未验证 提交 68bfa0cd 编写于 作者: H HongyuJia 提交者: GitHub

migrate update_loss_scaling and check_finite_and_upscale xpu to phi, test=kunlun (#45569)

上级 077aa382
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
#include "paddle/fluid/platform/device/device_wrapper.h"
#include "paddle/fluid/platform/float16.h"
namespace paddle {
namespace operators {
template <typename T>
class CheckFiniteAndUnscaleXPUKernel : public framework::OpKernel<T> {
using MPDType = typename details::MPTypeTrait<T>::Type;
using XPUTyp = typename XPUTypeTrait<T>::Type;
using float16 = typename XPUTypeTrait<paddle::platform::float16>::Type;
public:
void Compute(const framework::ExecutionContext& ctx) const {
auto& dev_ctx = ctx.template device_context<platform::XPUDeviceContext>();
const auto xs = ctx.MultiInput<framework::Tensor>("X");
const auto* scale = ctx.Input<framework::Tensor>("Scale");
auto outs = ctx.MultiOutput<framework::Tensor>("Out");
auto* found_inf = ctx.Output<framework::Tensor>("FoundInfinite");
const MPDType* scale_data = scale->data<MPDType>();
bool* found_inf_data = found_inf->mutable_data<bool>(dev_ctx.GetPlace());
// cpy to cpu
bool cpu_found_inf_data = false;
// number of inf and nans
int nums_inf_nans = 0;
MPDType cpu_scale_data;
if (platform::is_xpu_place(scale->place())) {
memory::Copy(platform::CPUPlace(),
static_cast<void*>(&cpu_scale_data),
scale->place(),
static_cast<const void*>(scale_data),
sizeof(MPDType));
} else {
cpu_scale_data = (*scale_data);
}
MPDType inverse_scale = 1.0 / cpu_scale_data;
for (size_t i = 0; i < xs.size(); ++i) {
const auto* x = xs[i];
auto* out = outs[i];
out->mutable_data<T>(dev_ctx.GetPlace());
framework::Tensor inf_nan_count =
ctx.AllocateTmpTensor<int, platform::XPUDeviceContext>(
found_inf->dims(), dev_ctx);
if (nums_inf_nans == 0) {
int r =
xpu::count_nan_or_inf(dev_ctx.x_context(),
reinterpret_cast<const XPUTyp*>(x->data<T>()),
inf_nan_count.data<int>(),
x->numel());
PADDLE_ENFORCE_XDNN_SUCCESS(r, "count_nan_or_inf");
memory::Copy(platform::CPUPlace(),
&nums_inf_nans,
dev_ctx.GetPlace(),
inf_nan_count.data<int>(),
sizeof(int));
}
if (nums_inf_nans > 0) {
cpu_found_inf_data = true;
inverse_scale = 0.0;
}
auto version = platform::get_xpu_version(ctx.GetPlace().GetDeviceId());
framework::Tensor float_x;
framework::Tensor float_out;
if (std::is_same<T, paddle::platform::float16>::value &&
(version == phi::backends::xpu::XPUVersion::XPU1)) {
float_x.mutable_data<MPDType>(dev_ctx.GetPlace(),
x->numel() * sizeof(MPDType));
float_out.mutable_data<MPDType>(dev_ctx.GetPlace(),
out->numel() * sizeof(MPDType));
int r = xpu::cast_v2(dev_ctx.x_context(),
reinterpret_cast<const float16*>(x->data<T>()),
float_x.data<MPDType>(),
x->numel());
PADDLE_ENFORCE_XDNN_SUCCESS(r, "cast_v2");
r = xpu::scale(dev_ctx.x_context(),
float_x.data<MPDType>(),
float_out.data<MPDType>(),
x->numel(),
false,
inverse_scale,
0.0);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "scale");
r = xpu::cast_v2(dev_ctx.x_context(),
float_out.data<MPDType>(),
reinterpret_cast<float16*>(out->data<T>()),
out->numel());
PADDLE_ENFORCE_XDNN_SUCCESS(r, "cast_v2");
} else {
int r = xpu::scale(dev_ctx.x_context(),
reinterpret_cast<const XPUTyp*>(x->data<T>()),
reinterpret_cast<XPUTyp*>(out->data<T>()),
x->numel(),
false,
inverse_scale,
0.0);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "scale");
}
}
memory::Copy(dev_ctx.GetPlace(),
found_inf_data,
platform::CPUPlace(),
&cpu_found_inf_data,
sizeof(bool));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_XPU_KERNEL(check_finite_and_unscale,
ops::CheckFiniteAndUnscaleXPUKernel<float>,
ops::CheckFiniteAndUnscaleXPUKernel<plat::float16>);
#endif
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include <cstring>
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
#include "paddle/fluid/platform/float16.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T>
class UpdateLossScalingXPUKernel : public framework::OpKernel<T> {
using MPDType = typename details::MPTypeTrait<T>::Type;
using XPUTyp = typename XPUTypeTrait<T>::Type;
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto& dev_ctx = ctx.template device_context<platform::XPUDeviceContext>();
const auto xs = ctx.MultiInput<framework::Tensor>("X");
auto outs = ctx.MultiOutput<framework::Tensor>("Out");
const auto* found_inf = ctx.Input<Tensor>("FoundInfinite");
PADDLE_ENFORCE_EQ(found_inf->numel(),
1,
platform::errors::InvalidArgument(
"FoundInfinite must has only one element."));
const bool* found_inf_data = found_inf->data<bool>();
bool cpu_found_inf_data = false;
if (platform::is_xpu_place(found_inf->place())) {
memory::Copy(platform::CPUPlace(),
static_cast<void*>(&cpu_found_inf_data),
found_inf->place(),
static_cast<const void*>(found_inf_data),
sizeof(bool));
} else {
cpu_found_inf_data = (*found_inf_data);
}
for (size_t i = 0; i < xs.size(); ++i) {
auto* out = outs[i];
T* out_data = out->mutable_data<T>(dev_ctx.GetPlace());
int num = out->numel();
if (cpu_found_inf_data) {
VLOG(1) << "-- UpdateLossScaling: Find infinite grads. --";
int r = 0;
r = xpu::constant(dev_ctx.x_context(),
reinterpret_cast<XPUTyp*>(out_data),
num,
XPUTyp(0.0));
PADDLE_ENFORCE_EQ(
r,
XPU_SUCCESS,
platform::errors::External("XPU API(constant) return wrong "
"value[%d %s]",
r,
XPUAPIErrorMsg[r]));
}
}
const bool stop_update = ctx.Attr<bool>("stop_update");
if (stop_update) {
return;
}
const auto* pre_loss_scaling = ctx.Input<Tensor>("PrevLossScaling");
const auto* good_in = ctx.Input<Tensor>("InGoodSteps");
const auto* bad_in = ctx.Input<Tensor>("InBadSteps");
auto* updated_loss_scaling = ctx.Output<Tensor>("LossScaling");
auto* good_out = ctx.Output<Tensor>("OutGoodSteps");
auto* bad_out = ctx.Output<Tensor>("OutBadSteps");
const MPDType* pre_loss_scaling_data = pre_loss_scaling->data<MPDType>();
const int* good_in_data = good_in->data<int>();
const int* bad_in_data = bad_in->data<int>();
MPDType* updated_loss_scaling_data =
updated_loss_scaling->mutable_data<MPDType>(dev_ctx.GetPlace());
int* good_out_data = good_out->mutable_data<int>(dev_ctx.GetPlace());
int* bad_out_data = bad_out->mutable_data<int>(dev_ctx.GetPlace());
const int incr_every_n_steps = ctx.Attr<int>("incr_every_n_steps");
const int decr_every_n_nan_or_inf =
ctx.Attr<int>("decr_every_n_nan_or_inf");
const float incr_ratio = ctx.Attr<float>("incr_ratio");
const float decr_ratio = ctx.Attr<float>("decr_ratio");
int cpu_bad_in_data;
int cpu_good_in_data;
MPDType cpu_pre_loss_scaling_data;
if (platform::is_xpu_place(bad_in->place())) {
memory::Copy(platform::CPUPlace(),
static_cast<void*>(&cpu_bad_in_data),
bad_in->place(),
static_cast<const void*>(bad_in_data),
sizeof(int));
} else {
cpu_bad_in_data = (*bad_in_data);
}
if (platform::is_xpu_place(good_in->place())) {
memory::Copy(platform::CPUPlace(),
static_cast<void*>(&cpu_good_in_data),
good_in->place(),
static_cast<const void*>(good_in_data),
sizeof(int));
} else {
cpu_good_in_data = (*good_in_data);
}
if (platform::is_xpu_place(pre_loss_scaling->place())) {
memory::Copy(platform::CPUPlace(),
static_cast<void*>(&cpu_pre_loss_scaling_data),
pre_loss_scaling->place(),
static_cast<const void*>(pre_loss_scaling_data),
sizeof(MPDType));
} else {
cpu_pre_loss_scaling_data = (*pre_loss_scaling_data);
}
int cpu_good_out_data = 0;
int cpu_bad_out_data = 0;
MPDType cpu_updated_loss_scaling_data = cpu_pre_loss_scaling_data;
if (cpu_found_inf_data) {
cpu_good_out_data = 0;
cpu_bad_out_data = cpu_bad_in_data + 1;
if (cpu_bad_out_data == decr_every_n_nan_or_inf) {
MPDType new_loss_scaling = cpu_pre_loss_scaling_data * decr_ratio;
cpu_updated_loss_scaling_data =
(new_loss_scaling < static_cast<MPDType>(1))
? (static_cast<MPDType>(1))
: (new_loss_scaling);
cpu_bad_out_data = 0;
}
} else {
cpu_bad_out_data = 0;
cpu_good_out_data = cpu_good_in_data + 1;
if (cpu_good_out_data == incr_every_n_steps) {
MPDType new_loss_scaling = cpu_pre_loss_scaling_data * incr_ratio;
cpu_updated_loss_scaling_data = (std::isfinite(new_loss_scaling))
? new_loss_scaling
: cpu_pre_loss_scaling_data;
cpu_good_out_data = 0;
}
}
// copy to device
memory::Copy(dev_ctx.GetPlace(),
bad_out_data,
platform::CPUPlace(),
&cpu_bad_out_data,
sizeof(int));
memory::Copy(dev_ctx.GetPlace(),
good_out_data,
platform::CPUPlace(),
&cpu_good_out_data,
sizeof(int));
memory::Copy(dev_ctx.GetPlace(),
updated_loss_scaling_data,
platform::CPUPlace(),
&cpu_updated_loss_scaling_data,
sizeof(MPDType));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_XPU_KERNEL(update_loss_scaling,
ops::UpdateLossScalingXPUKernel<float>,
ops::UpdateLossScalingXPUKernel<plat::float16>);
#endif
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/amp_kernel.h"
#include <cstring>
#include <string>
#include <vector>
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/common/amp_type_traits.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
template <typename T, typename Context>
void UpdateLossScalingKernel(const Context& dev_ctx,
const std::vector<const DenseTensor*>& xs,
const DenseTensor& found_infinite,
const DenseTensor& prev_loss_scaling,
const DenseTensor& in_good_steps,
const DenseTensor& in_bad_steps,
int incr_every_n_steps,
int decr_every_n_nan_or_inf,
float incr_ratio,
float decr_ratio,
const Scalar& stop_update,
std::vector<DenseTensor*> outs,
DenseTensor* loss_scaling,
DenseTensor* out_good_steps,
DenseTensor* out_bad_steps) {
using MPDType = typename phi::dtype::MPTypeTrait<T>::Type;
using XPUTyp = typename XPUTypeTrait<T>::Type;
PADDLE_ENFORCE_EQ(
found_infinite.numel(),
1,
phi::errors::InvalidArgument("FoundInfinite must has only one element."));
const bool* found_inf_data = found_infinite.data<bool>();
bool cpu_found_inf_data = false;
if (found_infinite.place().GetType() == phi::AllocationType::XPU) {
paddle::memory::Copy(phi::CPUPlace(),
static_cast<void*>(&cpu_found_inf_data),
found_infinite.place(),
static_cast<const void*>(found_inf_data),
sizeof(bool));
} else {
cpu_found_inf_data = (*found_inf_data);
}
for (size_t i = 0; i < xs.size(); ++i) {
auto* out = outs[i];
T* out_data = dev_ctx.template Alloc<T>(out);
int num = out->numel();
if (cpu_found_inf_data) {
VLOG(1) << "-- UpdateLossScaling: Find infinite grads. --";
int r = 0;
r = xpu::constant(dev_ctx.x_context(),
reinterpret_cast<XPUTyp*>(out_data),
num,
XPUTyp(0.0));
PADDLE_ENFORCE_XDNN_SUCCESS(r, "constant");
}
}
if (stop_update.to<bool>()) {
return;
}
const MPDType* pre_loss_scaling_data = prev_loss_scaling.data<MPDType>();
const int* good_in_data = in_good_steps.data<int>();
const int* bad_in_data = in_bad_steps.data<int>();
MPDType* updated_loss_scaling_data =
dev_ctx.template Alloc<MPDType>(loss_scaling);
int* good_out_data = dev_ctx.template Alloc<int>(out_good_steps);
int* bad_out_data = dev_ctx.template Alloc<int>(out_bad_steps);
int cpu_bad_in_data;
int cpu_good_in_data;
MPDType cpu_pre_loss_scaling_data;
if (in_bad_steps.place().GetType() == phi::AllocationType::XPU) {
paddle::memory::Copy(phi::CPUPlace(),
static_cast<void*>(&cpu_bad_in_data),
in_bad_steps.place(),
static_cast<const void*>(bad_in_data),
sizeof(int));
} else {
cpu_bad_in_data = (*bad_in_data);
}
if (in_good_steps.place().GetType() == phi::AllocationType::XPU) {
paddle::memory::Copy(phi::CPUPlace(),
static_cast<void*>(&cpu_good_in_data),
in_good_steps.place(),
static_cast<const void*>(good_in_data),
sizeof(int));
} else {
cpu_good_in_data = (*good_in_data);
}
if (prev_loss_scaling.place().GetType() == phi::AllocationType::XPU) {
paddle::memory::Copy(phi::CPUPlace(),
static_cast<void*>(&cpu_pre_loss_scaling_data),
prev_loss_scaling.place(),
static_cast<const void*>(pre_loss_scaling_data),
sizeof(MPDType));
} else {
cpu_pre_loss_scaling_data = (*pre_loss_scaling_data);
}
int cpu_good_out_data = 0;
int cpu_bad_out_data = 0;
MPDType cpu_updated_loss_scaling_data = cpu_pre_loss_scaling_data;
if (cpu_found_inf_data) {
cpu_good_out_data = 0;
cpu_bad_out_data = cpu_bad_in_data + 1;
if (cpu_bad_out_data == decr_every_n_nan_or_inf) {
MPDType new_loss_scaling = cpu_pre_loss_scaling_data * decr_ratio;
cpu_updated_loss_scaling_data =
(new_loss_scaling < static_cast<MPDType>(1))
? (static_cast<MPDType>(1))
: (new_loss_scaling);
cpu_bad_out_data = 0;
}
} else {
cpu_bad_out_data = 0;
cpu_good_out_data = cpu_good_in_data + 1;
if (cpu_good_out_data == incr_every_n_steps) {
MPDType new_loss_scaling = cpu_pre_loss_scaling_data * incr_ratio;
cpu_updated_loss_scaling_data = (std::isfinite(new_loss_scaling))
? new_loss_scaling
: cpu_pre_loss_scaling_data;
cpu_good_out_data = 0;
}
}
// copy to device
paddle::memory::Copy(dev_ctx.GetPlace(),
bad_out_data,
phi::CPUPlace(),
&cpu_bad_out_data,
sizeof(int));
paddle::memory::Copy(dev_ctx.GetPlace(),
good_out_data,
phi::CPUPlace(),
&cpu_good_out_data,
sizeof(int));
paddle::memory::Copy(dev_ctx.GetPlace(),
updated_loss_scaling_data,
phi::CPUPlace(),
&cpu_updated_loss_scaling_data,
sizeof(MPDType));
}
template <typename T, typename Context>
void CheckFiniteAndUnscaleKernel(const Context& dev_ctx,
const std::vector<const DenseTensor*>& xs,
const DenseTensor& scale,
std::vector<DenseTensor*> outs,
DenseTensor* found_infinite) {
using MPDType = typename phi::dtype::MPTypeTrait<T>::Type;
using XPUType = typename XPUTypeTrait<T>::Type;
using float16 = typename XPUTypeTrait<phi::dtype::float16>::Type;
const MPDType* scale_data = scale.data<MPDType>();
bool* found_inf_data = dev_ctx.template Alloc<bool>(found_infinite);
// cpy to cpu
bool cpu_found_inf_data = false;
// number of inf and nans
int nums_inf_nans = 0;
MPDType cpu_scale_data;
if (scale.place().GetType() == phi::AllocationType::XPU) {
paddle::memory::Copy(phi::CPUPlace(),
static_cast<void*>(&cpu_scale_data),
scale.place(),
static_cast<const void*>(scale_data),
sizeof(MPDType));
} else {
cpu_scale_data = (*scale_data);
}
MPDType inverse_scale = 1.0 / cpu_scale_data;
for (size_t i = 0; i < xs.size(); ++i) {
const auto* x = xs[i];
auto* out = outs[i];
dev_ctx.template Alloc<T>(out);
DenseTensor inf_nan_count;
inf_nan_count.Resize(found_infinite->dims());
dev_ctx.template Alloc<int>(&inf_nan_count);
if (nums_inf_nans == 0) {
int r =
xpu::count_nan_or_inf(dev_ctx.x_context(),
reinterpret_cast<const XPUType*>(x->data<T>()),
inf_nan_count.data<int>(),
x->numel());
PADDLE_ENFORCE_XDNN_SUCCESS(r, "count_nan_or_inf");
paddle::memory::Copy(phi::CPUPlace(),
&nums_inf_nans,
dev_ctx.GetPlace(),
inf_nan_count.data<int>(),
sizeof(int));
}
if (nums_inf_nans > 0) {
cpu_found_inf_data = true;
inverse_scale = 0.0;
}
auto version =
phi::backends::xpu::get_xpu_version(dev_ctx.GetPlace().GetDeviceId());
DenseTensor float_x;
DenseTensor float_out;
if (std::is_same<T, phi::dtype::float16>::value &&
(version == phi::backends::xpu::XPUVersion::XPU1)) {
dev_ctx.template Alloc<MPDType>(&float_x, x->numel() * sizeof(MPDType));
dev_ctx.template Alloc<MPDType>(&float_out,
out->numel() * sizeof(MPDType));
int r = xpu::cast_v2(dev_ctx.x_context(),
reinterpret_cast<const float16*>(x->data<T>()),
float_x.data<MPDType>(),
x->numel());
PADDLE_ENFORCE_XDNN_SUCCESS(r, "cast_v2");
r = xpu::scale(dev_ctx.x_context(),
float_x.data<MPDType>(),
float_out.data<MPDType>(),
x->numel(),
false,
inverse_scale,
0.0);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "scale");
r = xpu::cast_v2(dev_ctx.x_context(),
float_out.data<MPDType>(),
reinterpret_cast<float16*>(out->data<T>()),
out->numel());
PADDLE_ENFORCE_XDNN_SUCCESS(r, "cast_v2");
} else {
int r = xpu::scale(dev_ctx.x_context(),
reinterpret_cast<const XPUType*>(x->data<T>()),
reinterpret_cast<XPUType*>(out->data<T>()),
x->numel(),
false,
inverse_scale,
0.0);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "scale");
}
}
paddle::memory::Copy(dev_ctx.GetPlace(),
found_inf_data,
phi::CPUPlace(),
&cpu_found_inf_data,
sizeof(bool));
}
} // namespace phi
PD_REGISTER_KERNEL(update_loss_scaling,
XPU,
ALL_LAYOUT,
phi::UpdateLossScalingKernel,
float,
phi::dtype::float16) {}
PD_REGISTER_KERNEL(check_finite_and_unscale,
XPU,
ALL_LAYOUT,
phi::CheckFiniteAndUnscaleKernel,
float,
phi::dtype::float16) {}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册