activation.py 3.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

__all__ = []

17
from paddle import _C_ops
18
from paddle.fluid.framework import dygraph_only
19

20

21
@dygraph_only
22
def relu(x, name=None):
23
    """
24
    sparse relu activation, requiring x to be a sparse coo or sparse csr tensor.
25 26 27

    .. math::

28
        out = max(x, 0)
29 30

    Parameters:
31
        x (Tensor): The input Sparse Tensor with data type float32, float64.
32 33 34
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

35 36
    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .
37 38 39 40 41 42

    Examples:
        .. code-block:: python

            import paddle
            from paddle.fluid.framework import _test_eager_guard
43

44
            with _test_eager_guard():
45 46 47
                dense_x = paddle.to_tensor([-2, 0, 1], dtype='float32')
                sparse_x = dense_x.to_sparse_coo(1)
                out = paddle.incubate.sparse.nn.functional.relu(sparse_x) 
48
    """
49
    return _C_ops.final_state_sparse_relu(x)
50 51


52 53 54 55 56 57
@dygraph_only
def softmax(x, axis=-1, name=None):
    """
    sparse softmax activation, x must be SparseCsrTensor or SparseCooTensor.

    Note:
58
        Only support axis=-1 for SparseCsrTensor, which is faster when read data 
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
        by row (axis=-1).

    From the point of view of dense matrix, for each row :math:`i` and each column :math:`j` 
    in the matrix, we have:

    .. math::

        softmax_ij = \frac{\exp(x_ij - max_j(x_ij))}{\sum_j(exp(x_ij - max_j(x_ij))}
    
    Parameters:
        x (Tensor): The input tensor. It can be SparseCooTensor/SparseCsrTensor. The data type can be float32 or float64.
        axis (int, optional): The axis along which to perform softmax calculations. Only support -1 for SparseCsrTensor.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: SparseCoo or SparseCsr, whose layout is the same with `x` .
    
    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            from paddle.fluid.framework import _test_eager_guard

            paddle.seed(100)

            with _test_eager_guard():
                mask = np.random.rand(3, 4) < 0.5
                np_x = np.random.rand(3, 4) * mask
                # [[0.         0.         0.96823406 0.19722934]
                #  [0.94373937 0.         0.02060066 0.71456372]
                #  [0.         0.         0.         0.98275049]]

                csr = paddle.to_tensor(np_x).to_sparse_csr()
                # Tensor(shape=[3, 4], dtype=paddle.float64, place=Place(gpu:0), stop_gradient=True, 
                #        crows=[0, 2, 5, 6], 
                #        cols=[2, 3, 0, 2, 3, 3], 
                #        values=[0.96823406, 0.19722934, 0.94373937, 0.02060066, 0.71456372,
                #                0.98275049])

                out = paddle.incubate.sparse.nn.functional.softmax(csr)
                # Tensor(shape=[3, 4], dtype=paddle.float64, place=Place(gpu:0), stop_gradient=True, 
                #        crows=[0, 2, 5, 6], 
                #        cols=[2, 3, 0, 2, 3, 3], 
                #        values=[0.68373820, 0.31626180, 0.45610887, 0.18119845, 0.36269269,
                #                1.        ])
    
    """
    return _C_ops.final_state_sparse_softmax(x, axis)