef * ILGenericArgsList -> ILTypeSpec
val mkILTySpecRaw: ILTypeRef * ILGenericArgs -> ILTypeSpec

/// Make types
val mkILTy: ILBoxity -> ILTypeSpec -> ILType
val mkILNamedTy: ILBoxity -> ILTypeRef -> ILGenericArgsList -> ILType
val mkILBoxedTy: ILTypeRef -> ILGenericArgsList -> ILType
val mkILBoxedTyRaw: ILTypeRef -> ILGenericArgs -> ILType
val mkILValueTy: ILTypeRef -> ILGenericArgsList -> ILType
val mkILNonGenericBoxedTy: ILTypeRef -> ILType
val mkILNonGenericValueTy: ILTypeRef -> ILType
val mkILArrTy: ILType * ILArrayShape -> ILType
val mkILArr1DTy: ILType -> ILType
val isILArrTy: ILType -> bool
val destILArrTy: ILType -> ILArrayShape * ILType 
val mkILBoxedType : ILTypeSpec -> ILType

val mkILTypes : ILType list -> ILTypes

/// Make method references and specs
val mkILMethRefRaw: ILTypeRef * ILCallingConv * string * int * ILTypes * ILType -> ILMethodRef
val mkILMethRef: ILTypeRef * ILCallingConv * string * int * ILType list * ILType -> ILMethodRef
val mkILMethSpec: ILMethodRef * ILBoxity * ILGenericArgsList * ILGenericArgsList -> ILMethodSpec
val mkILMethSpecForMethRefInTyRaw: ILMethodRef * ILType * ILGenericArgs -> ILMethodSpec
val mkILMethSpecForMethRefInTy: ILMethodRef * ILType * ILGenericArgsList -> ILMethodSpec
val mkILMethSpecInTy: ILType * ILCallingConv * string * ILType list * ILType * ILGenericArgsList -> ILMethodSpec
val mkILMethSpecInTyRaw: ILType * ILCallingConv * string * ILTypes * ILType * ILGenericArgs -> ILMethodSpec

/// Construct references to methods on a given type 
val mkILNonGenericMethSpecInTy: ILType * ILCallingConv * string * ILType list * ILType -> ILMethodSpec

/// Construct references to instance methods 
val mkILInstanceMethSpecInTy: ILType * string * ILType list * ILType * ILGenericArgsList -> ILMethodSpec

/// Construct references to instance methods 
val mkILNonGenericInstanceMethSpecInTy: ILType * string * ILType list * ILType -> ILMethodSpec

/// Construct references to static methods 
val mkILStaticMethSpecInTy: ILType * string * ILType list * ILType * ILGenericArgsList -> ILMethodSpec

/// Construct references to static, non-generic methods 
val mkILNonGenericStaticMethSpecInTy: ILType * string * ILType list * ILType -> ILMethodSpec

/// Construct references to constructors 
val mkILCtorMethSpecForTy: ILType * ILType list -> ILMethodSpec

/// Construct references to fields 
val mkILFieldRef: ILTypeRef * string * ILType -> ILFieldRef
val mkILFieldSpec: ILFieldRef * ILType -> ILFieldSpec
val mkILFieldSpecInTy: ILType * string * ILType -> ILFieldSpec

val mkILCallSigRaw: ILCallingConv * ILTypes * ILType -> ILCallingSignature
val mkILCallSig: ILCallingConv * ILType list * ILType -> ILCallingSignature

/// Make generalized verions of possibly-generic types,
/// e.g. Given the ILTypeDef for List, return the type "List<T>".

val mkILFormalBoxedTy: ILTypeRef -> ILGenericParameterDef list -> ILType

val mkILFormalTyparsRaw: ILTypes -> ILGenericParameterDefs
val mkILFormalTypars: ILType list -> ILGenericParameterDefs
val mkILFormalGenericArgsRaw: ILGenericParameterDefs -> ILGenericArgs
val mkILFormalGenericArgs: ILGenericParameterDefs -> ILGenericArgsList
val mkILSimpleTypar : string -> ILGenericParameterDef
/// Make custom attributes 
val mkILCustomAttribMethRef: 
    ILGlobals 
    -> ILMethodSpec 
       * ILAttribElem list (* fixed args: values and implicit types *) 
       * ILAttributeNamedArg list (* named args: values and flags indicating if they are fields or properties *) 
      -> ILAttribute

val mkILCustomAttribute: 
    ILGlobals 
    -> ILTypeRef * ILType list * 
       ILAttribElem list (* fixed args: values and implicit types *) * 
       ILAttributeNamedArg list (* named args: values and flags indicating if they are fields or properties *) 
         -> ILAttribute

val mkPermissionSet : ILGlobals -> ILSecurityAction * (ILTypeRef * (string * ILType * ILAttribElem) list) list -> ILPermission

/// Making code.
val checkILCode:  ILCode -> ILCode
val generateCodeLabel: unit -> ILCodeLabel
val formatCodeLabel : ILCodeLabel -> string

/// Make some code that is a straight line sequence of instructions. 
/// The function will add a "return" if the last instruction is not an exiting instruction 
val nonBranchingInstrsToCode: ILInstr list -> ILCode 

/// Make some code that is a straight line sequence of instructions, then do 
/// some control flow.  The first code label is the entry label of the generated code. 
val mkNonBranchingInstrsThen: ILCodeLabel -> ILInstr list -> ILInstr -> ILCode 
val mkNonBranchingInstrsThenBr: ILCodeLabel -> ILInstr list -> ILCodeLabel -> ILCode

/// Make a basic block. The final instruction must be control flow 
val mkNonBranchingInstrs: ILCodeLabel -> ILInstr list -> ILCode

/// Some more primitive helpers 
val mkBasicBlock: ILBasicBlock -> ILCode
val mkGroupBlock: ILCodeLabel list * ILCode list -> ILCode

/// Helpers for codegen: scopes for allocating new temporary variables.
type ILLocalsAllocator =
    new : preAlloc: int -> ILLocalsAllocator
    member AllocLocal : ILLocal -> uint16
    member Close : unit -> ILLocal list

/// Derived functions for making some common patterns of instructions
val mkNormalCall: ILMethodSpec -> ILInstr
val mkNormalCallvirt: ILMethodSpec -> ILInstr
val mkNormalCallconstraint: ILType * ILMethodSpec -> ILInstr
val mkNormalNewobj: ILMethodSpec -> ILInstr
val mkCallBaseConstructor : ILType * ILType list -> ILInstr list
val mkNormalStfld: ILFieldSpec -> ILInstr
val mkNormalStsfld: ILFieldSpec -> ILInstr
val mkNormalLdsfld: ILFieldSpec -> ILInstr
val mkNormalLdfld: ILFieldSpec -> ILInstr
val mkNormalLdflda: ILFieldSpec -> ILInstr
val mkNormalLdobj: ILType -> ILInstr
val mkNormalStobj: ILType -> ILInstr 
val mkLdcInt32: int32 -> ILInstr
val mkLdarg0: ILInstr
val mkLdloc: uint16 -> ILInstr
val mkStloc: uint16 -> ILInstr
val mkLdarg: uint16 -> ILInstr

val andTailness: ILTailcall -> bool -> ILTailcall

/// Derived functions for making return, parameter and local variable
/// objects for use in method definitions.
val mkILParam: string option * ILType -> ILParameter
val mkILParamAnon: ILType -> ILParameter
val mkILParamNamed: string * ILType -> ILParameter
val mkILReturn: ILType -> ILReturn
L
latkin 已提交
1959
val mkILLocal: ILType -> (string * int * int) option -> ILLocal
L
latkin 已提交
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
val mkILLocals : ILLocal list -> ILLocals
val emptyILLocals : ILLocals

/// Make a formal generic parameters
val mkILEmptyGenericParams: ILGenericParameterDefs

/// Make method definitions
val mkILMethodBody: initlocals:bool * ILLocals * int * ILCode * ILSourceMarker option -> ILMethodBody
val mkMethodBody: bool * ILLocals * int * ILCode * ILSourceMarker option -> MethodBody

val mkILCtor: ILMemberAccess * ILParameter list * MethodBody -> ILMethodDef
val mkILClassCtor: MethodBody -> ILMethodDef
val mkILNonGenericEmptyCtor: ILSourceMarker option -> ILType -> ILMethodDef
val mkILStaticMethod: ILGenericParameterDefs * string * ILMemberAccess * ILParameter list * ILReturn * MethodBody -> ILMethodDef
val mkILNonGenericStaticMethod: string * ILMemberAccess * ILParameter list * ILReturn * MethodBody -> ILMethodDef
val mkILGenericVirtualMethod: string * ILMemberAccess * ILGenericParameterDefs * ILParameter list * ILReturn * MethodBody -> ILMethodDef
val mkILGenericNonVirtualMethod: string * ILMemberAccess * ILGenericParameterDefs * ILParameter list * ILReturn * MethodBody -> ILMethodDef
val mkILNonGenericVirtualMethod: string * ILMemberAccess * ILParameter list * ILReturn * MethodBody -> ILMethodDef
val mkILNonGenericInstanceMethod: string * ILMemberAccess * ILParameter list * ILReturn * MethodBody -> ILMethodDef


/// Make field definitions
val mkILInstanceField: string * ILType * ILFieldInit option * ILMemberAccess -> ILFieldDef
val mkILStaticField: string * ILType * ILFieldInit option * byte[] option * ILMemberAccess -> ILFieldDef
val mkILLiteralField: string * ILType * ILFieldInit * byte[] option * ILMemberAccess -> ILFieldDef

/// Make a type definition
val mkILGenericClass: string * ILTypeDefAccess * ILGenericParameterDefs * ILType * ILType list * ILMethodDefs * ILFieldDefs * ILTypeDefs * ILPropertyDefs * ILEventDefs * ILAttributes * ILTypeInit -> ILTypeDef
val mkILSimpleClass: ILGlobals -> string * ILTypeDefAccess * ILMethodDefs * ILFieldDefs * ILTypeDefs * ILPropertyDefs * ILEventDefs * ILAttributes * ILTypeInit  -> ILTypeDef
val mkILTypeDefForGlobalFunctions: ILGlobals -> ILMethodDefs * ILFieldDefs -> ILTypeDef

/// Make a type definition for a value type used to point to raw data.
/// These are useful when generating array initialization code 
/// according to the 
///   ldtoken    field valuetype '<PrivateImplementationDetails>'/'$$struct0x6000127-1' '<PrivateImplementationDetails>'::'$$method0x6000127-1'
///   call       void System.Runtime.CompilerServices.RuntimeHelpers::InitializeArray(class System.Array,valuetype System.RuntimeFieldHandle)
/// idiom.
val mkRawDataValueTypeDef:  ILGlobals -> string * size:int32 * pack:uint16 -> ILTypeDef

/// Injecting code into existing code blocks.  A branch will
/// be added from the given instructions to the (unique) entry of
/// the code, and the first instruction will be the new entry
/// of the method.  The instructions should be non-branching.

val prependInstrsToCode: ILInstr list -> ILCode -> ILCode
val prependInstrsToMethod: ILInstr list -> ILMethodDef -> ILMethodDef

/// Injecting initialization code into a class.
/// Add some code to the end of the .cctor for a type.  Create a .cctor
/// if one doesn't exist already.
val prependInstrsToClassCtor: ILInstr list -> ILSourceMarker option -> ILTypeDef -> ILTypeDef

/// Derived functions for making some simple constructors
val mkILStorageCtor: ILSourceMarker option * ILInstr list * ILType * (string * ILType) list * ILMemberAccess -> ILMethodDef
val mkILSimpleStorageCtor: ILSourceMarker option * ILTypeSpec option * ILType * (string * ILType) list * ILMemberAccess -> ILMethodDef
val mkILSimpleStorageCtorWithParamNames: ILSourceMarker option * ILTypeSpec option * ILType * (string * string * ILType) list * ILMemberAccess -> ILMethodDef

val mkILDelegateMethods: ILGlobals -> ILParameter list * ILReturn -> ILMethodDef list

/// Given a delegate type definition which lies in a particular scope, 
/// make a reference to its constructor
val mkCtorMethSpecForDelegate: ILGlobals -> ILType * bool -> ILMethodSpec 

/// The toplevel "class" for a module or assembly.
val mkILTypeForGlobalFunctions: ILScopeRef -> ILType

/// Making tables of custom attributes, etc.
val mkILCustomAttrs: ILAttribute list -> ILAttributes
2028 2029
val mkILCustomAttrsFromArray: ILAttribute[] -> ILAttributes
val mkILComputedCustomAttrs: (unit -> ILAttribute[]) -> ILAttributes
L
latkin 已提交
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
val emptyILCustomAttrs: ILAttributes

val mkILSecurityDecls: ILPermission list -> ILPermissions
val mkILLazySecurityDecls: Lazy<ILPermission list> -> ILPermissions
val emptyILSecurityDecls: ILPermissions

val mkMethBodyAux : MethodBody -> ILLazyMethodBody
val mkMethBodyLazyAux : Lazy<MethodBody> -> ILLazyMethodBody

val mkILEvents: ILEventDef list -> ILEventDefs
val mkILEventsLazy: Lazy<ILEventDef list> -> ILEventDefs
val emptyILEvents: ILEventDefs

val mkILProperties: ILPropertyDef list -> ILPropertyDefs
val mkILPropertiesLazy: Lazy<ILPropertyDef list> -> ILPropertyDefs
val emptyILProperties: ILPropertyDefs

val mkILMethods: ILMethodDef list -> ILMethodDefs
2048 2049
val mkILMethodsFromArray: ILMethodDef[] -> ILMethodDefs
val mkILMethodsComputed: (unit -> ILMethodDef[]) -> ILMethodDefs
L
latkin 已提交
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
val emptyILMethods: ILMethodDefs

val mkILFields: ILFieldDef list -> ILFieldDefs
val mkILFieldsLazy: Lazy<ILFieldDef list> -> ILFieldDefs
val emptyILFields: ILFieldDefs

val mkILMethodImpls: ILMethodImplDef list -> ILMethodImplDefs
val mkILMethodImplsLazy: Lazy<ILMethodImplDef list> -> ILMethodImplDefs
val emptyILMethodImpls: ILMethodImplDefs

2060 2061
val mkILTypeDefs: ILTypeDef list -> ILTypeDefs
val mkILTypeDefsFromArray: ILTypeDef[] -> ILTypeDefs
L
latkin 已提交
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
val emptyILTypeDefs: ILTypeDefs

/// Create table of types which is loaded/computed on-demand, and whose individual 
/// elements are also loaded/computed on-demand. Any call to tdefs.AsList will 
/// result in the laziness being forced.  Operations can examine the
/// custom attributes and name of each type in order to decide whether
/// to proceed with examining the other details of the type.
/// 
/// Note that individual type definitions may contain further delays 
/// in their method, field and other tables. 
D
Don Syme 已提交
2072
val mkILTypeDefsComputed: (unit -> (string list * string * ILAttributes * Lazy<ILTypeDef>) array) -> ILTypeDefs
L
latkin 已提交
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
val addILTypeDef: ILTypeDef -> ILTypeDefs -> ILTypeDefs

val mkILNestedExportedTypes: ILNestedExportedType list -> ILNestedExportedTypes
val mkILNestedExportedTypesLazy: Lazy<ILNestedExportedType list> -> ILNestedExportedTypes

val mkILExportedTypes: ILExportedTypeOrForwarder list -> ILExportedTypesAndForwarders
val mkILExportedTypesLazy: Lazy<ILExportedTypeOrForwarder list> ->   ILExportedTypesAndForwarders

val mkILResources: ILResource list -> ILResources
val mkILResourcesLazy: Lazy<ILResource list> -> ILResources

/// Making modules
val mkILSimpleModule: assemblyName:string -> moduleName:string -> dll:bool -> subsystemVersion : (int * int) -> useHighEntropyVA : bool -> ILTypeDefs -> int32 option -> string option -> int -> ILExportedTypesAndForwarders -> string -> ILModuleDef

/// Generate references to existing type definitions, method definitions
/// etc.  Useful for generating references, e.g. to a  class we're processing
/// Also used to reference type definitions that we've generated.  [ILScopeRef] 
/// is normally ILScopeRef.Local, unless we've generated the ILTypeDef in
/// an auxiliary module or are generating multiple assemblies at 
/// once.

val mkRefForNestedILTypeDef : ILScopeRef -> ILTypeDef list * ILTypeDef -> ILTypeRef
val mkRefForILMethod        : ILScopeRef -> ILTypeDef list * ILTypeDef -> ILMethodDef -> ILMethodRef
val mkRefForILField        : ILScopeRef -> ILTypeDef list * ILTypeDef -> ILFieldDef  -> ILFieldRef

val mkRefToILMethod: ILTypeRef * ILMethodDef -> ILMethodRef
val mkRefToILField: ILTypeRef * ILFieldDef -> ILFieldRef

val mkRefToILAssembly: ILAssemblyManifest -> ILAssemblyRef
val mkRefToILModule: ILModuleDef -> ILModuleRef


// -------------------------------------------------------------------- 
// Rescoping.
//
// Given an object O1 referenced from where1 (e.g. O1 binds to some  
// result R when referenced from where1), and given that SR2 resolves to where1 from where2, 
// produce a new O2 for use from where2 (e.g. O2 binds to R from where2)
//
// So, ILScopeRef tells you how to reference the original scope from 
// the new scope. e.g. if ILScopeRef is:
//    [ILScopeRef.Local] then the object is returned unchanged
//    [ILScopeRef.Module m] then an object is returned 
//                        where all ILScopeRef.Local references 
//                        become ILScopeRef.Module m
//    [ILScopeRef.Assembly m] then an object is returned 
//                         where all ILScopeRef.Local and ILScopeRef.Module references 
//                        become ILScopeRef.Assembly m
// -------------------------------------------------------------------- 

/// Rescoping. The first argument tells the function how to reference the original scope from 
/// the new scope. 
val rescopeILScopeRef: ILScopeRef -> ILScopeRef -> ILScopeRef
/// Rescoping. The first argument tells the function how to reference the original scope from 
/// the new scope. 
val rescopeILTypeSpec: ILScopeRef -> ILTypeSpec -> ILTypeSpec
/// Rescoping. The first argument tells the function how to reference the original scope from 
/// the new scope. 
val rescopeILType: ILScopeRef -> ILType -> ILType
/// Rescoping. The first argument tells the function how to reference the original scope from 
/// the new scope. 
val rescopeILMethodRef: ILScopeRef -> ILMethodRef -> ILMethodRef 
/// Rescoping. The first argument tells the function how to reference the original scope from 
/// the new scope. 
val rescopeILFieldRef: ILScopeRef -> ILFieldRef -> ILFieldRef


//-----------------------------------------------------------------------
// The ILCode Builder utility.
//----------------------------------------------------------------------

[<RequireQualifiedAccess>]
type ILExceptionClause = 
    | Finally of (ILCodeLabel * ILCodeLabel)
    | Fault  of (ILCodeLabel * ILCodeLabel)
    | FilterCatch of (ILCodeLabel * ILCodeLabel) * (ILCodeLabel * ILCodeLabel)
    | TypeCatch of ILType * (ILCodeLabel * ILCodeLabel)

type ILExceptionSpec = 
    { exnRange: (ILCodeLabel * ILCodeLabel);
      exnClauses: ILExceptionClause list }

type ILLocalSpec = 
    { locRange: (ILCodeLabel * ILCodeLabel);
      locInfos: ILDebugMapping list }

/// buildILCode: Build code from a sequence of instructions.
/// 
/// e.g. "buildILCode meth resolver instrs exns locals"
/// 
/// This makes the basic block structure of code from more primitive
/// information, i.e. an array of instructions.
///   [meth]: for debugging and should give the name of the method.
///   [resolver]: should return the instruction indexes referred to 
///               by code-label strings in the instruction stream.
///   [instrs]: the instructions themselves, perhaps with attributes giving 
///             debugging information
///   [exns]: the table of exception-handling specifications
///           for the method.  These are again given with respect to labels which will
///           be mapped to pc's by [resolver].  
///   [locals]: the table of specifications of when local variables are live and
///           should appear in the debug info.
/// 
/// If the input code is well-formed, the function will returns the 
/// chop up the instruction sequence into basic blocks as required for
/// the exception handlers and then return the tree-structured code
/// corresponding to the instruction stream.
/// A new set of code labels will be used throughout the resulting code.
/// 
/// The input can be badly formed in many ways: exception handlers might
/// overlap, or scopes of local variables may overlap badly with 
/// exception handlers.
val buildILCode:
    string ->
    (ILCodeLabel -> int) -> 
    ILInstr[] -> 
    ILExceptionSpec list -> 
    ILLocalSpec list -> 
    ILCode

// -------------------------------------------------------------------- 
// The instantiation utilities.
// -------------------------------------------------------------------- 

/// Instantiate type variables that occur within types and other items. 
val instILTypeAux: int -> ILGenericArgs -> ILType -> ILType

/// Instantiate type variables that occur within types and other items. 
val instILType: ILGenericArgs -> ILType -> ILType

// -------------------------------------------------------------------- 
// ECMA globals
// -------------------------------------------------------------------- 

/// This is a 'vendor neutral' way of referencing mscorlib. 
val ecmaPublicKey: PublicKey

/// Some commonly used methods 
val mkInitializeArrayMethSpec: ILGlobals -> ILMethodSpec 

val mkPrimaryAssemblyExnNewobj: ILGlobals -> string -> ILInstr

val addMethodGeneratedAttrs : ILGlobals -> ILMethodDef -> ILMethodDef
val addPropertyGeneratedAttrs : ILGlobals -> ILPropertyDef -> ILPropertyDef
val addFieldGeneratedAttrs : ILGlobals -> ILFieldDef -> ILFieldDef

val addPropertyNeverAttrs : ILGlobals -> ILPropertyDef -> ILPropertyDef
val addFieldNeverAttrs : ILGlobals -> ILFieldDef -> ILFieldDef

/// Discriminating different important built-in types
D
desco 已提交
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
val isILObjectTy: ILType -> bool
val isILStringTy: ILType -> bool
val isILSByteTy: ILType -> bool
val isILByteTy: ILType -> bool
val isILInt16Ty: ILType -> bool
val isILUInt16Ty: ILType -> bool
val isILInt32Ty: ILType -> bool
val isILUInt32Ty: ILType -> bool
val isILInt64Ty: ILType -> bool
val isILUInt64Ty: ILType -> bool
val isILIntPtrTy: ILType -> bool
val isILUIntPtrTy: ILType -> bool
val isILBoolTy: ILType -> bool
val isILCharTy: ILType -> bool
val isILTypedReferenceTy: ILType -> bool
val isILDoubleTy: ILType -> bool
val isILSingleTy: ILType -> bool
L
latkin 已提交
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257

/// Get a public key token from a public key.
val sha1HashBytes : byte[] -> byte[] (* SHA1 hash *)

/// Get a version number from a CLR version string, e.g. 1.0.3705.0
val parseILVersion: string -> ILVersionInfo
val formatILVersion: ILVersionInfo -> string
val compareILVersions: ILVersionInfo -> ILVersionInfo -> int

/// Decompose a type definition according to its kind.
type ILEnumInfo =
    { enumValues: (string * ILFieldInit) list;  
      enumType: ILType }

val getTyOfILEnumInfo: ILEnumInfo -> ILType

val computeILEnumInfo: string * ILFieldDefs -> ILEnumInfo

2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275

// --------------------------------------------------------------------
// For completeness.  These do not occur in metadata but tools that
// care about the existence of properties and events in the metadata
// can benefit from them.
// --------------------------------------------------------------------

[<Sealed>]
type ILEventRef =
    static member Create : ILTypeRef * string -> ILEventRef
    member EnclosingTypeRef: ILTypeRef
    member Name: string

[<Sealed>]
type ILPropertyRef =
     static member Create : ILTypeRef * string -> ILPropertyRef
     member EnclosingTypeRef: ILTypeRef
     member Name: string
D
Don Syme 已提交
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
     interface System.IComparable

val runningOnMono: bool

type ILReferences = 
    { AssemblyReferences: ILAssemblyRef list; 
      ModuleReferences: ILModuleRef list; }

/// Find the full set of assemblies referenced by a module 
val computeILRefs: ILModuleDef -> ILReferences
val emptyILRefs: ILReferences

// -------------------------------------------------------------------- 
// The following functions are used to define an extension to the  In reality the only extension is ILX

type ILTypeDefKindExtension<'Extension> = TypeDefKindExtension

val RegisterTypeDefKindExtension: ILTypeDefKindExtension<'Extension> -> ('Extension -> IlxExtensionTypeKind) * (IlxExtensionTypeKind -> bool) * (IlxExtensionTypeKind -> 'Extension)