spi_flash_sfud.c 23.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/*
 * File      : spi_flash_sfud.c
 * This file is part of RT-Thread RTOS
 * COPYRIGHT (C) 2006 - 2016, RT-Thread Development Team
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License along
 *  with this program; if not, write to the Free Software Foundation, Inc.,
 *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Change Logs:
 * Date           Author       Notes
 * 2016-09-28     armink       first version.
 */

#include <stdint.h>
#include <rtdevice.h>
#include "spi_flash.h"
#include "spi_flash_sfud.h"

#ifdef RT_USING_SFUD

#if RT_DEBUG_SFUD
33
#define DEBUG_TRACE         rt_kprintf("[SFUD] "); rt_kprintf
34
#else
35
#define DEBUG_TRACE(...)
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
#endif /* RT_DEBUG_SFUD */

#ifndef RT_SFUD_DEFAULT_SPI_CFG
/* read the JEDEC SFDP command must run at 50 MHz or less */
#define RT_SFUD_DEFAULT_SPI_CFG                 \
{                                               \
    .mode = RT_SPI_MODE_0 | RT_SPI_MSB,         \
    .data_width = 8,                            \
    .max_hz = 50 * 1000 * 1000,                 \
}
#endif

static char log_buf[RT_CONSOLEBUF_SIZE];

void sfud_log_debug(const char *file, const long line, const char *format, ...);

B
bernard 已提交
52
static rt_err_t rt_sfud_control(rt_device_t dev, int cmd, void *args) {
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
    RT_ASSERT(dev != RT_NULL);

    switch (cmd) {
    case RT_DEVICE_CTRL_BLK_GETGEOME: {
        struct rt_device_blk_geometry *geometry = (struct rt_device_blk_geometry *) args;
        struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);

        if (rtt_dev == RT_NULL || geometry == RT_NULL) {
            return -RT_ERROR;
        }

        geometry->bytes_per_sector = rtt_dev->geometry.bytes_per_sector;
        geometry->sector_count = rtt_dev->geometry.sector_count;
        geometry->block_size = rtt_dev->geometry.block_size;
        break;
    }
    case RT_DEVICE_CTRL_BLK_ERASE: {
        rt_uint32_t *addrs = (rt_uint32_t *) args, start_addr = addrs[0], end_addr = addrs[1], phy_start_addr;
        struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
        sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data);
        rt_size_t phy_size;

        if (addrs == RT_NULL || start_addr > end_addr || rtt_dev == RT_NULL || sfud_dev == RT_NULL) {
            return -RT_ERROR;
        }

        phy_start_addr = start_addr * rtt_dev->geometry.bytes_per_sector;
        phy_size = (end_addr - start_addr) * rtt_dev->geometry.bytes_per_sector;

        if (sfud_erase(sfud_dev, phy_start_addr, phy_size) != SFUD_SUCCESS) {
            return -RT_ERROR;
        }
        break;
    }
    }

    return RT_EOK;
}


static rt_size_t rt_sfud_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size) {
    struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
    sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data);
    /* change the block devices logic address to physical address */
    rt_off_t phy_pos = pos * rtt_dev->geometry.bytes_per_sector;
    rt_size_t phy_size = size * rtt_dev->geometry.bytes_per_sector;

    if (sfud_read(sfud_dev, phy_pos, phy_size, buffer) != SFUD_SUCCESS) {
        return 0;
    } else {
        return size;
    }
}

static rt_size_t rt_sfud_write(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size) {
    struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
    sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data);
    /* change the block devices logic address to physical address */
    rt_off_t phy_pos = pos * rtt_dev->geometry.bytes_per_sector;
    rt_size_t phy_size = size * rtt_dev->geometry.bytes_per_sector;

    if (sfud_erase_write(sfud_dev, phy_pos, phy_size, buffer) != SFUD_SUCCESS) {
        return 0;
    } else {
        return size;
    }
}

/**
 * SPI write data then read data
 */
static sfud_err spi_write_read(const sfud_spi *spi, const uint8_t *write_buf, size_t write_size, uint8_t *read_buf,
        size_t read_size) {
    sfud_err result = SFUD_SUCCESS;
    sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
    struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);

    if (write_size) {
        RT_ASSERT(write_buf);
    }
    if (read_size) {
        RT_ASSERT(read_buf);
    }

    if (write_size && read_size) {
        if (rt_spi_send_then_recv(rtt_dev->rt_spi_device, write_buf, write_size, read_buf, read_size) != RT_EOK) {
            result = SFUD_ERR_TIMEOUT;
        }
    } else if (write_size) {
        if (rt_spi_send(rtt_dev->rt_spi_device, write_buf, write_size) == 0) {
            result = SFUD_ERR_TIMEOUT;
        }
    } else {
        if (rt_spi_recv(rtt_dev->rt_spi_device, read_buf, read_size) == 0) {
            result = SFUD_ERR_TIMEOUT;
        }
    }

    return result;
}

static void spi_lock(const sfud_spi *spi) {
    sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
    struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);

    rt_mutex_take(&(rtt_dev->lock), RT_WAITING_FOREVER);
}

static void spi_unlock(const sfud_spi *spi) {
    sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
    struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);

    rt_mutex_release(&(rtt_dev->lock));
}

static void retry_delay_100us(void) {
    /* 100 microsecond delay */
    rt_thread_delay((RT_TICK_PER_SECOND * 1 + 9999) / 10000);
}

/**
 * This function is print debug info.
 *
 * @param file the file which has call this function
 * @param line the line number which has call this function
 * @param format output format
 * @param ... args
 */
void sfud_log_debug(const char *file, const long line, const char *format, ...) {
    va_list args;

    /* args point to the first variable parameter */
    va_start(args, format);
    rt_kprintf("[SFUD](%s:%ld) ", file, line);
    /* must use vprintf to print */
    vsnprintf(log_buf, sizeof(log_buf), format, args);
    rt_kprintf("%s\n", log_buf);
    va_end(args);
}

/**
 * This function is print routine info.
 *
 * @param format output format
 * @param ... args
 */
void sfud_log_info(const char *format, ...) {
    va_list args;

    /* args point to the first variable parameter */
    va_start(args, format);
    rt_kprintf("[SFUD]");
    /* must use vprintf to print */
    vsnprintf(log_buf, sizeof(log_buf), format, args);
    rt_kprintf("%s\n", log_buf);
    va_end(args);
}

sfud_err sfud_spi_port_init(sfud_flash *flash) {
    sfud_err result = SFUD_SUCCESS;

    /* port SPI device interface */
    flash->spi.wr = spi_write_read;
    flash->spi.lock = spi_lock;
    flash->spi.unlock = spi_unlock;
    flash->spi.user_data = flash;
    /* 100 microsecond delay */
    flash->retry.delay = retry_delay_100us;
    /* 60 seconds timeout */
    flash->retry.times = 60 * 10000;


    return result;
}

/**
229
 * Probe SPI flash by SFUD(Serial Flash Universal Driver) driver library and though SPI device.
230
 *
231 232
 * @param spi_flash_dev_name the name which will create SPI flash device
 * @param spi_dev_name using SPI device name
233
 *
234
 * @return probed SPI flash device, probe failed will return RT_NULL
235
 */
236 237 238 239
rt_spi_flash_device_t rt_sfud_flash_probe(const char *spi_flash_dev_name, const char *spi_dev_name) {
    rt_spi_flash_device_t rtt_dev = RT_NULL;
    sfud_flash *sfud_dev = RT_NULL;
    char *spi_flash_dev_name_bak = RT_NULL, *spi_dev_name_bak = RT_NULL;
240 241 242
    /* using default flash SPI configuration for initialize SPI Flash
     * @note you also can change the SPI to other configuration after initialized finish */
    struct rt_spi_configuration cfg = RT_SFUD_DEFAULT_SPI_CFG;
243 244
    extern sfud_err sfud_device_init(sfud_flash *flash);

245 246 247 248 249 250 251 252
    RT_ASSERT(spi_flash_dev_name);
    RT_ASSERT(spi_dev_name);

    rtt_dev = (rt_spi_flash_device_t) rt_malloc(sizeof(struct spi_flash_device));
    sfud_dev = (sfud_flash_t) rt_malloc(sizeof(sfud_flash));
    spi_flash_dev_name_bak = (char *) rt_malloc(rt_strlen(spi_flash_dev_name) + 1);
    spi_dev_name_bak = (char *) rt_malloc(rt_strlen(spi_dev_name) + 1);

253
    if (rtt_dev) {
254
        rt_memset(rtt_dev, 0, sizeof(struct spi_flash_device));
255 256 257 258 259
        /* initialize lock */
        rt_mutex_init(&(rtt_dev->lock), spi_flash_dev_name, RT_IPC_FLAG_FIFO);
    }
    
    if (rtt_dev && sfud_dev && spi_flash_dev_name_bak && spi_dev_name_bak) {
260 261 262 263 264 265 266 267 268 269
        rt_memset(sfud_dev, 0, sizeof(sfud_flash));
        rt_strncpy(spi_flash_dev_name_bak, spi_flash_dev_name, rt_strlen(spi_flash_dev_name));
        rt_strncpy(spi_dev_name_bak, spi_dev_name, rt_strlen(spi_dev_name));
        /* make string end sign */
        spi_flash_dev_name_bak[rt_strlen(spi_flash_dev_name)] = '\0';
        spi_dev_name_bak[rt_strlen(spi_dev_name)] = '\0';
        /* SPI configure */
        {
            /* RT-Thread SPI device initialize */
            rtt_dev->rt_spi_device = (struct rt_spi_device *) rt_device_find(spi_dev_name);
270
            if (rtt_dev->rt_spi_device == RT_NULL || rtt_dev->rt_spi_device->parent.type != RT_Device_Class_SPIDevice) {
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
                rt_kprintf("ERROR: SPI device %s not found!\n", spi_dev_name);
                goto error;
            }
            sfud_dev->spi.name = spi_dev_name_bak;
            rt_spi_configure(rtt_dev->rt_spi_device, &cfg);
        }
        /* SFUD flash device initialize */
        {
            sfud_dev->name = spi_flash_dev_name_bak;
            /* accessed each other */
            rtt_dev->user_data = sfud_dev;
            rtt_dev->flash_device.user_data = rtt_dev;
            sfud_dev->user_data = rtt_dev;
            /* initialize SFUD device */
            if (sfud_device_init(sfud_dev) != SFUD_SUCCESS) {
                rt_kprintf("ERROR: SPI flash probe failed by SPI device %s.\n", spi_dev_name);
                goto error;
            }
            /* when initialize success, then copy SFUD flash device's geometry to RT-Thread SPI flash device */
            rtt_dev->geometry.sector_count = sfud_dev->chip.capacity / sfud_dev->chip.erase_gran;
            rtt_dev->geometry.bytes_per_sector = sfud_dev->chip.erase_gran;
            rtt_dev->geometry.block_size = sfud_dev->chip.erase_gran;
        }
294

295 296 297 298 299 300 301 302
        /* register device */
        rtt_dev->flash_device.type = RT_Device_Class_Block;
        rtt_dev->flash_device.init = RT_NULL;
        rtt_dev->flash_device.open = RT_NULL;
        rtt_dev->flash_device.close = RT_NULL;
        rtt_dev->flash_device.read = rt_sfud_read;
        rtt_dev->flash_device.write = rt_sfud_write;
        rtt_dev->flash_device.control = rt_sfud_control;
303

304 305 306 307 308 309 310
        rt_device_register(&(rtt_dev->flash_device), spi_flash_dev_name, RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_STANDALONE);

        DEBUG_TRACE("Probe SPI flash %s by SPI device %s success.\n",spi_flash_dev_name, spi_dev_name);
        return rtt_dev;
    } else {
        rt_kprintf("ERROR: Low memory.\n");
        goto error;
311 312
    }

313
error:
314 315 316 317

    if (rtt_dev) {
        rt_mutex_detach(&(rtt_dev->lock));
    }
318 319 320 321 322
    /* may be one of objects memory was malloc success, so need free all */
    rt_free(rtt_dev);
    rt_free(sfud_dev);
    rt_free(spi_flash_dev_name_bak);
    rt_free(spi_dev_name_bak);
323

324 325
    return RT_NULL;
}
326

327 328 329 330 331 332 333 334 335
/**
 * Delete SPI flash device
 *
 * @param spi_flash_dev SPI flash device
 *
 * @return the operation status, RT_EOK on successful
 */
rt_err_t rt_sfud_flash_delete(rt_spi_flash_device_t spi_flash_dev) {
    sfud_flash *sfud_flash_dev = (sfud_flash *) (spi_flash_dev->user_data);
336

337 338 339 340 341 342 343 344 345 346 347
    RT_ASSERT(spi_flash_dev);
    RT_ASSERT(sfud_flash_dev);

    rt_device_unregister(&(spi_flash_dev->flash_device));

    rt_mutex_detach(&(spi_flash_dev->lock));

    rt_free(sfud_flash_dev->spi.name);
    rt_free(sfud_flash_dev->name);
    rt_free(sfud_flash_dev);
    rt_free(spi_flash_dev);
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365

    return RT_EOK;
}

#if defined(RT_USING_FINSH) && defined(FINSH_USING_MSH)

#include <finsh.h>

static void sf(uint8_t argc, char **argv) {

#define CMD_SETECT_INDEX              0
#define CMD_READ_INDEX                1
#define CMD_WRITE_INDEX               2
#define CMD_ERASE_INDEX               3
#define CMD_RW_STATUS_INDEX           4
#define CMD_BENCH_INDEX               5

    sfud_err result = SFUD_SUCCESS;
366 367
    static const sfud_flash *sfud_dev = NULL;
    static rt_spi_flash_device_t rtt_dev = NULL, rtt_dev_bak = NULL;
368 369 370
    size_t i = 0;

    const char* sf_help_info[] = {
371
            [CMD_SETECT_INDEX]    = "sf probe [spi_device]           - probe and init SPI flash by given 'spi_device'",
372 373 374 375
            [CMD_READ_INDEX]      = "sf read addr size               - read 'size' bytes starting at 'addr'",
            [CMD_WRITE_INDEX]     = "sf write addr data1 ... dataN   - write some bytes 'data' to flash starting at 'addr'",
            [CMD_ERASE_INDEX]     = "sf erase addr size              - erase 'size' bytes starting at 'addr'",
            [CMD_RW_STATUS_INDEX] = "sf status [<volatile> <status>] - read or write '1:volatile|0:non-volatile' 'status'",
376
            [CMD_BENCH_INDEX]     = "sf bench                        - full chip benchmark. DANGER: It will erase full chip!",
377 378 379 380 381 382 383 384 385 386 387 388
    };

    if (argc < 2) {
        rt_kprintf("Usage:\n");
        for (i = 0; i < sizeof(sf_help_info) / sizeof(char*); i++) {
            rt_kprintf("%s\n", sf_help_info[i]);
        }
        rt_kprintf("\n");
    } else {
        const char *operator = argv[1];
        uint32_t addr, size;

389
        if (!strcmp(operator, "probe")) {
390 391 392
            if (argc < 3) {
                rt_kprintf("Usage: %s.\n", sf_help_info[CMD_SETECT_INDEX]);
            } else {
393 394 395 396
                char *spi_dev_name = argv[2];
                rtt_dev_bak = rtt_dev;
                rtt_dev = rt_sfud_flash_probe("sf_cmd", spi_dev_name);
                if (!rtt_dev) {
397 398
                    return;
                }
399 400 401
                /* already probe then delete the old SPI flash device */
                if(rtt_dev_bak) {
                    rt_sfud_flash_delete(rtt_dev_bak);
402
                }
403 404 405
                sfud_dev = (sfud_flash_t)rtt_dev->user_data;
                if (sfud_dev->chip.capacity < 1024 * 1024) {
                    rt_kprintf("%d KB %s is current selected device.\n", sfud_dev->chip.capacity / 1024, sfud_dev->name);
406
                } else {
407 408
                    rt_kprintf("%d MB %s is current selected device.\n", sfud_dev->chip.capacity / 1024 / 1024,
                            sfud_dev->name);
409 410 411
                }
            }
        } else {
412 413
            if (!sfud_dev) {
                rt_kprintf("No flash device selected. Please run 'sf probe'.\n");
414 415 416 417 418 419 420 421 422 423 424
                return;
            }
            if (!rt_strcmp(operator, "read")) {
                if (argc < 4) {
                    rt_kprintf("Usage: %s.\n", sf_help_info[CMD_READ_INDEX]);
                    return;
                } else {
                    addr = atol(argv[2]);
                    size = atol(argv[3]);
                    uint8_t *data = rt_malloc(size);
                    if (data) {
425
                        result = sfud_read(sfud_dev, addr, size, data);
426 427
                        if (result == SFUD_SUCCESS) {
                            rt_kprintf("Read the %s flash data success. Start from 0x%08X, size is %ld. The data is:\n",
428
                                    sfud_dev->name, addr, size);
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
                            rt_kprintf("Offset (h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F\n");
                            for (i = 0; i < size; i++) {
                                if (i % 16 == 0) {
                                    rt_kprintf("[%08X] ", addr + i);
                                }
                                rt_kprintf("%02X ", data[i]);
                                if (((i + 1) % 16 == 0) || i == size - 1) {
                                    rt_kprintf("\n");
                                }
                            }
                            rt_kprintf("\n");
                        }
                        rt_free(data);
                    } else {
                        rt_kprintf("Low memory!\n");
                    }
                }
            } else if (!rt_strcmp(operator, "write")) {
                if (argc < 4) {
                    rt_kprintf("Usage: %s.\n", sf_help_info[CMD_WRITE_INDEX]);
                    return;
                } else {
                    addr = atol(argv[2]);
                    size = argc - 3;
                    uint8_t *data = rt_malloc(size);
                    if (data) {
                        for (i = 0; i < size; i++) {
                            data[i] = atoi(argv[3 + i]);
                        }
458
                        result = sfud_write(sfud_dev, addr, size, data);
459 460
                        if (result == SFUD_SUCCESS) {
                            rt_kprintf("Write the %s flash data success. Start from 0x%08X, size is %ld.\n",
461
                                    sfud_dev->name, addr, size);
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
                            rt_kprintf("Write data: ");
                            for (i = 0; i < size; i++) {
                                rt_kprintf("%d ", data[i]);
                            }
                            rt_kprintf(".\n");
                        }
                        rt_free(data);
                    } else {
                        rt_kprintf("Low memory!\n");
                    }
                }
            } else if (!rt_strcmp(operator, "erase")) {
                if (argc < 4) {
                    rt_kprintf("Usage: %s.\n", sf_help_info[CMD_ERASE_INDEX]);
                    return;
                } else {
                    addr = atol(argv[2]);
                    size = atol(argv[3]);
480
                    result = sfud_erase(sfud_dev, addr, size);
481
                    if (result == SFUD_SUCCESS) {
482
                        rt_kprintf("Erase the %s flash data success. Start from 0x%08X, size is %ld.\n", sfud_dev->name,
483 484 485 486 487 488
                                addr, size);
                    }
                }
            } else if (!rt_strcmp(operator, "status")) {
                if (argc < 3) {
                    uint8_t status;
489
                    result = sfud_read_status(sfud_dev, &status);
490
                    if (result == SFUD_SUCCESS) {
491
                        rt_kprintf("The %s flash status register current value is 0x%02X.\n", sfud_dev->name, status);
492 493 494 495
                    }
                } else if (argc == 4) {
                    bool is_volatile = atoi(argv[2]);
                    uint8_t status = atoi(argv[3]);
496
                    result = sfud_write_status(sfud_dev, is_volatile, status);
497
                    if (result == SFUD_SUCCESS) {
498
                        rt_kprintf("Write the %s flash status register to 0x%02X success.\n", sfud_dev->name, status);
499 500 501 502 503 504
                    }
                } else {
                    rt_kprintf("Usage: %s.\n", sf_help_info[CMD_RW_STATUS_INDEX]);
                    return;
                }
            } else if (!rt_strcmp(operator, "bench")) {
505
                if ((argc > 2 && rt_strcmp(argv[2], "yes")) || argc < 3) {
506
                    rt_kprintf("DANGER: It will erase full chip! Please run 'sf bench yes'.\n");
507 508
                    return;
                }
509 510
                /* full chip benchmark test */
                addr = 0;
511
                size = sfud_dev->chip.capacity;
512 513 514 515 516 517 518 519 520 521 522 523 524 525
                uint32_t start_time, time_cast;
                rt_uint32_t total_mem, used_mem, max_uesd_mem;
                rt_memory_info(&total_mem, &used_mem, &max_uesd_mem);
                size_t write_size = SFUD_WRITE_MAX_PAGE_SIZE, read_size;
                if ((total_mem - used_mem) / 2 < size) {
                    read_size = (total_mem - used_mem) / 2;
                } else {
                    read_size = size;
                }
                uint8_t *write_data = rt_malloc(write_size), *read_data = rt_malloc(read_size);

                if (write_data && read_data) {
                    rt_memset(write_data, 0x55, write_size);
                    /* benchmark testing */
526
                    rt_kprintf("Erasing the %s %ld bytes data, waiting...\n", sfud_dev->name, size);
527
                    start_time = rt_tick_get();
528
                    result = sfud_erase(sfud_dev, addr, size);
529 530 531 532 533 534 535 536
                    if (result == SFUD_SUCCESS) {
                        time_cast = rt_tick_get() - start_time;
                        rt_kprintf("Erase benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
                                time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
                    } else {
                        rt_kprintf("Erase benchmark has an error. Error code: %d.\n", result);
                    }
                    /* write test */
537
                    rt_kprintf("Writing the %s %ld bytes data, waiting...\n", sfud_dev->name, size);
538 539
                    start_time = rt_tick_get();
                    for (i = 0; i < size; i += write_size) {
540
                        result = sfud_write(sfud_dev, addr + i, write_size, write_data);
541 542 543 544 545 546 547 548 549 550 551 552
                        if (result != SFUD_SUCCESS) {
                            break;
                        }
                    }
                    if (result == SFUD_SUCCESS) {
                        time_cast = rt_tick_get() - start_time;
                        rt_kprintf("Write benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
                                time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
                    } else {
                        rt_kprintf("Write benchmark has an error. Error code: %d.\n", result);
                    }
                    /* read test */
553
                    rt_kprintf("Reading the %s %ld bytes data, waiting...\n", sfud_dev->name, size);
554 555 556
                    start_time = rt_tick_get();
                    for (i = 0; i < size; i += read_size) {
                        if (i + read_size <= size) {
557
                            result = sfud_read(sfud_dev, addr + i, read_size, read_data);
558
                        } else {
559
                            result = sfud_read(sfud_dev, addr + i, size - i, read_data);
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
                        }
                        if (result != SFUD_SUCCESS) {
                            break;
                        }
                    }
                    if (result == SFUD_SUCCESS) {
                        time_cast = rt_tick_get() - start_time;
                        rt_kprintf("Read benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
                                time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
                    } else {
                        rt_kprintf("Read benchmark has an error. Error code: %d.\n", result);
                    }
                } else {
                    rt_kprintf("Low memory!\n");
                }
                rt_free(write_data);
                rt_free(read_data);
            } else {
                rt_kprintf("Usage:\n");
                for (i = 0; i < sizeof(sf_help_info) / sizeof(char*); i++) {
                    rt_kprintf("%s\n", sf_help_info[i]);
                }
                rt_kprintf("\n");
                return;
            }
            if (result != SFUD_SUCCESS) {
                rt_kprintf("This flash operate has an error. Error code: %d.\n", result);
            }
        }
    }
}
MSH_CMD_EXPORT(sf, SPI Flash operate.);

#endif /* defined(RT_USING_FINSH) && defined(FINSH_USING_MSH) */

#endif /* RT_USING_SFUD */