ecpg-descriptors.md 22.6 KB
Newer Older
K
KyleZhang 已提交
1 2
## 36.7. Using Descriptor Areas

茶陵後's avatar
茶陵後 已提交
3 4 5
[36.7.1. Named SQL Descriptor Areas](ecpg-descriptors.html#ECPG-NAMED-DESCRIPTORS)

[36.7.2. SQLDA Descriptor Areas](ecpg-descriptors.html#ECPG-SQLDA-DESCRIPTORS)
K
KyleZhang 已提交
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770

 An SQL descriptor area is a more sophisticated method for processing the result of a `SELECT`, `FETCH` or a `DESCRIBE` statement. An SQL descriptor area groups the data of one row of data together with metadata items into one data structure. The metadata is particularly useful when executing dynamic SQL statements, where the nature of the result columns might not be known ahead of time. PostgreSQL provides two ways to use Descriptor Areas: the named SQL Descriptor Areas and the C-structure SQLDAs.

### 36.7.1. Named SQL Descriptor Areas

 A named SQL descriptor area consists of a header, which contains information concerning the entire descriptor, and one or more item descriptor areas, which basically each describe one column in the result row.

 Before you can use an SQL descriptor area, you need to allocate one:

```
EXEC SQL ALLOCATE DESCRIPTOR identifier;

```

 The identifier serves as the “variable name” of the descriptor area. When you don't need the descriptor anymore, you should deallocate it:

```
EXEC SQL DEALLOCATE DESCRIPTOR identifier;

```

 To use a descriptor area, specify it as the storage target in an `INTO` clause, instead of listing host variables:

```
EXEC SQL FETCH NEXT FROM mycursor INTO SQL DESCRIPTOR mydesc;

```

 If the result set is empty, the Descriptor Area will still contain the metadata from the query, i.e., the field names.

 For not yet executed prepared queries, the `DESCRIBE` statement can be used to get the metadata of the result set:

```
EXEC SQL BEGIN DECLARE SECTION;
char *sql_stmt = "SELECT * FROM table1";
EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE stmt1 FROM :sql_stmt;
EXEC SQL DESCRIBE stmt1 INTO SQL DESCRIPTOR mydesc;

```

 Before PostgreSQL 9.0, the `SQL` keyword was optional, so using `DESCRIPTOR` and `SQL DESCRIPTOR` produced named SQL Descriptor Areas. Now it is mandatory, omitting the `SQL` keyword produces SQLDA Descriptor Areas, see [Section 36.7.2](ecpg-descriptors.html#ECPG-SQLDA-DESCRIPTORS).

 In `DESCRIBE` and `FETCH` statements, the `INTO` and `USING` keywords can be used to similarly: they produce the result set and the metadata in a Descriptor Area.

 Now how do you get the data out of the descriptor area? You can think of the descriptor area as a structure with named fields. To retrieve the value of a field from the header and store it into a host variable, use the following command:

```
EXEC SQL GET DESCRIPTOR name :hostvar = field;

```

 Currently, there is only one header field defined: *`COUNT`*, which tells how many item descriptor areas exist (that is, how many columns are contained in the result). The host variable needs to be of an integer type. To get a field from the item descriptor area, use the following command:

```
EXEC SQL GET DESCRIPTOR name VALUE num :hostvar = field;

```

*`num`* can be a literal integer or a host variable containing an integer. Possible fields are:

`CARDINALITY` (integer)

 number of rows in the result set

`DATA`

 actual data item (therefore, the data type of this field depends on the query)

`DATETIME_INTERVAL_CODE` (integer)

 When `TYPE` is `9`, `DATETIME_INTERVAL_CODE` will have a value of `1` for `DATE`, `2` for `TIME`, `3` for `TIMESTAMP`, `4` for `TIME WITH TIME ZONE`, or `5` for `TIMESTAMP WITH TIME ZONE`.

`DATETIME_INTERVAL_PRECISION` (integer)

 not implemented

`INDICATOR` (integer)

 the indicator (indicating a null value or a value truncation)

`KEY_MEMBER` (integer)

 not implemented

`LENGTH` (integer)

 length of the datum in characters

`NAME` (string)

 name of the column

`NULLABLE` (integer)

 not implemented

`OCTET_LENGTH` (integer)

 length of the character representation of the datum in bytes

`PRECISION` (integer)

 precision (for type `numeric`)

`RETURNED_LENGTH` (integer)

 length of the datum in characters

`RETURNED_OCTET_LENGTH` (integer)

 length of the character representation of the datum in bytes

`SCALE` (integer)

 scale (for type `numeric`)

`TYPE` (integer)

 numeric code of the data type of the column

 In `EXECUTE`, `DECLARE` and `OPEN` statements, the effect of the `INTO` and `USING` keywords are different. A Descriptor Area can also be manually built to provide the input parameters for a query or a cursor and `USING SQL DESCRIPTOR *`name`*` is the way to pass the input parameters into a parameterized query. The statement to build a named SQL Descriptor Area is below:

```
EXEC SQL SET DESCRIPTOR name VALUE num field = :hostvar;

```

 PostgreSQL supports retrieving more that one record in one `FETCH` statement and storing the data in host variables in this case assumes that the variable is an array. E.g.:

```
EXEC SQL BEGIN DECLARE SECTION;
int id[5];
EXEC SQL END DECLARE SECTION;

EXEC SQL FETCH 5 FROM mycursor INTO SQL DESCRIPTOR mydesc;

EXEC SQL GET DESCRIPTOR mydesc VALUE 1 :id = DATA;

```

### 36.7.2. SQLDA Descriptor Areas

 An SQLDA Descriptor Area is a C language structure which can be also used to get the result set and the metadata of a query. One structure stores one record from the result set.

```
EXEC SQL include sqlda.h;
sqlda_t         *mysqlda;

EXEC SQL FETCH 3 FROM mycursor INTO DESCRIPTOR mysqlda;

```

 Note that the `SQL` keyword is omitted. The paragraphs about the use cases of the `INTO` and `USING` keywords in [Section 36.7.1](ecpg-descriptors.html#ECPG-NAMED-DESCRIPTORS) also apply here with an addition. In a `DESCRIBE` statement the `DESCRIPTOR` keyword can be completely omitted if the `INTO` keyword is used:

```
EXEC SQL DESCRIBE prepared_statement INTO mysqlda;

```

 The general flow of a program that uses SQLDA is:

1. Prepare a query, and declare a cursor for it.

2. Declare an SQLDA for the result rows.

3. Declare an SQLDA for the input parameters, and initialize them (memory allocation, parameter settings).

4. Open a cursor with the input SQLDA.

5. Fetch rows from the cursor, and store them into an output SQLDA.

6. Read values from the output SQLDA into the host variables (with conversion if necessary).

7. Close the cursor.

8. Free the memory area allocated for the input SQLDA.

#### 36.7.2.1. SQLDA Data Structure

 SQLDA uses three data structure types: `sqlda_t`, `sqlvar_t`, and `struct sqlname`.

### Tip

 PostgreSQL's SQLDA has a similar data structure to the one in IBM DB2 Universal Database, so some technical information on DB2's SQLDA could help understanding PostgreSQL's one better.

##### 36.7.2.1.1. sqlda\_t Structure

 The structure type `sqlda_t` is the type of the actual SQLDA. It holds one record. And two or more `sqlda_t` structures can be connected in a linked list with the pointer in the `desc_next` field, thus representing an ordered collection of rows. So, when two or more rows are fetched, the application can read them by following the `desc_next` pointer in each `sqlda_t` node.

 The definition of `sqlda_t` is:

```
struct sqlda_struct
{
    char            sqldaid[8];
    long            sqldabc;
    short           sqln;
    short           sqld;
    struct sqlda_struct *desc_next;
    struct sqlvar_struct sqlvar[1];
};

typedef struct sqlda_struct sqlda_t;

```

 The meaning of the fields is:

`sqldaid`

 It contains the literal string `"SQLDA "`.

`sqldabc`

 It contains the size of the allocated space in bytes.

`sqln`

 It contains the number of input parameters for a parameterized query in case it's passed into `OPEN`, `DECLARE` or `EXECUTE` statements using the `USING` keyword. In case it's used as output of `SELECT`, `EXECUTE` or `FETCH` statements, its value is the same as `sqld` statement

`sqld`

 It contains the number of fields in a result set.

`desc_next`

 If the query returns more than one record, multiple linked SQLDA structures are returned, and `desc_next` holds a pointer to the next entry in the list.

`sqlvar`

 This is the array of the columns in the result set.

##### 36.7.2.1.2. sqlvar\_t Structure

 The structure type `sqlvar_t` holds a column value and metadata such as type and length. The definition of the type is:

```
struct sqlvar_struct
{
    short          sqltype;
    short          sqllen;
    char          *sqldata;
    short         *sqlind;
    struct sqlname sqlname;
};

typedef struct sqlvar_struct sqlvar_t;

```

 The meaning of the fields is:

`sqltype`

 Contains the type identifier of the field. For values, see `enum ECPGttype` in `ecpgtype.h`.

`sqllen`

 Contains the binary length of the field. e.g., 4 bytes for `ECPGt_int`.

`sqldata`

 Points to the data. The format of the data is described in [Section 36.4.4](ecpg-variables.html#ECPG-VARIABLES-TYPE-MAPPING).

`sqlind`

 Points to the null indicator. 0 means not null, -1 means null.

`sqlname`

 The name of the field.

##### 36.7.2.1.3. struct sqlname Structure

 A `struct sqlname` structure holds a column name. It is used as a member of the `sqlvar_t` structure. The definition of the structure is:

```
#define NAMEDATALEN 64

struct sqlname
{
        short           length;
        char            data[NAMEDATALEN];
};

```

 The meaning of the fields is:

`length`

 Contains the length of the field name.

`data`

 Contains the actual field name.

#### 36.7.2.2. Retrieving a Result Set Using an SQLDA

 The general steps to retrieve a query result set through an SQLDA are:

1. Declare an `sqlda_t` structure to receive the result set.

2. Execute `FETCH`/`EXECUTE`/`DESCRIBE` commands to process a query specifying the declared SQLDA.

3. Check the number of records in the result set by looking at `sqln`, a member of the `sqlda_t` structure.

4. Get the values of each column from `sqlvar[0]`, `sqlvar[1]`, etc., members of the `sqlda_t` structure.

5. Go to next row (`sqlda_t` structure) by following the `desc_next` pointer, a member of the `sqlda_t` structure.

6. Repeat above as you need.

 Here is an example retrieving a result set through an SQLDA.

 First, declare a `sqlda_t` structure to receive the result set.

```
sqlda_t *sqlda1;

```

 Next, specify the SQLDA in a command. This is a `FETCH` command example.

```
EXEC SQL FETCH NEXT FROM cur1 INTO DESCRIPTOR sqlda1;

```

 Run a loop following the linked list to retrieve the rows.

```
sqlda_t *cur_sqlda;

for (cur_sqlda = sqlda1;
     cur_sqlda != NULL;
     cur_sqlda = cur_sqlda->desc_next)
{
    ...
}

```

 Inside the loop, run another loop to retrieve each column data (`sqlvar_t` structure) of the row.

```
for (i = 0; i < cur_sqlda->sqld; i++)
{
    sqlvar_t v = cur_sqlda->sqlvar[i];
    char *sqldata = v.sqldata;
    short sqllen  = v.sqllen;
    ...
}

```

 To get a column value, check the `sqltype` value, a member of the `sqlvar_t` structure. Then, switch to an appropriate way, depending on the column type, to copy data from the `sqlvar` field to a host variable.

```
char var_buf[1024];

switch (v.sqltype)
{
    case ECPGt_char:
        memset(&var_buf, 0, sizeof(var_buf));
        memcpy(&var_buf, sqldata, (sizeof(var_buf) <= sqllen ? sizeof(var_buf) - 1 : sqllen));
        break;

    case ECPGt_int: /* integer */
        memcpy(&intval, sqldata, sqllen);
        snprintf(var_buf, sizeof(var_buf), "%d", intval);
        break;

    ...
}

```

#### 36.7.2.3. Passing Query Parameters Using an SQLDA

 The general steps to use an SQLDA to pass input parameters to a prepared query are:

1. Create a prepared query (prepared statement)

2. Declare an sqlda\_t structure as an input SQLDA.

3. Allocate memory area (as sqlda\_t structure) for the input SQLDA.

4. Set (copy) input values in the allocated memory.

5. Open a cursor with specifying the input SQLDA.

 Here is an example.

 First, create a prepared statement.

```
EXEC SQL BEGIN DECLARE SECTION;
char query[1024] = "SELECT d.oid, * FROM pg_database d, pg_stat_database s WHERE d.oid = s.datid AND (d.datname = ? OR d.oid = ?)";
EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE stmt1 FROM :query;

```

 Next, allocate memory for an SQLDA, and set the number of input parameters in `sqln`, a member variable of the `sqlda_t` structure. When two or more input parameters are required for the prepared query, the application has to allocate additional memory space which is calculated by (nr. of params - 1) \* sizeof(sqlvar\_t). The example shown here allocates memory space for two input parameters.

```
sqlda_t *sqlda2;

sqlda2 = (sqlda_t *) malloc(sizeof(sqlda_t) + sizeof(sqlvar_t));
memset(sqlda2, 0, sizeof(sqlda_t) + sizeof(sqlvar_t));

sqlda2->sqln = 2; /* number of input variables */

```

 After memory allocation, store the parameter values into the `sqlvar[]` array. (This is same array used for retrieving column values when the SQLDA is receiving a result set.) In this example, the input parameters are `"postgres"`, having a string type, and `1`, having an integer type.

```
sqlda2->sqlvar[0].sqltype = ECPGt_char;
sqlda2->sqlvar[0].sqldata = "postgres";
sqlda2->sqlvar[0].sqllen  = 8;

int intval = 1;
sqlda2->sqlvar[1].sqltype = ECPGt_int;
sqlda2->sqlvar[1].sqldata = (char *) &intval;
sqlda2->sqlvar[1].sqllen  = sizeof(intval);

```

 By opening a cursor and specifying the SQLDA that was set up beforehand, the input parameters are passed to the prepared statement.

```
EXEC SQL OPEN cur1 USING DESCRIPTOR sqlda2;

```

 Finally, after using input SQLDAs, the allocated memory space must be freed explicitly, unlike SQLDAs used for receiving query results.

```
free(sqlda2);

```

#### 36.7.2.4. A Sample Application Using SQLDA

 Here is an example program, which describes how to fetch access statistics of the databases, specified by the input parameters, from the system catalogs.

 This application joins two system tables, pg\_database and pg\_stat\_database on the database OID, and also fetches and shows the database statistics which are retrieved by two input parameters (a database `postgres`, and OID `1`).

 First, declare an SQLDA for input and an SQLDA for output.

```
EXEC SQL include sqlda.h;

sqlda_t *sqlda1; /* an output descriptor */
sqlda_t *sqlda2; /* an input descriptor  */

```

 Next, connect to the database, prepare a statement, and declare a cursor for the prepared statement.

```
int
main(void)
{
    EXEC SQL BEGIN DECLARE SECTION;
    char query[1024] = "SELECT d.oid,* FROM pg_database d, pg_stat_database s WHERE d.oid=s.datid AND ( d.datname=? OR d.oid=? )";
    EXEC SQL END DECLARE SECTION;

    EXEC SQL CONNECT TO testdb AS con1 USER testuser;
    EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

    EXEC SQL PREPARE stmt1 FROM :query;
    EXEC SQL DECLARE cur1 CURSOR FOR stmt1;

```

 Next, put some values in the input SQLDA for the input parameters. Allocate memory for the input SQLDA, and set the number of input parameters to `sqln`. Store type, value, and value length into `sqltype`, `sqldata`, and `sqllen` in the `sqlvar` structure.

```
    /* Create SQLDA structure for input parameters. */
    sqlda2 = (sqlda_t *) malloc(sizeof(sqlda_t) + sizeof(sqlvar_t));
    memset(sqlda2, 0, sizeof(sqlda_t) + sizeof(sqlvar_t));
    sqlda2->sqln = 2; /* number of input variables */

    sqlda2->sqlvar[0].sqltype = ECPGt_char;
    sqlda2->sqlvar[0].sqldata = "postgres";
    sqlda2->sqlvar[0].sqllen  = 8;

    intval = 1;
    sqlda2->sqlvar[1].sqltype = ECPGt_int;
    sqlda2->sqlvar[1].sqldata = (char *)&intval;
    sqlda2->sqlvar[1].sqllen  = sizeof(intval);

```

 After setting up the input SQLDA, open a cursor with the input SQLDA.

```
    /* Open a cursor with input parameters. */
    EXEC SQL OPEN cur1 USING DESCRIPTOR sqlda2;

```

 Fetch rows into the output SQLDA from the opened cursor. (Generally, you have to call `FETCH` repeatedly in the loop, to fetch all rows in the result set.)

```
    while (1)
    {
        sqlda_t *cur_sqlda;

        /* Assign descriptor to the cursor  */
        EXEC SQL FETCH NEXT FROM cur1 INTO DESCRIPTOR sqlda1;

```

 Next, retrieve the fetched records from the SQLDA, by following the linked list of the `sqlda_t` structure.

```
    for (cur_sqlda = sqlda1 ;
         cur_sqlda != NULL ;
         cur_sqlda = cur_sqlda->desc_next)
    {
        ...

```

 Read each columns in the first record. The number of columns is stored in `sqld`, the actual data of the first column is stored in `sqlvar[0]`, both members of the `sqlda_t` structure.

```
        /* Print every column in a row. */
        for (i = 0; i < sqlda1->sqld; i++)
        {
            sqlvar_t v = sqlda1->sqlvar[i];
            char *sqldata = v.sqldata;
            short sqllen  = v.sqllen;

            strncpy(name_buf, v.sqlname.data, v.sqlname.length);
            name_buf[v.sqlname.length] = '\0';

```

 Now, the column data is stored in the variable `v`. Copy every datum into host variables, looking at `v.sqltype` for the type of the column.

```
            switch (v.sqltype) {
                int intval;
                double doubleval;
                unsigned long long int longlongval;

                case ECPGt_char:
                    memset(&var_buf, 0, sizeof(var_buf));
                    memcpy(&var_buf, sqldata, (sizeof(var_buf) <= sqllen ? sizeof(var_buf)-1 : sqllen));
                    break;

                case ECPGt_int: /* integer */
                    memcpy(&intval, sqldata, sqllen);
                    snprintf(var_buf, sizeof(var_buf), "%d", intval);
                    break;

                ...

                default:
                    ...
            }

            printf("%s = %s (type: %d)\n", name_buf, var_buf, v.sqltype);
        }

```

 Close the cursor after processing all of records, and disconnect from the database.

```
    EXEC SQL CLOSE cur1;
    EXEC SQL COMMIT;

    EXEC SQL DISCONNECT ALL;

```

 The whole program is shown in [Example 36.1](ecpg-descriptors.html#ECPG-SQLDA-EXAMPLE-EXAMPLE).

**Example 36.1. Example SQLDA Program**

```
#include <stdlib.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>

EXEC SQL include sqlda.h;

sqlda_t *sqlda1; /* descriptor for output */
sqlda_t *sqlda2; /* descriptor for input */

EXEC SQL WHENEVER NOT FOUND DO BREAK;
EXEC SQL WHENEVER SQLERROR STOP;

int
main(void)
{
    EXEC SQL BEGIN DECLARE SECTION;
    char query[1024] = "SELECT d.oid,* FROM pg_database d, pg_stat_database s WHERE d.oid=s.datid AND ( d.datname=? OR d.oid=? )";

    int intval;
    unsigned long long int longlongval;
    EXEC SQL END DECLARE SECTION;

    EXEC SQL CONNECT TO uptimedb AS con1 USER uptime;
    EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

    EXEC SQL PREPARE stmt1 FROM :query;
    EXEC SQL DECLARE cur1 CURSOR FOR stmt1;

    /* Create an SQLDA structure for an input parameter */
    sqlda2 = (sqlda_t *)malloc(sizeof(sqlda_t) + sizeof(sqlvar_t));
    memset(sqlda2, 0, sizeof(sqlda_t) + sizeof(sqlvar_t));
    sqlda2->sqln = 2; /* a number of input variables */

    sqlda2->sqlvar[0].sqltype = ECPGt_char;
    sqlda2->sqlvar[0].sqldata = "postgres";
    sqlda2->sqlvar[0].sqllen  = 8;

    intval = 1;
    sqlda2->sqlvar[1].sqltype = ECPGt_int;
    sqlda2->sqlvar[1].sqldata = (char *) &intval;
    sqlda2->sqlvar[1].sqllen  = sizeof(intval);

    /* Open a cursor with input parameters. */
    EXEC SQL OPEN cur1 USING DESCRIPTOR sqlda2;

    while (1)
    {
        sqlda_t *cur_sqlda;

        /* Assign descriptor to the cursor  */
        EXEC SQL FETCH NEXT FROM cur1 INTO DESCRIPTOR sqlda1;

        for (cur_sqlda = sqlda1 ;
             cur_sqlda != NULL ;
             cur_sqlda = cur_sqlda->desc_next)
        {
            int i;
            char name_buf[1024];
            char var_buf[1024];

            /* Print every column in a row. */
            for (i=0 ; i<cur_sqlda->sqld ; i++)
            {
                sqlvar_t v = cur_sqlda->sqlvar[i];
                char *sqldata = v.sqldata;
                short sqllen  = v.sqllen;

                strncpy(name_buf, v.sqlname.data, v.sqlname.length);
                name_buf[v.sqlname.length] = '\0';

                switch (v.sqltype)
                {
                    case ECPGt_char:
                        memset(&var_buf, 0, sizeof(var_buf));
                        memcpy(&var_buf, sqldata, (sizeof(var_buf)<=sqllen ? sizeof(var_buf)-1 : sqllen) );
                        break;

                    case ECPGt_int: /* integer */
                        memcpy(&intval, sqldata, sqllen);
                        snprintf(var_buf, sizeof(var_buf), "%d", intval);
                        break;

                    case ECPGt_long_long: /* bigint */
                        memcpy(&longlongval, sqldata, sqllen);
                        snprintf(var_buf, sizeof(var_buf), "%lld", longlongval);
                        break;

                    default:
                    {
                        int i;
                        memset(var_buf, 0, sizeof(var_buf));
                        for (i = 0; i < sqllen; i++)
                        {
                            char tmpbuf[16];
                            snprintf(tmpbuf, sizeof(tmpbuf), "%02x ", (unsigned char) sqldata[i]);
                            strncat(var_buf, tmpbuf, sizeof(var_buf));
                        }
                    }
                        break;
                }

                printf("%s = %s (type: %d)\n", name_buf, var_buf, v.sqltype);
            }

            printf("\n");
        }
    }

    EXEC SQL CLOSE cur1;
    EXEC SQL COMMIT;

    EXEC SQL DISCONNECT ALL;

    return 0;
}

```

 The output of this example should look something like the following (some numbers will vary).

```
oid = 1 (type: 1)
datname = template1 (type: 1)
datdba = 10 (type: 1)
encoding = 0 (type: 5)
datistemplate = t (type: 1)
datallowconn = t (type: 1)
datconnlimit = -1 (type: 5)
datlastsysoid = 11510 (type: 1)
datfrozenxid = 379 (type: 1)
dattablespace = 1663 (type: 1)
datconfig =  (type: 1)
datacl = {=c/uptime,uptime=CTc/uptime} (type: 1)
datid = 1 (type: 1)
datname = template1 (type: 1)
numbackends = 0 (type: 5)
xact_commit = 113606 (type: 9)
xact_rollback = 0 (type: 9)
blks_read = 130 (type: 9)
blks_hit = 7341714 (type: 9)
tup_returned = 38262679 (type: 9)
tup_fetched = 1836281 (type: 9)
tup_inserted = 0 (type: 9)
tup_updated = 0 (type: 9)
tup_deleted = 0 (type: 9)

oid = 11511 (type: 1)
datname = postgres (type: 1)
datdba = 10 (type: 1)
encoding = 0 (type: 5)
datistemplate = f (type: 1)
datallowconn = t (type: 1)
datconnlimit = -1 (type: 5)
datlastsysoid = 11510 (type: 1)
datfrozenxid = 379 (type: 1)
dattablespace = 1663 (type: 1)
datconfig =  (type: 1)
datacl =  (type: 1)
datid = 11511 (type: 1)
datname = postgres (type: 1)
numbackends = 0 (type: 5)
xact_commit = 221069 (type: 9)
xact_rollback = 18 (type: 9)
blks_read = 1176 (type: 9)
blks_hit = 13943750 (type: 9)
tup_returned = 77410091 (type: 9)
tup_fetched = 3253694 (type: 9)
tup_inserted = 0 (type: 9)
tup_updated = 0 (type: 9)
tup_deleted = 0 (type: 9)

```