fsl_clock.c 46.5 KB
Newer Older
Nameless-Y's avatar
Nameless-Y 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
/*
 * The Clear BSD License
 * Copyright (c) 2016, Freescale Semiconductor, Inc.
 * Copyright (c) 2016 - 2017 , NXP
 * All rights reserved.
 *
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted (subject to the limitations in the disclaimer below) provided
 * that the following conditions are met:
 *
 * o Redistributions of source code must retain the above copyright notice, this list
 *   of conditions and the following disclaimer.
 *
 * o Redistributions in binary form must reproduce the above copyright notice, this
 *   list of conditions and the following disclaimer in the documentation and/or
 *   other materials provided with the distribution.
 *
 * o Neither the name of copyright holder nor the names of its
 *   contributors may be used to endorse or promote products derived from this
 *   software without specific prior written permission.
 *
 * NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE.
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "fsl_common.h"
#include "fsl_clock.h"
#include "fsl_power.h"
/*******************************************************************************
 * Definitions
 ******************************************************************************/
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.clock"
#endif
#define NVALMAX (0x100U)
#define PVALMAX (0x20U)
#define MVALMAX (0x8000U)

#define PLL_MAX_N_DIV 0x100U

#define INDEX_SECTOR_TRIM48 ((uint32_t *)0x01000444U)
#define INDEX_SECTOR_TRIM96 ((uint32_t *)0x01000430U)
/*--------------------------------------------------------------------------
!!! If required these #defines can be moved to chip library file
----------------------------------------------------------------------------*/

#define PLL_SSCG0_MDEC_VAL_P (0U)                                /* MDEC is in bits  16 downto 0 */
#define PLL_SSCG0_MDEC_VAL_M (0x1FFFFUL << PLL_SSCG0_MDEC_VAL_P) /* NDEC is in bits  9 downto 0 */
#define PLL_NDEC_VAL_P (0U)                                      /* NDEC is in bits  9:0 */
#define PLL_NDEC_VAL_M (0x3FFUL << PLL_NDEC_VAL_P)
#define PLL_PDEC_VAL_P (0U) /* PDEC is in bits 6:0 */
#define PLL_PDEC_VAL_M (0x7FUL << PLL_PDEC_VAL_P)

#define PLL_MIN_CCO_FREQ_MHZ (75000000U)
#define PLL_MAX_CCO_FREQ_MHZ (150000000U)
#define PLL_LOWER_IN_LIMIT (4000U) /*!< Minimum PLL input rate */
#define PLL_MIN_IN_SSMODE (2000000U)
#define PLL_MAX_IN_SSMODE (4000000U)

/* Middle of the range values for spread-spectrum */
#define PLL_SSCG_MF_FREQ_VALUE 4U
#define PLL_SSCG_MC_COMP_VALUE 2U
#define PLL_SSCG_MR_DEPTH_VALUE 4U
#define PLL_SSCG_DITHER_VALUE 0U

/* PLL NDEC reg */
#define PLL_NDEC_VAL_SET(value) (((unsigned long)(value) << PLL_NDEC_VAL_P) & PLL_NDEC_VAL_M)
/* PLL PDEC reg */
#define PLL_PDEC_VAL_SET(value) (((unsigned long)(value) << PLL_PDEC_VAL_P) & PLL_PDEC_VAL_M)
/* SSCG control0 */
#define PLL_SSCG0_MDEC_VAL_SET(value) (((unsigned long)(value) << PLL_SSCG0_MDEC_VAL_P) & PLL_SSCG0_MDEC_VAL_M)

/* SSCG control1 */
#define PLL_SSCG1_MD_FRACT_P 0U
#define PLL_SSCG1_MD_INT_P 11U
#define PLL_SSCG1_MD_FRACT_M (0x7FFUL << PLL_SSCG1_MD_FRACT_P)
#define PLL_SSCG1_MD_INT_M (0xFFUL << PLL_SSCG1_MD_INT_P)

#define PLL_SSCG1_MD_FRACT_SET(value) (((unsigned long)(value) << PLL_SSCG1_MD_FRACT_P) & PLL_SSCG1_MD_FRACT_M)
#define PLL_SSCG1_MD_INT_SET(value) (((unsigned long)(value) << PLL_SSCG1_MD_INT_P) & PLL_SSCG1_MD_INT_M)

/* Saved value of PLL output rate, computed whenever needed to save run-time
   computation on each call to retrive the PLL rate. */
static uint32_t s_Pll_Freq;

/* I2S mclk. */
static uint32_t s_I2S_Mclk_Freq = 0U;

/** External clock rate on the CLKIN pin in Hz. If not used,
    set this to 0. Otherwise, set it to the exact rate in Hz this pin is
    being driven at. */
static const uint32_t s_Ext_Clk_Freq = 0U;

/*******************************************************************************
 * Variables
 ******************************************************************************/

/*******************************************************************************
 * Prototypes
 ******************************************************************************/
/* Find encoded NDEC value for raw N value, max N = NVALMAX */
static uint32_t pllEncodeN(uint32_t N);
/* Find decoded N value for raw NDEC value */
static uint32_t pllDecodeN(uint32_t NDEC);
/* Find encoded PDEC value for raw P value, max P = PVALMAX */
static uint32_t pllEncodeP(uint32_t P);
/* Find decoded P value for raw PDEC value */
static uint32_t pllDecodeP(uint32_t PDEC);
/* Find encoded MDEC value for raw M value, max M = MVALMAX */
static uint32_t pllEncodeM(uint32_t M);
/* Find decoded M value for raw MDEC value */
static uint32_t pllDecodeM(uint32_t MDEC);
/* Find SELP, SELI, and SELR values for raw M value, max M = MVALMAX */
static void pllFindSel(uint32_t M, bool bypassFBDIV2, uint32_t *pSelP, uint32_t *pSelI, uint32_t *pSelR);
/* Get predivider (N) from PLL NDEC setting */
static uint32_t findPllPreDiv(uint32_t ctrlReg, uint32_t nDecReg);
/* Get postdivider (P) from PLL PDEC setting */
static uint32_t findPllPostDiv(uint32_t ctrlReg, uint32_t pDecReg);
/* Get multiplier (M) from PLL MDEC and BYPASS_FBDIV2 settings */
static uint32_t findPllMMult(uint32_t ctrlReg, uint32_t mDecReg);
/* Get the greatest common divisor */
static uint32_t FindGreatestCommonDivisor(uint32_t m, uint32_t n);
/* Set PLL output based on desired output rate */
static pll_error_t CLOCK_GetPllConfig(
    uint32_t finHz, uint32_t foutHz, pll_setup_t *pSetup, bool useFeedbackDiv2, bool useSS);
/* Update local PLL rate variable */
static void CLOCK_GetSystemPLLOutFromSetupUpdate(pll_setup_t *pSetup);

static const uint8_t wdtFreqLookup[32] = {0,  8,  12, 15, 18, 20, 24, 26, 28, 30, 32, 34, 36, 38, 40, 41,
                                          42, 44, 45, 46, 48, 49, 50, 52, 53, 54, 56, 57, 58, 59, 60, 61};
/*******************************************************************************
 * Code
 ******************************************************************************/

void CLOCK_AttachClk(clock_attach_id_t connection)
{
    bool final_descriptor = false;
    uint8_t mux;
    uint8_t pos;
    uint32_t i;
    volatile uint32_t *pClkSel;

    pClkSel = &(SYSCON->MAINCLKSELA);

    for (i = 0U; (i <= 2U) && (!final_descriptor); i++)
    {
        connection = (clock_attach_id_t)(connection >> (i * 12U)); /* pick up next descriptor */
        mux = (uint8_t)connection;
        if (connection)
        {
            pos = ((connection & 0xf00U) >> 8U) - 1U;
            if (mux == CM_ASYNCAPB)
            {
                ASYNC_SYSCON->ASYNCAPBCLKSELA = pos;
            }
            else
            {
                pClkSel[mux] = pos;
            }
        }
        else
        {
            final_descriptor = true;
        }
    }
}

void CLOCK_SetClkDiv(clock_div_name_t div_name, uint32_t divided_by_value, bool reset)
{
    volatile uint32_t *pClkDiv;

    pClkDiv = &(SYSCON->SYSTICKCLKDIV);
    if (reset)
    {
        pClkDiv[div_name] = 1U << 29U;
    }
    if (divided_by_value == 0U) /* halt */
    {
        pClkDiv[div_name] = 1U << 30U;
    }
    else
    {
        pClkDiv[div_name] = (divided_by_value - 1U);
    }
}

/* Set FRO Clocking */
status_t CLOCK_SetupFROClocking(uint32_t iFreq)
{
    uint32_t usb_adj;
    if ((iFreq != 12000000U) && (iFreq != 48000000U) && (iFreq != 96000000U))
    {
        return kStatus_Fail;
    }
    /* Power up the FRO and set this as the base clock */
    POWER_DisablePD(kPDRUNCFG_PD_FRO_EN);
    /* back up the value of whether USB adj is selected, in which case we will have a value of 1 else 0 */
    usb_adj = ((SYSCON->FROCTRL) & SYSCON_FROCTRL_USBCLKADJ_MASK) >> SYSCON_FROCTRL_USBCLKADJ_SHIFT;
    if (iFreq > 12000000U)
    {
        if (iFreq == 96000000U)
        {
            SYSCON->FROCTRL = ((SYSCON_FROCTRL_TRIM_MASK | SYSCON_FROCTRL_FREQTRIM_MASK) & *INDEX_SECTOR_TRIM96) |
                              SYSCON_FROCTRL_SEL(1) | SYSCON_FROCTRL_WRTRIM(1) | SYSCON_FROCTRL_USBCLKADJ(usb_adj) |
                              SYSCON_FROCTRL_HSPDCLK(1);
        }
        else
        {
            SYSCON->FROCTRL = ((SYSCON_FROCTRL_TRIM_MASK | SYSCON_FROCTRL_FREQTRIM_MASK) & *INDEX_SECTOR_TRIM48) |
                              SYSCON_FROCTRL_SEL(0) | SYSCON_FROCTRL_WRTRIM(1) | SYSCON_FROCTRL_USBCLKADJ(usb_adj) |
                              SYSCON_FROCTRL_HSPDCLK(1);
        }
    }
    else
    {
        SYSCON->FROCTRL &= ~SYSCON_FROCTRL_HSPDCLK(1);
    }

    return 0U;
}

uint32_t CLOCK_GetFro12MFreq(void)
{
    return (SYSCON->PDRUNCFG[0] & SYSCON_PDRUNCFG_PDEN_FRO_MASK) ? 0U : 12000000U;
}

uint32_t CLOCK_GetExtClkFreq(void)
{
    return (s_Ext_Clk_Freq);
}
uint32_t CLOCK_GetWdtOscFreq(void)
{
    uint8_t freq_sel, div_sel;
    if (SYSCON->PDRUNCFG[kPDRUNCFG_PD_WDT_OSC >> 8UL] & (1UL << (kPDRUNCFG_PD_WDT_OSC & 0xffU)))
    {
        return 0U;
    }
    else
    {
        div_sel = ((SYSCON->WDTOSCCTRL & 0x1f) + 1) << 1;
        freq_sel =
            wdtFreqLookup[((SYSCON->WDTOSCCTRL & SYSCON_WDTOSCCTRL_FREQSEL_MASK) >> SYSCON_WDTOSCCTRL_FREQSEL_SHIFT)];
        return ((uint32_t)freq_sel * 50000U) / ((uint32_t)div_sel);
    }
}

/* Get HF FRO Clk */
uint32_t CLOCK_GetFroHfFreq(void)
{
    if ((SYSCON->PDRUNCFG[0] & SYSCON_PDRUNCFG_PDEN_FRO_MASK) || !(SYSCON->FROCTRL & SYSCON_FROCTRL_HSPDCLK_MASK))
    {
        return 0U;
    }

    if(SYSCON->FROCTRL & SYSCON_FROCTRL_SEL_MASK)
    {
        return 96000000U;
    }
    else
    {
        return 48000000U;
    }
}

uint32_t CLOCK_GetPllOutFreq(void)
{
    return s_Pll_Freq;
}

uint32_t CLOCK_GetOsc32KFreq(void)
{
    return CLK_RTC_32K_CLK; /* Needs to be corrected to check that RTC Clock is enabled */
}
uint32_t CLOCK_GetCoreSysClkFreq(void)
{
    uint32_t freq = 0U;

    switch(SYSCON->MAINCLKSELB)
    {
        case 0U:
            if(SYSCON->MAINCLKSELA == 0U)
            {
                freq = CLOCK_GetFro12MFreq();
            }
            else if(SYSCON->MAINCLKSELA == 1U)
            {
                freq = CLOCK_GetExtClkFreq();
            }
            else if(SYSCON->MAINCLKSELA == 2U)
            {
                freq = CLOCK_GetWdtOscFreq();
            }
            else if(SYSCON->MAINCLKSELA == 3U)
            {
                freq = CLOCK_GetFroHfFreq();
            }
            else
            {}
            break;
        case 2U:
            freq = CLOCK_GetPllOutFreq();
            break;

        case 3U:
            freq = CLOCK_GetOsc32KFreq();
            break;

        default:
            break;

    }

    return freq;
}
uint32_t CLOCK_GetI2SMClkFreq(void)
{
    return s_I2S_Mclk_Freq;
}

uint32_t CLOCK_GetAsyncApbClkFreq(void)
{
    async_clock_src_t clkSrc;
    uint32_t clkRate;

    clkSrc = CLOCK_GetAsyncApbClkSrc();

    switch (clkSrc)
    {
        case kCLOCK_AsyncMainClk:
            clkRate = CLOCK_GetCoreSysClkFreq();
            break;
        case kCLOCK_AsyncFro12Mhz:
            clkRate = CLK_FRO_12MHZ;
            break;
        default:
            clkRate = 0U;
            break;
    }

    return clkRate;
}

/* Get FLEXCOMM Clk */
uint32_t CLOCK_GetFlexCommClkFreq(uint32_t id)
{
    uint32_t freq = 0U;

    switch(SYSCON->FXCOMCLKSEL[id])
    {
        case 0U:
          freq = CLOCK_GetFro12MFreq();
          break;
        case 1U:
          freq = CLOCK_GetFroHfFreq();
          break;
        case 2U:
          freq = CLOCK_GetPllOutFreq();
          break;
        case 3U:
          freq = CLOCK_GetI2SMClkFreq();
          break;
        case 4U:
          freq = CLOCK_GetFrgClkFreq();
          break;

        default:
          break;
    }

    return freq;
}

/* Get FRG Clk */
uint32_t CLOCK_GetFRGInputClock(void)
{
    uint32_t freq = 0U;

    switch(SYSCON->FRGCLKSEL)
    {
        case 0U:
          freq = CLOCK_GetCoreSysClkFreq();
          break;
        case 1U:
          freq = CLOCK_GetPllOutFreq();
          break;
        case 2U:
          freq = CLOCK_GetFro12MFreq();
          break;
        case 3U:
          freq = CLOCK_GetFroHfFreq();
          break;

        default:
          break;
    }

    return freq;
}

/* Get DMIC Clk */
uint32_t CLOCK_GetDmicClkFreq(void)
{
    uint32_t freq = 0U;

    switch (SYSCON->DMICCLKSEL)
    {
        case 0U:
            freq = CLOCK_GetFro12MFreq();
            break;
        case 1U:
            freq = CLOCK_GetFroHfFreq();
            break;
        case 2U:
            freq = CLOCK_GetPllOutFreq();
            break;
        case 3U:
            freq = CLOCK_GetI2SMClkFreq();
            break;
        case 4U:
            freq = CLOCK_GetCoreSysClkFreq();
            break;
        case 5U:
            freq = CLOCK_GetWdtOscFreq();
            break;
        default:
            break;
    }

    return freq / ((SYSCON->DMICCLKDIV & 0xffU) + 1U);;
}

uint32_t CLOCK_SetFRGClock(uint32_t freq)
{
    uint32_t input = CLOCK_GetFRGInputClock();
    uint32_t mul;

    if ((freq > 48000000) || (freq > input) || (input / freq >= 2))
    {
        /* FRG output frequency should be less than equal to 48MHz */
        return 0;
    }
    else
    {
        mul = ((uint64_t)(input - freq) * 256) / ((uint64_t)freq);
        SYSCON->FRGCTRL = (mul << SYSCON_FRGCTRL_MULT_SHIFT) | SYSCON_FRGCTRL_DIV_MASK;
        return 1;
    }
}

/* Get FRG Clk */
uint32_t CLOCK_GetFrgClkFreq(void)
{
    uint32_t freq = 0U;

    if((SYSCON->FRGCTRL & SYSCON_FRGCTRL_DIV_MASK) == SYSCON_FRGCTRL_DIV_MASK)
    {
        freq = ((uint64_t)CLOCK_GetFRGInputClock() * (SYSCON_FRGCTRL_DIV_MASK + 1)) /
                           ((SYSCON_FRGCTRL_DIV_MASK + 1) + ((SYSCON->FRGCTRL & SYSCON_FRGCTRL_MULT_MASK) >> SYSCON_FRGCTRL_MULT_SHIFT));
    }
    else
    {
        freq = 0U;
    }

    return freq;
}

uint32_t CLOCK_GetUsbClkFreq(void)
{
    uint32_t freq = 0U;

    if(SYSCON->USBCLKSEL == 0U)
    {
        freq = CLOCK_GetFroHfFreq();
    }
    else if (SYSCON->USBCLKSEL == 1)
    {
        freq = CLOCK_GetPllOutFreq();
    }
    else
    {}

    return freq / ((SYSCON->USBCLKDIV & 0xffU) + 1U);
} 

uint32_t CLOCK_GetFreq(clock_name_t clockName)
{
    uint32_t freq;
    switch (clockName)
    {
        case kCLOCK_CoreSysClk:
            freq = CLOCK_GetCoreSysClkFreq();
            break;
        case kCLOCK_BusClk:
            freq = CLOCK_GetCoreSysClkFreq() / ((SYSCON->AHBCLKDIV & 0xffU) + 1U);
            break;
        case kCLOCK_FroHf:
            freq = CLOCK_GetFroHfFreq();
            break;
        case kCLOCK_Fro12M:
            freq = CLOCK_GetFro12MFreq();
            break;
        case kCLOCK_PllOut:
            freq = CLOCK_GetPllOutFreq();
            break;
        case kCLOCK_UsbClk:
            freq = CLOCK_GetUsbClkFreq();
            break;
        case kCLOCK_WdtOsc:
            freq = CLOCK_GetWdtOscFreq();
            break;
        case kCLOCK_Frg:
            freq = CLOCK_GetFrgClkFreq();
            break;
        case kCLOCK_Dmic:
            freq = CLOCK_GetDmicClkFreq();
            break;

        case kCLOCK_AsyncApbClk:
            freq = CLOCK_GetAsyncApbClkFreq();
            break;

        case kCLOCK_FlexI2S:
            freq = CLOCK_GetI2SMClkFreq();
            break;

        case kCLOCK_Flexcomm0:
            freq = CLOCK_GetFlexCommClkFreq(0U);
            break;
        case kCLOCK_Flexcomm1:
            freq = CLOCK_GetFlexCommClkFreq(1U);
            break;
        case kCLOCK_Flexcomm2:
            freq = CLOCK_GetFlexCommClkFreq(2U);
            break;
        case kCLOCK_Flexcomm3:
            freq = CLOCK_GetFlexCommClkFreq(3U);
            break;
        case kCLOCK_Flexcomm4:
            freq = CLOCK_GetFlexCommClkFreq(4U);
            break;
        case kCLOCK_Flexcomm5:
            freq = CLOCK_GetFlexCommClkFreq(5U);
            break;
        case kCLOCK_Flexcomm6:
            freq = CLOCK_GetFlexCommClkFreq(6U);
            break;
        case kCLOCK_Flexcomm7:
            freq = CLOCK_GetFlexCommClkFreq(7U);
            break;
        default:
            freq = 0U;
            break;
    }

    return freq;
}

/* Set the FLASH wait states for the passed frequency */
void CLOCK_SetFLASHAccessCyclesForFreq(uint32_t iFreq)
{
    if (iFreq <= 12000000U)
    {
        CLOCK_SetFLASHAccessCycles(kCLOCK_Flash1Cycle);
    }
    else if (iFreq <= 30000000U)
    {
        CLOCK_SetFLASHAccessCycles(kCLOCK_Flash2Cycle);
    }
    else if (iFreq <= 60000000U)
    {
        CLOCK_SetFLASHAccessCycles(kCLOCK_Flash3Cycle);
    }
    else if (iFreq <= 85000000U)
    {
        CLOCK_SetFLASHAccessCycles(kCLOCK_Flash4Cycle);
    }
    else
    {
        CLOCK_SetFLASHAccessCycles(kCLOCK_Flash5Cycle);
    }
}

/* Find encoded NDEC value for raw N value, max N = NVALMAX */
static uint32_t pllEncodeN(uint32_t N)
{
    uint32_t x, i;

    /* Find NDec */
    switch (N)
    {
        case 0U:
            x = 0x3FFU;
            break;

        case 1U:
            x = 0x302U;
            break;

        case 2U:
            x = 0x202U;
            break;

        default:
            x = 0x080U;
            for (i = N; i <= NVALMAX; i++)
            {
                x = (((x ^ (x >> 2U) ^ (x >> 3U) ^ (x >> 4U)) & 1U) << 7U) | ((x >> 1U) & 0x7FU);
            }
            break;
    }

    return x & (PLL_NDEC_VAL_M >> PLL_NDEC_VAL_P);
}

/* Find decoded N value for raw NDEC value */
static uint32_t pllDecodeN(uint32_t NDEC)
{
    uint32_t n, x, i;

    /* Find NDec */
    switch (NDEC)
    {
        case 0x3FFU:
            n = 0U;
            break;

        case 0x302U:
            n = 1U;
            break;

        case 0x202U:
            n = 2U;
            break;

        default:
            x = 0x080U;
            n = 0xFFFFFFFFU;
            for (i = NVALMAX; ((i >= 3U) && (n == 0xFFFFFFFFU)); i--)
            {
                x = (((x ^ (x >> 2U) ^ (x >> 3U) ^ (x >> 4U)) & 1U) << 7U) | ((x >> 1U) & 0x7FU);
                if ((x & (PLL_NDEC_VAL_M >> PLL_NDEC_VAL_P)) == NDEC)
                {
                    /* Decoded value of NDEC */
                    n = i;
                }
            }
            break;
    }

    return n;
}

/* Find encoded PDEC value for raw P value, max P = PVALMAX */
static uint32_t pllEncodeP(uint32_t P)
{
    uint32_t x, i;

    /* Find PDec */
    switch (P)
    {
        case 0U:
            x = 0x7FU;
            break;

        case 1U:
            x = 0x62U;
            break;

        case 2U:
            x = 0x42U;
            break;

        default:
            x = 0x10U;
            for (i = P; i <= PVALMAX; i++)
            {
                x = (((x ^ (x >> 2U)) & 1U) << 4U) | ((x >> 1U) & 0xFU);
            }
            break;
    }

    return x & (PLL_PDEC_VAL_M >> PLL_PDEC_VAL_P);
}

/* Find decoded P value for raw PDEC value */
static uint32_t pllDecodeP(uint32_t PDEC)
{
    uint32_t p, x, i;

    /* Find PDec */
    switch (PDEC)
    {
        case 0x7FU:
            p = 0U;
            break;

        case 0x62U:
            p = 1U;
            break;

        case 0x42U:
            p = 2U;
            break;

        default:
            x = 0x10U;
            p = 0xFFFFFFFFU;
            for (i = PVALMAX; ((i >= 3U) && (p == 0xFFFFFFFFU)); i--)
            {
                x = (((x ^ (x >> 2U)) & 1U) << 4U) | ((x >> 1U) & 0xFU);
                if ((x & (PLL_PDEC_VAL_M >> PLL_PDEC_VAL_P)) == PDEC)
                {
                    /* Decoded value of PDEC */
                    p = i;
                }
            }
            break;
    }

    return p;
}

/* Find encoded MDEC value for raw M value, max M = MVALMAX */
static uint32_t pllEncodeM(uint32_t M)
{
    uint32_t i, x;

    /* Find MDec */
    switch (M)
    {
        case 0U:
            x = 0x1FFFFU;
            break;

        case 1U:
            x = 0x18003U;
            break;

        case 2U:
            x = 0x10003U;
            break;

        default:
            x = 0x04000U;
            for (i = M; i <= MVALMAX; i++)
            {
                x = (((x ^ (x >> 1U)) & 1U) << 14U) | ((x >> 1U) & 0x3FFFU);
            }
            break;
    }

    return x & (PLL_SSCG0_MDEC_VAL_M >> PLL_SSCG0_MDEC_VAL_P);
}

/* Find decoded M value for raw MDEC value */
static uint32_t pllDecodeM(uint32_t MDEC)
{
    uint32_t m, i, x;

    /* Find MDec */
    switch (MDEC)
    {
        case 0x1FFFFU:
            m = 0U;
            break;

        case 0x18003U:
            m = 1U;
            break;

        case 0x10003U:
            m = 2U;
            break;

        default:
            x = 0x04000U;
            m = 0xFFFFFFFFU;
            for (i = MVALMAX; ((i >= 3U) && (m == 0xFFFFFFFFU)); i--)
            {
                x = (((x ^ (x >> 1U)) & 1) << 14U) | ((x >> 1U) & 0x3FFFU);
                if ((x & (PLL_SSCG0_MDEC_VAL_M >> PLL_SSCG0_MDEC_VAL_P)) == MDEC)
                {
                    /* Decoded value of MDEC */
                    m = i;
                }
            }
            break;
    }

    return m;
}

/* Find SELP, SELI, and SELR values for raw M value, max M = MVALMAX */
static void pllFindSel(uint32_t M, bool bypassFBDIV2, uint32_t *pSelP, uint32_t *pSelI, uint32_t *pSelR)
{
    /* bandwidth: compute selP from Multiplier */
    if (M < 60U)
    {
        *pSelP = (M >> 1U) + 1U;
    }
    else
    {
        *pSelP = PVALMAX - 1U;
    }

    /* bandwidth: compute selI from Multiplier */
    if (M > 16384U)
    {
        *pSelI = 1U;
    }
    else if (M > 8192U)
    {
        *pSelI = 2U;
    }
    else if (M > 2048U)
    {
        *pSelI = 4U;
    }
    else if (M >= 501U)
    {
        *pSelI = 8U;
    }
    else if (M >= 60U)
    {
        *pSelI = 4U * (1024U / (M + 9U));
    }
    else
    {
        *pSelI = (M & 0x3CU) + 4U;
    }

    if (*pSelI > ((0x3FUL << SYSCON_SYSPLLCTRL_SELI_SHIFT) >> SYSCON_SYSPLLCTRL_SELI_SHIFT))
    {
        *pSelI = ((0x3FUL << SYSCON_SYSPLLCTRL_SELI_SHIFT) >> SYSCON_SYSPLLCTRL_SELI_SHIFT);
    }

    *pSelR = 0U;
}

/* Get predivider (N) from PLL NDEC setting */
static uint32_t findPllPreDiv(uint32_t ctrlReg, uint32_t nDecReg)
{
    uint32_t preDiv = 1;

    /* Direct input is not used? */
    if ((ctrlReg & (1UL << SYSCON_SYSPLLCTRL_DIRECTI_SHIFT)) == 0U)
    {
        /* Decode NDEC value to get (N) pre divider */
        preDiv = pllDecodeN(nDecReg & 0x3FFU);
        if (preDiv == 0U)
        {
            preDiv = 1U;
        }
    }

    /* Adjusted by 1, directi is used to bypass */
    return preDiv;
}

/* Get postdivider (P) from PLL PDEC setting */
static uint32_t findPllPostDiv(uint32_t ctrlReg, uint32_t pDecReg)
{
    uint32_t postDiv = 1U;

    /* Direct input is not used? */
    if ((ctrlReg & SYSCON_SYSPLLCTRL_DIRECTO_MASK) == 0U)
    {
        /* Decode PDEC value to get (P) post divider */
        postDiv = 2U * pllDecodeP(pDecReg & 0x7FU);
        if (postDiv == 0U)
        {
            postDiv = 2U;
        }
    }

    /* Adjusted by 1, directo is used to bypass */
    return postDiv;
}

/* Get multiplier (M) from PLL MDEC and BYPASS_FBDIV2 settings */
static uint32_t findPllMMult(uint32_t ctrlReg, uint32_t mDecReg)
{
    uint32_t mMult = 1U;

    /* Decode MDEC value to get (M) multiplier */
    mMult = pllDecodeM(mDecReg & 0x1FFFFU);

    /* Extra multiply by 2 needed? */
    if ((ctrlReg & (SYSCON_SYSPLLCTRL_BYPASSCCODIV2_MASK)) == 0U)
    {
        mMult = mMult << 1U;
    }

    if (mMult == 0U)
    {
        mMult = 1U;
    }

    return mMult;
}

static uint32_t FindGreatestCommonDivisor(uint32_t m, uint32_t n)
{
    uint32_t tmp;

    while (n != 0U)
    {
        tmp = n;
        n = m % n;
        m = tmp;
    }

    return m;
}

/*
 * Set PLL output based on desired output rate.
 * In this function, the it calculates the PLL setting for output frequency from input clock
 * frequency. The calculation would cost a few time. So it is not recommaned to use it frequently.
 * the "pllctrl", "pllndec", "pllpdec", "pllmdec" would updated in this function.
 */
static pll_error_t CLOCK_GetPllConfigInternal(
    uint32_t finHz, uint32_t foutHz, pll_setup_t *pSetup, bool useFeedbackDiv2, bool useSS)
{
    uint32_t nDivOutHz, fccoHz, multFccoDiv;
    uint32_t pllPreDivider, pllMultiplier, pllBypassFBDIV2, pllPostDivider;
    uint32_t pllDirectInput, pllDirectOutput;
    uint32_t pllSelP, pllSelI, pllSelR, bandsel, uplimoff;

    /* Baseline parameters (no input or output dividers) */
    pllPreDivider = 1U;  /* 1 implies pre-divider will be disabled */
    pllPostDivider = 0U; /* 0 implies post-divider will be disabled */
    pllDirectOutput = 1U;
    if (useFeedbackDiv2)
    {
        /* Using feedback divider for M, so disable bypass */
        pllBypassFBDIV2 = 0U;
    }
    else
    {
        pllBypassFBDIV2 = 1U;
    }
    multFccoDiv = (2U - pllBypassFBDIV2);

    /* Verify output rate parameter */
    if (foutHz > PLL_MAX_CCO_FREQ_MHZ)
    {
        /* Maximum PLL output with post divider=1 cannot go above this frequency */
        return kStatus_PLL_OutputTooHigh;
    }
    if (foutHz < (PLL_MIN_CCO_FREQ_MHZ / (PVALMAX << 1U)))
    {
        /* Minmum PLL output with maximum post divider cannot go below this frequency */
        return kStatus_PLL_OutputTooLow;
    }

    /* If using SS mode, input clock needs to be between 2MHz and 4MHz */
    if (useSS)
    {
        /* Verify input rate parameter */
        if (finHz < PLL_MIN_IN_SSMODE)
        {
            /* Input clock into the PLL cannot be lower than this */
            return kStatus_PLL_InputTooLow;
        }
        /* PLL input in SS mode must be under 4MHz */
        pllPreDivider = finHz / ((PLL_MIN_IN_SSMODE + PLL_MAX_IN_SSMODE) / 2);
        if (pllPreDivider > NVALMAX)
        {
            return kStatus_PLL_InputTooHigh;
        }
    }
    else
    {
        /* Verify input rate parameter */
        if (finHz < PLL_LOWER_IN_LIMIT)
        {
            /* Input clock into the PLL cannot be lower than this */
            return kStatus_PLL_InputTooLow;
        }
    }

    /* Find the optimal CCO frequency for the output and input that
       will keep it inside the PLL CCO range. This may require
       tweaking the post-divider for the PLL. */
    fccoHz = foutHz;
    while (fccoHz < PLL_MIN_CCO_FREQ_MHZ)
    {
        /* CCO output is less than minimum CCO range, so the CCO output
           needs to be bumped up and the post-divider is used to bring
           the PLL output back down. */
        pllPostDivider++;
        if (pllPostDivider > PVALMAX)
        {
            return kStatus_PLL_OutsideIntLimit;
        }

        /* Target CCO goes up, PLL output goes down */
        fccoHz = foutHz * (pllPostDivider * 2U);
        pllDirectOutput = 0U;
    }

    /* Determine if a pre-divider is needed to get the best frequency */
    if ((finHz > PLL_LOWER_IN_LIMIT) && (fccoHz >= finHz) && (useSS == false))
    {
        uint32_t a = FindGreatestCommonDivisor(fccoHz, (multFccoDiv * finHz));

        if (a > 20000U)
        {
            a = (multFccoDiv * finHz) / a;
            if ((a != 0U) && (a < PLL_MAX_N_DIV))
            {
                pllPreDivider = a;
            }
        }
    }

    /* Bypass pre-divider hardware if pre-divider is 1 */
    if (pllPreDivider > 1U)
    {
        pllDirectInput = 0U;
    }
    else
    {
        pllDirectInput = 1U;
    }

    /* Determine PLL multipler */
    nDivOutHz = (finHz / pllPreDivider);
    pllMultiplier = (fccoHz / nDivOutHz) / multFccoDiv;

    /* Find optimal values for filter */
    if (useSS == false)
    {
        /* Will bumping up M by 1 get us closer to the desired CCO frequency? */
        if ((nDivOutHz * ((multFccoDiv * pllMultiplier * 2U) + 1U)) < (fccoHz * 2U))
        {
            pllMultiplier++;
        }

        /* Setup filtering */
        pllFindSel(pllMultiplier, pllBypassFBDIV2, &pllSelP, &pllSelI, &pllSelR);
        bandsel = 1U;
        uplimoff = 0U;

        /* Get encoded value for M (mult) and use manual filter, disable SS mode */
        pSetup->syspllssctrl[0] =
            (PLL_SSCG0_MDEC_VAL_SET(pllEncodeM(pllMultiplier)) | (1U << SYSCON_SYSPLLSSCTRL0_SEL_EXT_SHIFT));

        /* Power down SSC, not used */
        pSetup->syspllssctrl[1] = (1U << SYSCON_SYSPLLSSCTRL1_PD_SHIFT);
    }
    else
    {
        uint64_t fc;

        /* Filtering will be handled by SSC */
        pllSelR = pllSelI = pllSelP = 0U;
        bandsel = 0U;
        uplimoff = 1U;

        /* The PLL multiplier will get very close and slightly under the
           desired target frequency. A small fractional component can be
           added to fine tune the frequency upwards to the target. */
        fc = ((uint64_t)(fccoHz % (multFccoDiv * nDivOutHz)) << 11U) / (multFccoDiv * nDivOutHz);

        /* MDEC set by SSC */
        pSetup->syspllssctrl[0U] = 0U;

        /* Set multiplier */
        pSetup->syspllssctrl[1] = PLL_SSCG1_MD_INT_SET(pllMultiplier) | PLL_SSCG1_MD_FRACT_SET((uint32_t)fc);
    }

    /* Get encoded values for N (prediv) and P (postdiv) */
    pSetup->syspllndec = PLL_NDEC_VAL_SET(pllEncodeN(pllPreDivider));
    pSetup->syspllpdec = PLL_PDEC_VAL_SET(pllEncodeP(pllPostDivider));

    /* PLL control */
    pSetup->syspllctrl = (pllSelR << SYSCON_SYSPLLCTRL_SELR_SHIFT) |                  /* Filter coefficient */
                         (pllSelI << SYSCON_SYSPLLCTRL_SELI_SHIFT) |                  /* Filter coefficient */
                         (pllSelP << SYSCON_SYSPLLCTRL_SELP_SHIFT) |                  /* Filter coefficient */
                         (0 << SYSCON_SYSPLLCTRL_BYPASS_SHIFT) |                      /* PLL bypass mode disabled */
                         (pllBypassFBDIV2 << SYSCON_SYSPLLCTRL_BYPASSCCODIV2_SHIFT) | /* Extra M / 2 divider? */
                         (uplimoff << SYSCON_SYSPLLCTRL_UPLIMOFF_SHIFT) |             /* SS/fractional mode disabled */
                         (bandsel << SYSCON_SYSPLLCTRL_BANDSEL_SHIFT) |        /* Manual bandwidth selection enabled */
                         (pllDirectInput << SYSCON_SYSPLLCTRL_DIRECTI_SHIFT) | /* Bypass pre-divider? */
                         (pllDirectOutput << SYSCON_SYSPLLCTRL_DIRECTO_SHIFT); /* Bypass post-divider? */

    return kStatus_PLL_Success;
}

#if (defined(CLOCK_USR_CFG_PLL_CONFIG_CACHE_COUNT) && CLOCK_USR_CFG_PLL_CONFIG_CACHE_COUNT)
/* Alloct the static buffer for cache. */
static pll_setup_t s_PllSetupCacheStruct[CLOCK_USR_CFG_PLL_CONFIG_CACHE_COUNT];
static uint32_t s_FinHzCache[CLOCK_USR_CFG_PLL_CONFIG_CACHE_COUNT] = {0};
static uint32_t s_FoutHzCache[CLOCK_USR_CFG_PLL_CONFIG_CACHE_COUNT] = {0};
static bool s_UseFeedbackDiv2Cache[CLOCK_USR_CFG_PLL_CONFIG_CACHE_COUNT] = {false};
static bool s_UseSSCache[CLOCK_USR_CFG_PLL_CONFIG_CACHE_COUNT] = {false};
static uint32_t s_PllSetupCacheIdx = 0U;
#endif /* CLOCK_USR_CFG_PLL_CONFIG_CACHE_COUNT */

/*
 * Calculate the PLL setting values from input clock freq to output freq.
 */
static pll_error_t CLOCK_GetPllConfig(
    uint32_t finHz, uint32_t foutHz, pll_setup_t *pSetup, bool useFeedbackDiv2, bool useSS)
{
    pll_error_t retErr;
#if (defined(CLOCK_USR_CFG_PLL_CONFIG_CACHE_COUNT) && CLOCK_USR_CFG_PLL_CONFIG_CACHE_COUNT)
    uint32_t i;

    for (i = 0U; i < CLOCK_USR_CFG_PLL_CONFIG_CACHE_COUNT; i++)
    {
        if (   (finHz == s_FinHzCache[i])
            && (foutHz == s_FoutHzCache[i]) 
            && (useFeedbackDiv2 == s_UseFeedbackDiv2Cache[i])
            && (useSS == s_UseSSCache[i]) )
        {
            /* Hit the target in cache buffer. */
            pSetup->syspllctrl = s_PllSetupCacheStruct[i].syspllctrl;
            pSetup->syspllndec = s_PllSetupCacheStruct[i].syspllndec;
            pSetup->syspllpdec = s_PllSetupCacheStruct[i].syspllpdec;
            pSetup->syspllssctrl[0] = s_PllSetupCacheStruct[i].syspllssctrl[0];
            pSetup->syspllssctrl[1] = s_PllSetupCacheStruct[i].syspllssctrl[1];
            retErr = kStatus_PLL_Success;
            break;
        }
    }

    if (i < CLOCK_USR_CFG_PLL_CONFIG_CACHE_COUNT)
    {
        return retErr;
    }
#endif /* CLOCK_USR_CFG_PLL_CONFIG_CACHE_COUNT */

    retErr = CLOCK_GetPllConfigInternal( finHz, foutHz, pSetup, useFeedbackDiv2, useSS);

#if (defined(CLOCK_USR_CFG_PLL_CONFIG_CACHE_COUNT) && CLOCK_USR_CFG_PLL_CONFIG_CACHE_COUNT)
    /* Cache the most recent calulation result into buffer. */
    s_FinHzCache[s_PllSetupCacheIdx] = finHz;
    s_FoutHzCache[s_PllSetupCacheIdx] = foutHz;
    s_UseFeedbackDiv2Cache[s_PllSetupCacheIdx] = useFeedbackDiv2;
    s_UseSSCache[s_PllSetupCacheIdx] = useSS;

    s_PllSetupCacheStruct[s_PllSetupCacheIdx].syspllctrl = pSetup->syspllctrl;
    s_PllSetupCacheStruct[s_PllSetupCacheIdx].syspllndec = pSetup->syspllndec;
    s_PllSetupCacheStruct[s_PllSetupCacheIdx].syspllpdec = pSetup->syspllpdec;
    s_PllSetupCacheStruct[s_PllSetupCacheIdx].syspllssctrl[0] = pSetup->syspllssctrl[0];
    s_PllSetupCacheStruct[s_PllSetupCacheIdx].syspllssctrl[1] = pSetup->syspllssctrl[1];
    /* Update the index for next available buffer. */
    s_PllSetupCacheIdx = (s_PllSetupCacheIdx + 1U) % CLOCK_USR_CFG_PLL_CONFIG_CACHE_COUNT;
#endif /* CLOCK_USR_CFG_PLL_CONFIG_CACHE_COUNT */

    return retErr;
}

/* Update local PLL rate variable */
static void CLOCK_GetSystemPLLOutFromSetupUpdate(pll_setup_t *pSetup)
{
    s_Pll_Freq = CLOCK_GetSystemPLLOutFromSetup(pSetup);
}

/* Return System PLL input clock rate */
uint32_t CLOCK_GetSystemPLLInClockRate(void)
{
    uint32_t clkRate = 0U;

    switch ((SYSCON->SYSPLLCLKSEL & SYSCON_SYSPLLCLKSEL_SEL_MASK))
    {
        case 0x00U:
            clkRate = CLK_FRO_12MHZ;
            break;

        case 0x01U:
            clkRate = CLOCK_GetExtClkFreq();
            break;

        case 0x02U:
            clkRate = CLOCK_GetWdtOscFreq();
            break;

        case 0x03U:
            clkRate = CLOCK_GetOsc32KFreq();
            break;

        default:
            clkRate = 0U;
            break;
    }

    return clkRate;
}

/* Return System PLL output clock rate from setup structure */
uint32_t CLOCK_GetSystemPLLOutFromSetup(pll_setup_t *pSetup)
{
    uint32_t prediv, postdiv, mMult, inPllRate;
    uint64_t workRate;

    /* Get the input clock frequency of PLL. */
    inPllRate = CLOCK_GetSystemPLLInClockRate();

    /*
    * If the PLL is bypassed, PLL would not be used and the output of PLL module would just be the input clock.
    */
    if ((pSetup->syspllctrl & (SYSCON_SYSPLLCTRL_BYPASS_MASK)) == 0U)
    {
        /* PLL is not in bypass mode, get pre-divider, and M divider, post-divider. */
        /*
         * 1. Pre-divider
         * Pre-divider is only available when the DIRECTI is disabled.
         */
        if (0U == (pSetup->syspllctrl & SYSCON_SYSPLLCTRL_DIRECTI_MASK))
        {
            prediv = findPllPreDiv(pSetup->syspllctrl, pSetup->syspllndec);
        }
        else
        {
            prediv = 1U; /* The pre-divider is bypassed. */
        }
        /* Adjust input clock */
        inPllRate = inPllRate / prediv;

        /*
         * 2. M divider
         * If using the SS, use the multiplier.
         */
        if (pSetup->syspllssctrl[1] & (SYSCON_SYSPLLSSCTRL1_PD_MASK))
        {
            /* MDEC used for rate */
            mMult = findPllMMult(pSetup->syspllctrl, pSetup->syspllssctrl[0]);
            workRate = (uint64_t)inPllRate * (uint64_t)mMult;
        }
        else
        {
            uint64_t fract;

            /* SS multipler used for rate */
            mMult = (pSetup->syspllssctrl[1] & PLL_SSCG1_MD_INT_M) >> PLL_SSCG1_MD_INT_P;
            workRate = (uint64_t)inPllRate * (uint64_t)mMult;

            /* Adjust by fractional */
            fract = (uint64_t)(pSetup->syspllssctrl[1] & PLL_SSCG1_MD_FRACT_M) >> PLL_SSCG1_MD_FRACT_P;
            workRate = workRate + ((inPllRate * fract) / 0x800U);
        }

        /*
         * 3. Post-divider
         * Post-divider is only available when the DIRECTO is disabled.
         */
        if (0U == (pSetup->syspllctrl & SYSCON_SYSPLLCTRL_DIRECTO_MASK))
        {
            postdiv = findPllPostDiv(pSetup->syspllctrl, pSetup->syspllpdec);
        }
        else
        {
            postdiv = 1U; /* The post-divider is bypassed. */
        }
        workRate = workRate / ((uint64_t)postdiv);
    }
    else
    {
        /* In bypass mode */
        workRate = (uint64_t)inPllRate;
    }

    return (uint32_t)workRate;
}

/* Set the current PLL Rate */
void CLOCK_SetStoredPLLClockRate(uint32_t rate)
{
    s_Pll_Freq = rate;
}

/* Return System PLL output clock rate */
uint32_t CLOCK_GetSystemPLLOutClockRate(bool recompute)
{
    pll_setup_t Setup;
    uint32_t rate;

    if ((recompute) || (s_Pll_Freq == 0U))
    {
        Setup.syspllctrl = SYSCON->SYSPLLCTRL;
        Setup.syspllndec = SYSCON->SYSPLLNDEC;
        Setup.syspllpdec = SYSCON->SYSPLLPDEC;
        Setup.syspllssctrl[0] = SYSCON->SYSPLLSSCTRL0;
        Setup.syspllssctrl[1] = SYSCON->SYSPLLSSCTRL1;

        CLOCK_GetSystemPLLOutFromSetupUpdate(&Setup);
    }

    rate = s_Pll_Freq;

    return rate;
}

/* Set PLL output based on the passed PLL setup data */
pll_error_t CLOCK_SetupPLLData(pll_config_t *pControl, pll_setup_t *pSetup)
{
    uint32_t inRate;
    bool useSS = (bool)((pControl->flags & PLL_CONFIGFLAG_FORCENOFRACT) == 0U);
    bool useFbDiv2;

    pll_error_t pllError;

    /* Determine input rate for the PLL */
    if ((pControl->flags & PLL_CONFIGFLAG_USEINRATE) != 0U)
    {
        inRate = pControl->inputRate;
    }
    else
    {
        inRate = CLOCK_GetSystemPLLInClockRate();
    }

    if ((pSetup->flags & PLL_SETUPFLAG_USEFEEDBACKDIV2) != 0U)
    {
        useFbDiv2 = true;
    }
    else
    {
        useFbDiv2 = false;
    }

    /* PLL flag options */
    pllError = CLOCK_GetPllConfig(inRate, pControl->desiredRate, pSetup, useFbDiv2, useSS);
    if ((useSS) && (pllError == kStatus_PLL_Success))
    {
        /* If using SS mode, then some tweaks are made to the generated setup */
        pSetup->syspllssctrl[1] |= (uint32_t)pControl->ss_mf | (uint32_t)pControl->ss_mr | (uint32_t)pControl->ss_mc;
        if (pControl->mfDither)
        {
            pSetup->syspllssctrl[1] |= (1U << SYSCON_SYSPLLSSCTRL1_DITHER_SHIFT);
        }
    }

    return pllError;
}

/* Set PLL output from PLL setup structure */
pll_error_t CLOCK_SetupSystemPLLPrec(pll_setup_t *pSetup, uint32_t flagcfg)
{
    /* Power off PLL during setup changes */
    POWER_EnablePD(kPDRUNCFG_PD_SYS_PLL0);

    pSetup->flags = flagcfg;

    /* Write PLL setup data */
    SYSCON->SYSPLLCTRL = pSetup->syspllctrl;
    SYSCON->SYSPLLNDEC = pSetup->syspllndec;
    SYSCON->SYSPLLNDEC = pSetup->syspllndec | (1U << SYSCON_SYSPLLNDEC_NREQ_SHIFT); /* latch */
    SYSCON->SYSPLLPDEC = pSetup->syspllpdec;
    SYSCON->SYSPLLPDEC = pSetup->syspllpdec | (1U << SYSCON_SYSPLLPDEC_PREQ_SHIFT); /* latch */
    SYSCON->SYSPLLSSCTRL0 = pSetup->syspllssctrl[0];
    SYSCON->SYSPLLSSCTRL0 = pSetup->syspllssctrl[0] | (1U << SYSCON_SYSPLLSSCTRL0_MREQ_SHIFT); /* latch */
    SYSCON->SYSPLLSSCTRL1 = pSetup->syspllssctrl[1];
    SYSCON->SYSPLLSSCTRL1 = pSetup->syspllssctrl[1] | (1U << SYSCON_SYSPLLSSCTRL1_MDREQ_SHIFT); /* latch */

    /* Flags for lock or power on */
    if ((pSetup->flags & (PLL_SETUPFLAG_POWERUP | PLL_SETUPFLAG_WAITLOCK)) != 0U)
    {
        /* If turning the PLL back on, perform the following sequence to accelerate PLL lock */
        volatile uint32_t delayX;
        uint32_t maxCCO = (1U << 18U) | 0x5dd2U; /* CCO = 1.6Ghz + MDEC enabled*/
        uint32_t curSSCTRL = SYSCON->SYSPLLSSCTRL0 & ~(1U << 17U);

        /* Initialize  and power up PLL */
        SYSCON->SYSPLLSSCTRL0 = maxCCO;
        POWER_DisablePD(kPDRUNCFG_PD_SYS_PLL0);

        /* Set mreq to activate */
        SYSCON->SYSPLLSSCTRL0 = maxCCO | (1U << 17U);

        /* Delay for 72 uSec @ 12Mhz */
        for (delayX = 0U; delayX < 172U; ++delayX)
        {
        }

        /* clear mreq to prepare for restoring mreq */
        SYSCON->SYSPLLSSCTRL0 = curSSCTRL;

        /* set original value back and activate */
        SYSCON->SYSPLLSSCTRL0 = curSSCTRL | (1U << 17U);

        /* Enable peripheral states by setting low */
        POWER_DisablePD(kPDRUNCFG_PD_SYS_PLL0);
    }
    if ((pSetup->flags & PLL_SETUPFLAG_WAITLOCK) != 0U)
    {
        while (CLOCK_IsSystemPLLLocked() == false)
        {
        }
    }

    /* Update current programmed PLL rate var */
    CLOCK_GetSystemPLLOutFromSetupUpdate(pSetup);

    /* System voltage adjustment, occurs prior to setting main system clock */
    if ((pSetup->flags & PLL_SETUPFLAG_ADGVOLT) != 0U)
    {
        POWER_SetVoltageForFreq(s_Pll_Freq);
    }

    return kStatus_PLL_Success;
}

/* Setup PLL Frequency from pre-calculated value */
pll_error_t CLOCK_SetPLLFreq(const pll_setup_t *pSetup)
{
    /* Power off PLL during setup changes */
    POWER_EnablePD(kPDRUNCFG_PD_SYS_PLL0);

    /* Write PLL setup data */
    SYSCON->SYSPLLCTRL = pSetup->syspllctrl;
    SYSCON->SYSPLLNDEC = pSetup->syspllndec;
    SYSCON->SYSPLLNDEC = pSetup->syspllndec | (1U << SYSCON_SYSPLLNDEC_NREQ_SHIFT); /* latch */
    SYSCON->SYSPLLPDEC = pSetup->syspllpdec;
    SYSCON->SYSPLLPDEC = pSetup->syspllpdec | (1U << SYSCON_SYSPLLPDEC_PREQ_SHIFT); /* latch */
    SYSCON->SYSPLLSSCTRL0 = pSetup->syspllssctrl[0];
    SYSCON->SYSPLLSSCTRL0 = pSetup->syspllssctrl[0] | (1U << SYSCON_SYSPLLSSCTRL0_MREQ_SHIFT); /* latch */
    SYSCON->SYSPLLSSCTRL1 = pSetup->syspllssctrl[1];
    SYSCON->SYSPLLSSCTRL1 = pSetup->syspllssctrl[1] | (1U << SYSCON_SYSPLLSSCTRL1_MDREQ_SHIFT); /* latch */

    /* Flags for lock or power on */
    if ((pSetup->flags & (PLL_SETUPFLAG_POWERUP | PLL_SETUPFLAG_WAITLOCK)) != 0)
    {
        /* If turning the PLL back on, perform the following sequence to accelerate PLL lock */
        volatile uint32_t delayX;
        uint32_t maxCCO = (1U << 18U) | 0x5dd2U; /* CCO = 1.6Ghz + MDEC enabled*/
        uint32_t curSSCTRL = SYSCON->SYSPLLSSCTRL0 & ~(1U << 17U);

        /* Initialize  and power up PLL */
        SYSCON->SYSPLLSSCTRL0 = maxCCO;
        POWER_DisablePD(kPDRUNCFG_PD_SYS_PLL0);

        /* Set mreq to activate */
        SYSCON->SYSPLLSSCTRL0 = maxCCO | (1U << 17U);

        /* Delay for 72 uSec @ 12Mhz */
        for (delayX = 0U; delayX < 172U; ++delayX)
        {
        }

        /* clear mreq to prepare for restoring mreq */
        SYSCON->SYSPLLSSCTRL0 = curSSCTRL;

        /* set original value back and activate */
        SYSCON->SYSPLLSSCTRL0 = curSSCTRL | (1U << 17U);

        /* Enable peripheral states by setting low */
        POWER_DisablePD(kPDRUNCFG_PD_SYS_PLL0);
    }
    if ((pSetup->flags & PLL_SETUPFLAG_WAITLOCK) != 0U)
    {
        while (CLOCK_IsSystemPLLLocked() == false)
        {
        }
    }

    /* Update current programmed PLL rate var */
    s_Pll_Freq = pSetup->pllRate;

    return kStatus_PLL_Success;
}

/* Set System PLL clock based on the input frequency and multiplier */
void CLOCK_SetupSystemPLLMult(uint32_t multiply_by, uint32_t input_freq)
{
    uint32_t cco_freq = input_freq * multiply_by;
    uint32_t pdec = 1U;
    uint32_t selr;
    uint32_t seli;
    uint32_t selp;
    uint32_t mdec, ndec;

    uint32_t directo = SYSCON_SYSPLLCTRL_DIRECTO(1);

    while (cco_freq < 75000000U)
    {
        multiply_by <<= 1U; /* double value in each iteration */
        pdec <<= 1U;        /* correspondingly double pdec to cancel effect of double msel */
        cco_freq = input_freq * multiply_by;
    }
    selr = 0U;
    if (multiply_by < 60U)
    {
        seli = (multiply_by & 0x3cU) + 4U;
        selp = (multiply_by >> 1U) + 1U;
    }
    else
    {
        selp = 31U;
        if (multiply_by > 16384U)
        {
            seli = 1U;
        }
        else if (multiply_by > 8192U)
        {
            seli = 2U;
        }
        else if (multiply_by > 2048U)
        {
            seli = 4U;
        }
        else if (multiply_by >= 501U)
        {
            seli = 8U;
        }
        else
        {
            seli = 4U * (1024U / (multiply_by + 9U));
        }
    }

    if (pdec > 1U)
    {
        directo = 0U;     /* use post divider */
        pdec = pdec / 2U; /* Account for minus 1 encoding */
                          /* Translate P value */
        switch (pdec)
        {
            case 1U:
                pdec = 0x62U; /* 1  * 2 */
                break;
            case 2U:
                pdec = 0x42U; /* 2  * 2 */
                break;
            case 4U:
                pdec = 0x02U; /* 4  * 2 */
                break;
            case 8U:
                pdec = 0x0bU; /* 8  * 2 */
                break;
            case 16U:
                pdec = 0x11U; /* 16 * 2 */
                break;
            case 32U:
                pdec = 0x08U; /* 32 * 2 */
                break;
            default:
                pdec = 0x08U;
                break;
        }
    }

    mdec = PLL_SSCG0_MDEC_VAL_SET(pllEncodeM(multiply_by));
    ndec = 0x302U; /* pre divide by 1 (hardcoded) */

    SYSCON->SYSPLLCTRL = SYSCON_SYSPLLCTRL_BANDSEL(1) | directo | SYSCON_SYSPLLCTRL_BYPASSCCODIV2(1) |
                         (selr << SYSCON_SYSPLLCTRL_SELR_SHIFT) | (seli << SYSCON_SYSPLLCTRL_SELI_SHIFT) |
                         (selp << SYSCON_SYSPLLCTRL_SELP_SHIFT);
    SYSCON->SYSPLLPDEC = pdec | (1U << 7U);  /* set Pdec value and assert preq */
    SYSCON->SYSPLLNDEC = ndec | (1U << 10U); /* set Pdec value and assert preq */
    SYSCON->SYSPLLSSCTRL0 =
        (1U << 18U) | (1U << 17U) | mdec; /* select non sscg MDEC value, assert mreq and select mdec value */
}
bool CLOCK_EnableUsbfs0Clock(clock_usb_src_t src, uint32_t freq)
{
    bool ret = true;

    CLOCK_DisableClock(kCLOCK_Usbd0);

    if (kCLOCK_UsbSrcFro == src)
    {
        switch (freq)
        {
            case 96000000U:
                CLOCK_SetClkDiv(kCLOCK_DivUsbClk, 2, false); /*!< Div by 2 to get 48MHz, no divider reset */
                break;
            case 48000000U:
                CLOCK_SetClkDiv(kCLOCK_DivUsbClk, 1, false); /*!< Div by 1 to get 48MHz, no divider reset */
                break;
            default:
                ret = false;
                break;
        }
        /* Turn ON FRO HF and let it adjust TRIM value based on USB SOF */
        SYSCON->FROCTRL = (SYSCON->FROCTRL & ~((0x01U << 15U) | (0xFU << 26U))) | SYSCON_FROCTRL_HSPDCLK_MASK |
                          SYSCON_FROCTRL_USBCLKADJ_MASK;
        /* select FRO 96 or 48 MHz */
        CLOCK_AttachClk(kFRO_HF_to_USB_CLK);
    }
    else
    {
        /*TODO , we only implement FRO as usb clock source*/
        ret = false;
    }

    CLOCK_EnableClock(kCLOCK_Usbd0);

    return ret;
}