stroke.go 14.9 KB
Newer Older
1 2 3 4 5 6 7
// Copyright 2010 The Freetype-Go Authors. All rights reserved.
// Use of this source code is governed by your choice of either the
// FreeType License or the GNU General Public License version 2 (or
// any later version), both of which can be found in the LICENSE file.

package raster

8 9 10 11
import (
	"golang.org/x/image/math/fixed"
)

12
// Two points are considered practically equal if the square of the distance
13 14
// between them is less than one quarter (i.e. 1024 / 4096).
const epsilon = fixed.Int52_12(1024)
15 16 17 18 19

// A Capper signifies how to begin or end a stroked path.
type Capper interface {
	// Cap adds a cap to p given a pivot point and the normal vector of a
	// terminal segment. The normal's length is half of the stroke width.
20
	Cap(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6)
21 22 23
}

// The CapperFunc type adapts an ordinary function to be a Capper.
24
type CapperFunc func(Adder, fixed.Int26_6, fixed.Point26_6, fixed.Point26_6)
25

26
func (f CapperFunc) Cap(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) {
27 28 29 30 31 32 33 34
	f(p, halfWidth, pivot, n1)
}

// A Joiner signifies how to join interior nodes of a stroked path.
type Joiner interface {
	// Join adds a join to the two sides of a stroked path given a pivot
	// point and the normal vectors of the trailing and leading segments.
	// Both normals have length equal to half of the stroke width.
35
	Join(lhs, rhs Adder, halfWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6)
36 37 38
}

// The JoinerFunc type adapts an ordinary function to be a Joiner.
39
type JoinerFunc func(lhs, rhs Adder, halfWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6)
40

41
func (f JoinerFunc) Join(lhs, rhs Adder, halfWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6) {
42 43 44 45 46 47
	f(lhs, rhs, halfWidth, pivot, n0, n1)
}

// RoundCapper adds round caps to a stroked path.
var RoundCapper Capper = CapperFunc(roundCapper)

48
func roundCapper(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) {
49 50 51
	// The cubic Bézier approximation to a circle involves the magic number
	// (√2 - 1) * 4/3, which is approximately 141/256.
	const k = 141
52
	e := pRot90CCW(n1)
53 54 55 56 57 58 59 60 61 62
	side := pivot.Add(e)
	start, end := pivot.Sub(n1), pivot.Add(n1)
	d, e := n1.Mul(k), e.Mul(k)
	p.Add3(start.Add(e), side.Sub(d), side)
	p.Add3(side.Add(d), end.Add(e), end)
}

// ButtCapper adds butt caps to a stroked path.
var ButtCapper Capper = CapperFunc(buttCapper)

63
func buttCapper(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) {
64 65 66 67 68 69
	p.Add1(pivot.Add(n1))
}

// SquareCapper adds square caps to a stroked path.
var SquareCapper Capper = CapperFunc(squareCapper)

70
func squareCapper(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) {
71
	e := pRot90CCW(n1)
72 73 74 75 76 77 78 79 80
	side := pivot.Add(e)
	p.Add1(side.Sub(n1))
	p.Add1(side.Add(n1))
	p.Add1(pivot.Add(n1))
}

// RoundJoiner adds round joins to a stroked path.
var RoundJoiner Joiner = JoinerFunc(roundJoiner)

81
func roundJoiner(lhs, rhs Adder, haflWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6) {
82
	dot := pDot(pRot90CW(n0), n1)
83 84 85 86 87
	if dot >= 0 {
		addArc(lhs, pivot, n0, n1)
		rhs.Add1(pivot.Sub(n1))
	} else {
		lhs.Add1(pivot.Add(n1))
88
		addArc(rhs, pivot, pNeg(n0), pNeg(n1))
89 90 91 92 93 94
	}
}

// BevelJoiner adds bevel joins to a stroked path.
var BevelJoiner Joiner = JoinerFunc(bevelJoiner)

95
func bevelJoiner(lhs, rhs Adder, haflWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6) {
96 97 98 99 100
	lhs.Add1(pivot.Add(n1))
	rhs.Add1(pivot.Sub(n1))
}

// addArc adds a circular arc from pivot+n0 to pivot+n1 to p. The shorter of
101 102
// the two possible arcs is taken, i.e. the one spanning <= 180 degrees. The
// two vectors n0 and n1 must be of equal length.
103
func addArc(p Adder, pivot, n0, n1 fixed.Point26_6) {
104
	// r2 is the square of the length of n0.
105
	r2 := pDot(n0, n0)
106 107 108 109 110 111
	if r2 < epsilon {
		// The arc radius is so small that we collapse to a straight line.
		p.Add1(pivot.Add(n1))
		return
	}
	// We approximate the arc by 0, 1, 2 or 3 45-degree quadratic segments plus
112 113 114
	// a final quadratic segment from s to n1. Each 45-degree segment has
	// control points {1, 0}, {1, tan(π/8)} and {1/√2, 1/√2} suitably scaled,
	// rotated and translated. tan(π/8) is approximately 106/256.
115
	const tpo8 = 106
116
	var s fixed.Point26_6
117 118 119 120 121 122 123 124 125
	// We determine which octant the angle between n0 and n1 is in via three
	// dot products. m0, m1 and m2 are n0 rotated clockwise by 45, 90 and 135
	// degrees.
	m0 := pRot45CW(n0)
	m1 := pRot90CW(n0)
	m2 := pRot90CW(m0)
	if pDot(m1, n1) >= 0 {
		if pDot(n0, n1) >= 0 {
			if pDot(m2, n1) <= 0 {
126 127 128 129 130 131 132 133 134 135 136
				// n1 is between 0 and 45 degrees clockwise of n0.
				s = n0
			} else {
				// n1 is between 45 and 90 degrees clockwise of n0.
				p.Add2(pivot.Add(n0).Add(m1.Mul(tpo8)), pivot.Add(m0))
				s = m0
			}
		} else {
			pm1, n0t := pivot.Add(m1), n0.Mul(tpo8)
			p.Add2(pivot.Add(n0).Add(m1.Mul(tpo8)), pivot.Add(m0))
			p.Add2(pm1.Add(n0t), pm1)
137
			if pDot(m0, n1) >= 0 {
138 139 140 141 142 143 144 145 146
				// n1 is between 90 and 135 degrees clockwise of n0.
				s = m1
			} else {
				// n1 is between 135 and 180 degrees clockwise of n0.
				p.Add2(pm1.Sub(n0t), pivot.Add(m2))
				s = m2
			}
		}
	} else {
147 148
		if pDot(n0, n1) >= 0 {
			if pDot(m0, n1) >= 0 {
149 150 151 152 153
				// n1 is between 0 and 45 degrees counter-clockwise of n0.
				s = n0
			} else {
				// n1 is between 45 and 90 degrees counter-clockwise of n0.
				p.Add2(pivot.Add(n0).Sub(m1.Mul(tpo8)), pivot.Sub(m2))
154
				s = pNeg(m2)
155 156 157 158 159
			}
		} else {
			pm1, n0t := pivot.Sub(m1), n0.Mul(tpo8)
			p.Add2(pivot.Add(n0).Sub(m1.Mul(tpo8)), pivot.Sub(m2))
			p.Add2(pm1.Add(n0t), pm1)
160
			if pDot(m2, n1) <= 0 {
161
				// n1 is between 90 and 135 degrees counter-clockwise of n0.
162
				s = pNeg(m1)
163 164 165
			} else {
				// n1 is between 135 and 180 degrees counter-clockwise of n0.
				p.Add2(pm1.Sub(n0t), pivot.Sub(m0))
166
				s = pNeg(m0)
167 168 169 170
			}
		}
	}
	// The final quadratic segment has two endpoints s and n1 and the middle
171 172 173 174 175 176 177 178
	// control point is a multiple of s.Add(n1), i.e. it is on the angle
	// bisector of those two points. The multiple ranges between 128/256 and
	// 150/256 as the angle between s and n1 ranges between 0 and 45 degrees.
	//
	// When the angle is 0 degrees (i.e. s and n1 are coincident) then
	// s.Add(n1) is twice s and so the middle control point of the degenerate
	// quadratic segment should be half s.Add(n1), and half = 128/256.
	//
179 180
	// When the angle is 45 degrees then 150/256 is the ratio of the lengths of
	// the two vectors {1, tan(π/8)} and {1 + 1/√2, 1/√2}.
181
	//
182 183
	// d is the normalized dot product between s and n1. Since the angle ranges
	// between 0 and 45 degrees then d ranges between 256/256 and 181/256.
184
	d := 256 * pDot(s, n1) / r2
185
	multiple := fixed.Int26_6(150-(150-128)*(d-181)/(256-181)) >> 2
186 187 188 189
	p.Add2(pivot.Add(s.Add(n1).Mul(multiple)), pivot.Add(n1))
}

// midpoint returns the midpoint of two Points.
190 191
func midpoint(a, b fixed.Point26_6) fixed.Point26_6 {
	return fixed.Point26_6{(a.X + b.X) / 2, (a.Y + b.Y) / 2}
192 193 194 195
}

// angleGreaterThan45 returns whether the angle between two vectors is more
// than 45 degrees.
196
func angleGreaterThan45(v0, v1 fixed.Point26_6) bool {
197 198
	v := pRot45CCW(v0)
	return pDot(v, v1) < 0 || pDot(pRot90CW(v), v1) < 0
199 200 201
}

// interpolate returns the point (1-t)*a + t*b.
202 203 204 205 206
func interpolate(a, b fixed.Point26_6, t fixed.Int52_12) fixed.Point26_6 {
	s := 1<<12 - t
	x := s*fixed.Int52_12(a.X) + t*fixed.Int52_12(b.X)
	y := s*fixed.Int52_12(a.Y) + t*fixed.Int52_12(b.Y)
	return fixed.Point26_6{fixed.Int26_6(x >> 12), fixed.Int26_6(y >> 12)}
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
}

// curviest2 returns the value of t for which the quadratic parametric curve
// (1-t)²*a + 2*t*(1-t).b + t²*c has maximum curvature.
//
// The curvature of the parametric curve f(t) = (x(t), y(t)) is
// |x′y″-y′x″| / (x′²+y′²)^(3/2).
//
// Let d = b-a and e = c-2*b+a, so that f′(t) = 2*d+2*e*t and f″(t) = 2*e.
// The curvature's numerator is (2*dx+2*ex*t)*(2*ey)-(2*dy+2*ey*t)*(2*ex),
// which simplifies to 4*dx*ey-4*dy*ex, which is constant with respect to t.
//
// Thus, curvature is extreme where the denominator is extreme, i.e. where
// (x′²+y′²) is extreme. The first order condition is that
// 2*x′*x″+2*y′*y″ = 0, or (dx+ex*t)*ex + (dy+ey*t)*ey = 0.
// Solving for t gives t = -(dx*ex+dy*ey) / (ex*ex+ey*ey).
223
func curviest2(a, b, c fixed.Point26_6) fixed.Int52_12 {
224 225 226 227 228
	dx := int64(b.X - a.X)
	dy := int64(b.Y - a.Y)
	ex := int64(c.X - 2*b.X + a.X)
	ey := int64(c.Y - 2*b.Y + a.Y)
	if ex == 0 && ey == 0 {
229
		return 2048
230
	}
231
	return fixed.Int52_12(-4096 * (dx*ex + dy*ey) / (ex*ex + ey*ey))
232 233 234 235 236 237 238
}

// A stroker holds state for stroking a path.
type stroker struct {
	// p is the destination that records the stroked path.
	p Adder
	// u is the half-width of the stroke.
239
	u fixed.Int26_6
240 241 242 243 244 245 246 247 248
	// cr and jr specify how to end and connect path segments.
	cr Capper
	jr Joiner
	// r is the reverse path. Stroking a path involves constructing two
	// parallel paths 2*u apart. The first path is added immediately to p,
	// the second path is accumulated in r and eventually added in reverse.
	r Path
	// a is the most recent segment point. anorm is the segment normal of
	// length u at that point.
249
	a, anorm fixed.Point26_6
250 251 252 253
}

// addNonCurvy2 adds a quadratic segment to the stroker, where the segment
// defined by (k.a, b, c) achieves maximum curvature at either k.a or c.
254
func (k *stroker) addNonCurvy2(b, c fixed.Point26_6) {
255 256 257 258 259 260
	// We repeatedly divide the segment at its middle until it is straight
	// enough to approximate the stroke by just translating the control points.
	// ds and ps are stacks of depths and points. t is the top of the stack.
	const maxDepth = 5
	var (
		ds [maxDepth + 1]int
261
		ps [2*maxDepth + 3]fixed.Point26_6
262 263 264 265 266 267 268 269
		t  int
	)
	// Initially the ps stack has one quadratic segment of depth zero.
	ds[0] = 0
	ps[2] = k.a
	ps[1] = b
	ps[0] = c
	anorm := k.anorm
270
	var cnorm fixed.Point26_6
271 272 273 274 275 276 277 278

	for {
		depth := ds[t]
		a := ps[2*t+2]
		b := ps[2*t+1]
		c := ps[2*t+0]
		ab := b.Sub(a)
		bc := c.Sub(b)
279 280
		abIsSmall := pDot(ab, ab) < fixed.Int52_12(1<<12)
		bcIsSmall := pDot(bc, bc) < fixed.Int52_12(1<<12)
281 282
		if abIsSmall && bcIsSmall {
			// Approximate the segment by a circular arc.
283
			cnorm = pRot90CCW(pNorm(bc, k.u))
284 285
			mac := midpoint(a, c)
			addArc(k.p, mac, anorm, cnorm)
286
			addArc(&k.r, mac, pNeg(anorm), pNeg(cnorm))
287 288 289 290 291 292 293 294 295 296 297 298 299 300
		} else if depth < maxDepth && angleGreaterThan45(ab, bc) {
			// Divide the segment in two and push both halves on the stack.
			mab := midpoint(a, b)
			mbc := midpoint(b, c)
			t++
			ds[t+0] = depth + 1
			ds[t-1] = depth + 1
			ps[2*t+2] = a
			ps[2*t+1] = mab
			ps[2*t+0] = midpoint(mab, mbc)
			ps[2*t-1] = mbc
			continue
		} else {
			// Translate the control points.
301 302
			bnorm := pRot90CCW(pNorm(c.Sub(a), k.u))
			cnorm = pRot90CCW(pNorm(bc, k.u))
303 304 305 306 307 308 309 310 311 312 313 314 315 316
			k.p.Add2(b.Add(bnorm), c.Add(cnorm))
			k.r.Add2(b.Sub(bnorm), c.Sub(cnorm))
		}
		if t == 0 {
			k.a, k.anorm = c, cnorm
			return
		}
		t--
		anorm = cnorm
	}
	panic("unreachable")
}

// Add1 adds a linear segment to the stroker.
317
func (k *stroker) Add1(b fixed.Point26_6) {
318
	bnorm := pRot90CCW(pNorm(b.Sub(k.a), k.u))
319 320 321 322 323 324 325 326 327 328 329 330
	if len(k.r) == 0 {
		k.p.Start(k.a.Add(bnorm))
		k.r.Start(k.a.Sub(bnorm))
	} else {
		k.jr.Join(k.p, &k.r, k.u, k.a, k.anorm, bnorm)
	}
	k.p.Add1(b.Add(bnorm))
	k.r.Add1(b.Sub(bnorm))
	k.a, k.anorm = b, bnorm
}

// Add2 adds a quadratic segment to the stroker.
331
func (k *stroker) Add2(b, c fixed.Point26_6) {
332 333
	ab := b.Sub(k.a)
	bc := c.Sub(b)
334
	abnorm := pRot90CCW(pNorm(ab, k.u))
335 336 337 338 339 340 341 342
	if len(k.r) == 0 {
		k.p.Start(k.a.Add(abnorm))
		k.r.Start(k.a.Sub(abnorm))
	} else {
		k.jr.Join(k.p, &k.r, k.u, k.a, k.anorm, abnorm)
	}

	// Approximate nearly-degenerate quadratics by linear segments.
343 344
	abIsSmall := pDot(ab, ab) < epsilon
	bcIsSmall := pDot(bc, bc) < epsilon
345
	if abIsSmall || bcIsSmall {
346
		acnorm := pRot90CCW(pNorm(c.Sub(k.a), k.u))
347 348 349 350 351 352 353 354 355
		k.p.Add1(c.Add(acnorm))
		k.r.Add1(c.Sub(acnorm))
		k.a, k.anorm = c, acnorm
		return
	}

	// The quadratic segment (k.a, b, c) has a point of maximum curvature.
	// If this occurs at an end point, we process the segment as a whole.
	t := curviest2(k.a, b, c)
356
	if t <= 0 || 4096 <= t {
357 358 359 360 361 362 363 364 365 366 367 368 369
		k.addNonCurvy2(b, c)
		return
	}

	// Otherwise, we perform a de Casteljau decomposition at the point of
	// maximum curvature and process the two straighter parts.
	mab := interpolate(k.a, b, t)
	mbc := interpolate(b, c, t)
	mabc := interpolate(mab, mbc, t)

	// If the vectors ab and bc are close to being in opposite directions,
	// then the decomposition can become unstable, so we approximate the
	// quadratic segment by two linear segments joined by an arc.
370
	bcnorm := pRot90CCW(pNorm(bc, k.u))
371
	if pDot(abnorm, bcnorm) < -fixed.Int52_12(k.u)*fixed.Int52_12(k.u)*2047/2048 {
372
		pArc := pDot(abnorm, bc) < 0
373 374 375

		k.p.Add1(mabc.Add(abnorm))
		if pArc {
376
			z := pRot90CW(abnorm)
377 378 379 380 381 382 383 384
			addArc(k.p, mabc, abnorm, z)
			addArc(k.p, mabc, z, bcnorm)
		}
		k.p.Add1(mabc.Add(bcnorm))
		k.p.Add1(c.Add(bcnorm))

		k.r.Add1(mabc.Sub(abnorm))
		if !pArc {
385 386 387
			z := pRot90CW(abnorm)
			addArc(&k.r, mabc, pNeg(abnorm), z)
			addArc(&k.r, mabc, z, pNeg(bcnorm))
388 389 390 391 392 393 394 395 396 397 398 399 400 401
		}
		k.r.Add1(mabc.Sub(bcnorm))
		k.r.Add1(c.Sub(bcnorm))

		k.a, k.anorm = c, bcnorm
		return
	}

	// Process the decomposed parts.
	k.addNonCurvy2(mab, mabc)
	k.addNonCurvy2(mbc, c)
}

// Add3 adds a cubic segment to the stroker.
402
func (k *stroker) Add3(b, c, d fixed.Point26_6) {
403 404 405 406 407 408 409 410 411
	panic("freetype/raster: stroke unimplemented for cubic segments")
}

// stroke adds the stroked Path q to p, where q consists of exactly one curve.
func (k *stroker) stroke(q Path) {
	// Stroking is implemented by deriving two paths each k.u apart from q.
	// The left-hand-side path is added immediately to k.p; the right-hand-side
	// path is accumulated in k.r. Once we've finished adding the LHS to k.p,
	// we add the RHS in reverse order.
412
	k.r = make(Path, 0, len(q))
413
	k.a = fixed.Point26_6{q[1], q[2]}
414 415 416
	for i := 4; i < len(q); {
		switch q[i] {
		case 1:
417 418 419
			k.Add1(
				fixed.Point26_6{q[i+1], q[i+2]},
			)
420 421
			i += 4
		case 2:
422 423 424 425
			k.Add2(
				fixed.Point26_6{q[i+1], q[i+2]},
				fixed.Point26_6{q[i+3], q[i+4]},
			)
426 427
			i += 6
		case 3:
428 429 430 431 432
			k.Add3(
				fixed.Point26_6{q[i+1], q[i+2]},
				fixed.Point26_6{q[i+3], q[i+4]},
				fixed.Point26_6{q[i+5], q[i+6]},
			)
433 434 435 436 437 438 439 440 441 442
			i += 8
		default:
			panic("freetype/raster: bad path")
		}
	}
	if len(k.r) == 0 {
		return
	}
	// TODO(nigeltao): if q is a closed curve then we should join the first and
	// last segments instead of capping them.
443
	k.cr.Cap(k.p, k.u, q.lastPoint(), pNeg(k.anorm))
444 445
	addPathReversed(k.p, k.r)
	pivot := q.firstPoint()
446
	k.cr.Cap(k.p, k.u, pivot, pivot.Sub(fixed.Point26_6{k.r[1], k.r[2]}))
447 448 449 450 451
}

// Stroke adds q stroked with the given width to p. The result is typically
// self-intersecting and should be rasterized with UseNonZeroWinding.
// cr and jr may be nil, which defaults to a RoundCapper or RoundJoiner.
452
func Stroke(p Adder, q Path, width fixed.Int26_6, cr Capper, jr Joiner) {
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
	if len(q) == 0 {
		return
	}
	if cr == nil {
		cr = RoundCapper
	}
	if jr == nil {
		jr = RoundJoiner
	}
	if q[0] != 0 {
		panic("freetype/raster: bad path")
	}
	s := stroker{p: p, u: width / 2, cr: cr, jr: jr}
	i := 0
	for j := 4; j < len(q); {
		switch q[j] {
		case 0:
			s.stroke(q[i:j])
			i, j = j, j+4
		case 1:
			j += 4
		case 2:
			j += 6
		case 3:
			j += 8
		default:
			panic("freetype/raster: bad path")
		}
	}
	s.stroke(q[i:])
}