face.go 6.2 KB
Newer Older
N
Nigel Tao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
// Copyright 2015 The Freetype-Go Authors. All rights reserved.
// Use of this source code is governed by your choice of either the
// FreeType License or the GNU General Public License version 2 (or
// any later version), both of which can be found in the LICENSE file.

package truetype

import (
	"image"

	"github.com/golang/freetype/raster"
	"golang.org/x/exp/shiny/font"
	"golang.org/x/image/math/fixed"
)

// Options are optional arguments to NewFace.
type Options struct {
	// Size is the font size in points, as in "a 10 point font size".
	//
	// A zero value means to use a 12 point font size.
	Size float64

	// DPI is the dots-per-inch resolution.
	//
	// A zero value means to use 72 DPI.
	DPI float64

	// Hinting is how to quantize the glyph nodes.
	//
	// A zero value means to use no hinting.
	Hinting font.Hinting
}

func (o *Options) size() float64 {
	if o.Size > 0 {
		return o.Size
	}
	return 12
}

func (o *Options) dpi() float64 {
	if o.DPI > 0 {
		return o.DPI
	}
	return 72
}

func (o *Options) hinting() font.Hinting {
	switch o.Hinting {
	case font.HintingVertical, font.HintingFull:
		// TODO: support vertical hinting.
		return font.HintingFull
	}
	return font.HintingNone
}

// NewFace returns a new font.Face for the given Font.
func NewFace(f *Font, opts Options) font.Face {
	a := &face{
		f:       f,
		hinting: opts.hinting(),
		scale:   fixed.Int26_6(0.5 + (opts.size() * opts.dpi() * 64 / 72)),
	}

	// Set the rasterizer's bounds to be big enough to handle the largest glyph.
	b := f.Bounds(a.scale)
	xmin := +int(b.XMin) >> 6
	ymin := -int(b.YMax) >> 6
	xmax := +int(b.XMax+63) >> 6
	ymax := -int(b.YMin-63) >> 6
	a.r.SetBounds(xmax-xmin, ymax-ymin)

	return a
}

type face struct {
	f        *Font
	hinting  font.Hinting
	scale    fixed.Int26_6
	r        raster.Rasterizer
	glyphBuf GlyphBuf

	// TODO: clip rectangle?
}

// Close satisfies the font.Face interface.
func (a *face) Close() error { return nil }

// Kern satisfies the font.Face interface.
func (a *face) Kern(r0, r1 rune) fixed.Int26_6 {
	i0 := a.f.Index(r0)
	i1 := a.f.Index(r1)
	kern := fixed.Int26_6(a.f.Kerning(a.scale, i0, i1))
	if a.hinting != font.HintingNone {
		kern = (kern + 32) &^ 63
	}
	return kern
}

// Glyph satisfies the font.Face interface.
func (a *face) Glyph(dot fixed.Point26_6, r rune) (
	newDot fixed.Point26_6, dr image.Rectangle, mask image.Image, maskp image.Point, ok bool) {

	// Split p.X and p.Y into their integer and fractional parts.
	ix, fx := int(dot.X>>6), dot.X&0x3f
	iy, fy := int(dot.Y>>6), dot.Y&0x3f

	advanceWidth, mask, offset, ok := a.rasterize(a.f.Index(r), fx, fy)
	if !ok {
		return fixed.Point26_6{}, image.Rectangle{}, nil, image.Point{}, false
	}
	newDot = fixed.Point26_6{
		X: dot.X + advanceWidth,
		Y: dot.Y,
	}
	mb := mask.Bounds()
	dr.Min = image.Point{
		X: ix + offset.X,
		Y: iy + offset.Y,
	}
	dr.Max = image.Point{
		X: dr.Min.X + mb.Dx(),
		Y: dr.Min.Y + mb.Dy(),
	}
	return newDot, dr, mask, image.Point{}, true
}

// rasterize returns the advance width, glyph mask and integer-pixel offset
// to render the given glyph at the given sub-pixel offsets.
// The 26.6 fixed point arguments fx and fy must be in the range [0, 1).
func (a *face) rasterize(index Index, fx, fy fixed.Int26_6) (
	fixed.Int26_6, *image.Alpha, image.Point, bool) {

	if err := a.glyphBuf.Load(a.f, a.scale, index, a.hinting); err != nil {
		return 0, nil, image.Point{}, false
	}
	// Calculate the integer-pixel bounds for the glyph.
	xmin := int(fx+fixed.Int26_6(a.glyphBuf.B.XMin)) >> 6
	ymin := int(fy-fixed.Int26_6(a.glyphBuf.B.YMax)) >> 6
	xmax := int(fx+fixed.Int26_6(a.glyphBuf.B.XMax)+0x3f) >> 6
	ymax := int(fy-fixed.Int26_6(a.glyphBuf.B.YMin)+0x3f) >> 6
	if xmin > xmax || ymin > ymax {
		return 0, nil, image.Point{}, false
	}
	// A TrueType's glyph's nodes can have negative co-ordinates, but the
	// rasterizer clips anything left of x=0 or above y=0. xmin and ymin are
	// the pixel offsets, based on the font's FUnit metrics, that let a
	// negative co-ordinate in TrueType space be non-negative in rasterizer
	// space. xmin and ymin are typically <= 0.
	fx += fixed.Int26_6(-xmin << 6)
	fy += fixed.Int26_6(-ymin << 6)
	// Rasterize the glyph's vectors.
	a.r.Clear()
	e0 := 0
	for _, e1 := range a.glyphBuf.End {
		a.drawContour(a.glyphBuf.Point[e0:e1], fx, fy)
		e0 = e1
	}
	// TODO: don't allocate a new mask each time.
	mask := image.NewAlpha(image.Rect(0, 0, xmax-xmin, ymax-ymin))
	a.r.Rasterize(raster.NewAlphaSrcPainter(mask))
	return fixed.Int26_6(a.glyphBuf.AdvanceWidth), mask, image.Point{xmin, ymin}, true
}

// drawContour draws the given closed contour with the given offset.
func (a *face) drawContour(ps []Point, dx, dy fixed.Int26_6) {
	if len(ps) == 0 {
		return
	}

	// The low bit of each point's Flags value is whether the point is on the
	// curve. Truetype fonts only have quadratic Bézier curves, not cubics.
	// Thus, two consecutive off-curve points imply an on-curve point in the
	// middle of those two.
	//
	// See http://chanae.walon.org/pub/ttf/ttf_glyphs.htm for more details.

	// ps[0] is a truetype.Point measured in FUnits and positive Y going
	// upwards. start is the same thing measured in fixed point units and
	// positive Y going downwards, and offset by (dx, dy).
	start := fixed.Point26_6{
		X: dx + fixed.Int26_6(ps[0].X),
		Y: dy - fixed.Int26_6(ps[0].Y),
	}
	var others []Point
	if ps[0].Flags&0x01 != 0 {
		others = ps[1:]
	} else {
		last := fixed.Point26_6{
			X: dx + fixed.Int26_6(ps[len(ps)-1].X),
			Y: dy - fixed.Int26_6(ps[len(ps)-1].Y),
		}
		if ps[len(ps)-1].Flags&0x01 != 0 {
			start = last
			others = ps[:len(ps)-1]
		} else {
			start = fixed.Point26_6{
				X: (start.X + last.X) / 2,
				Y: (start.Y + last.Y) / 2,
			}
			others = ps
		}
	}
	a.r.Start(start)
	q0, on0 := start, true
	for _, p := range others {
		q := fixed.Point26_6{
			X: dx + fixed.Int26_6(p.X),
			Y: dy - fixed.Int26_6(p.Y),
		}
		on := p.Flags&0x01 != 0
		if on {
			if on0 {
				a.r.Add1(q)
			} else {
				a.r.Add2(q0, q)
			}
		} else {
			if on0 {
				// No-op.
			} else {
				mid := fixed.Point26_6{
					X: (q0.X + q.X) / 2,
					Y: (q0.Y + q.Y) / 2,
				}
				a.r.Add2(q0, mid)
			}
		}
		q0, on0 = q, on
	}
	// Close the curve.
	if on0 {
		a.r.Add1(start)
	} else {
		a.r.Add2(q0, start)
	}
}