matmul_mkldnn_op.cc 26.1 KB
Newer Older
1
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/mkldnn/matmul_mkldnn_op.h"
16
#include <tuple>
17
#include "paddle/fluid/framework/convert_utils.h"
18 19 20

using dnnl::memory;
using dnnl::primitive;
21 22
using paddle::framework::DataLayout;
using paddle::framework::ExecutionContext;
23
using phi::vectorize;
24
using paddle::platform::GetMKLDNNFormat;
25
using paddle::platform::MKLDNNFormatForSize;
26 27 28 29 30 31
using paddle::platform::MKLDNNDeviceContext;
using paddle::platform::MKLDNNGetDataType;
using paddle::platform::to_void_cast;
using Tensor = paddle::framework::Tensor;

namespace {
32

33 34
// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
35
static Tensor FoldOuterDims(const Tensor& input) {
36 37 38 39 40 41 42 43 44 45 46 47
  auto output = input;
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
    output.Resize({in_dims[0] * in_dims[1], in_dims[2]});
  }
  return output;
}

// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
template <typename T>
48 49 50
static Tensor FoldFirstAndLastDims(const MKLDNNDeviceContext& dev_ctx,
                                   const Tensor* input) {
  auto input_dims = vectorize(input->dims());
51 52 53 54
  if (input_dims.size() != 3) {
    return *input;
  }

55
  Tensor output;
56 57
  output.Resize({input_dims[1], input_dims[0], input_dims[2]});

58
  auto output_dims = vectorize(output.dims());
59

60 61
  memory::data_type input_type = paddle::framework::ToMKLDNNDataType(
      paddle::framework::TransToProtoVarType(input->dtype()));
62
  paddle::platform::ReorderMKLDNNHandler reorder_handler(
63 64
      output_dims, paddle::framework::TransToProtoVarType(input->dtype()),
      input_type, dev_ctx.GetEngine());
65 66

  auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
67 68
      memory::format_tag::abc,
      paddle::platform::to_void_cast(input->data<T>()));
69 70 71 72 73
  auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
      &output, memory::format_tag::bac, dev_ctx.GetPlace());
  auto reorder_p = reorder_handler.AcquireReorder(reorder_src_memory_p,
                                                  reorder_dst_memory_p);

74
  auto& astream = MKLDNNDeviceContext::tls().get_stream();
75 76 77 78 79 80 81 82
  reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);
  astream.wait();

  output.Resize({input_dims[1], input_dims[0] * input_dims[2]});
  return output;
}

template <typename T>
83 84 85 86 87 88 89 90 91 92 93 94 95
constexpr bool IsInt8() {
  return std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
}

template <typename T>
constexpr bool IsBfloat16() {
  return std::is_same<T, paddle::platform::bfloat16>::value;
}

// Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
// original x_dim is returned.
static paddle::framework::DDim RowMatrixDimsFromVector(
    const paddle::framework::DDim& x_dim) {
96
  return x_dim.size() > 1 ? x_dim : phi::make_ddim({1, x_dim[0]});
97 98 99 100 101 102
}

// Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
// original y_dim is returned.
static paddle::framework::DDim ColumnMatrixDimsFromVector(
    const paddle::framework::DDim& y_dim) {
103
  return y_dim.size() > 1 ? y_dim : phi::make_ddim({y_dim[0], 1});
104 105 106
}

template <typename XT, typename YT, typename OT>
107
class MatMulMKLDNNHandler
108
    : public paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul> {
109
 public:
110
  MatMulMKLDNNHandler(const dnnl::engine engine,
111 112
                      paddle::platform::Place cpu_place, Tensor* x,
                      bool trans_x, Tensor* y, bool trans_y, Tensor* out,
113
                      float scale)
114 115
      : paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul>(engine,
                                                                    cpu_place) {
116 117
    auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(x->dims(), 0, trans_x);
    auto mat_dim_y = phi::funcs::CreateMatrixDescriptor(y->dims(), 0, trans_y);
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137

    memory::dim x_bs = mat_dim_x.batch_size_;
    memory::dim y_bs = mat_dim_y.batch_size_;

    memory::dim out_bs = x_bs || y_bs ? std::max(x_bs, y_bs) : 1;
    const memory::dim M = mat_dim_x.height_;
    const memory::dim N = mat_dim_y.width_;
    const memory::dim K = mat_dim_x.width_;

    memory::dims x_dims = {x_bs > 0 ? x_bs : 1, M, K};
    memory::dims y_dims = {y_bs > 0 ? y_bs : 1, K, N};
    memory::dims out_dims = {out_bs, M, N};

    memory::dims x_strides =
        !trans_x ? memory::dims{M * K, K, 1} : memory::dims{M * K, 1, M};

    memory::dims y_strides =
        !trans_y ? memory::dims{N * K, N, 1} : memory::dims{N * K, 1, K};
    memory::dims out_strides = memory::dims{M * N, N, 1};

138 139 140
    auto x_md = memory::desc(x_dims, MKLDNNGetDataType<XT>(), x_strides);
    auto y_md = memory::desc(y_dims, MKLDNNGetDataType<YT>(), y_strides);
    auto out_md = memory::desc(out_dims, MKLDNNGetDataType<OT>(), out_strides);
141 142 143 144 145

    dnnl::primitive_attr attrs;
    if (scale != 1.0f) attrs.set_output_scales(0, {scale});

    this->AcquireForwardPrimitiveDescriptor(attrs, x_md, y_md, out_md);
146
  }
147
  // Constructor for FWD MatMul
148
  MatMulMKLDNNHandler(const dnnl::engine engine, const ExecutionContext& ctx,
149 150
                      float scale)
      : paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul>(
151
            engine, ctx.GetPlace()) {
152 153 154 155 156 157 158
    dnnl::primitive_attr attr;
    float scale_out = ComputeOutputScale(ctx);
    if (scale_out != 1.0f) {
      constexpr unsigned tensor_wide_scale = 0;
      attr.set_output_scales(tensor_wide_scale, {scale_out});
    }

159
    auto matmul_dims_ = GetMatmulDims(ctx);
160 161 162 163 164 165 166 167
    auto x_md = memory::desc(matmul_dims_.x_dims, MKLDNNGetDataType<XT>(),
                             matmul_dims_.x_strides);
    auto y_md = memory::desc(matmul_dims_.y_dims, MKLDNNGetDataType<YT>(),
                             matmul_dims_.y_strides);
    auto out_md = memory::desc(matmul_dims_.out_dims, MKLDNNGetDataType<OT>(),
                               matmul_dims_.out_strides);
    this->AcquireForwardPrimitiveDescriptor(attr, x_md, y_md, out_md);
  }
168 169

  std::shared_ptr<memory> AcquireWeightsMemory(const Tensor* input) {
170
    const YT* input_data = input->data<YT>();
171
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->weights_desc(),
172
                                            to_void_cast<YT>(input_data));
173 174
  }

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
 public:
  void Execute(const paddle::framework::Tensor* x,
               const paddle::framework::Tensor* y,
               paddle::framework::Tensor* out) {
    const auto src_memory_p = this->AcquireSrcMemory(x);
    const auto weights_memory_p = this->AcquireWeightsMemory(y);
    const auto dst_memory_p = this->AcquireDstMemory(out);

    auto matmul_p = this->AcquireForwardPrimitive();

    std::unordered_map<int, dnnl::memory> matmul_args = {
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};

    auto& astream = paddle::platform::MKLDNNDeviceContext::tls().get_stream();

    // Simulate batch matmul by processing in loop
    void* x_ptr = src_memory_p->get_data_handle();
    void* y_ptr = weights_memory_p->get_data_handle();
    void* out_ptr = dst_memory_p->get_data_handle();
    auto offsets = this->GetOffsets();
    for (uint16_t i = 0; i < this->GetBatchSize(); ++i) {
      src_memory_p->set_data_handle(x_ptr);
      weights_memory_p->set_data_handle(y_ptr);
      dst_memory_p->set_data_handle(out_ptr);
      matmul_p->execute(astream, {
202 203 204
                                     {DNNL_ARG_SRC, *src_memory_p},
                                     {DNNL_ARG_WEIGHTS, *weights_memory_p},
                                     {DNNL_ARG_DST, *dst_memory_p},
205 206 207 208 209 210
                                 });
      x_ptr = static_cast<char*>(x_ptr) + std::get<0>(offsets);
      y_ptr = static_cast<char*>(y_ptr) + std::get<1>(offsets);
      out_ptr = static_cast<char*>(out_ptr) + std::get<2>(offsets);
    }
    astream.wait();
211

212 213 214 215
    auto format =
        MKLDNNFormatForSize(out->dims().size(), dnnl::memory::format_tag::nchw);
    out->set_format(format);
    out->set_layout(DataLayout::kMKLDNN);
216 217
  }

218
  std::shared_ptr<dnnl::memory> AcquireDstMemory(
219 220 221 222 223 224 225 226 227 228 229
      paddle::framework::Tensor* output) {
    // We cannot use base AcquireDstMemory as it makes an allocation request
    // base on DST memory primitive size. This is fine in general, but in MatMul
    // we have primitive that covers only one batch of Data and then shift
    // pointer for every new batch. Hence Tensor size is bigger that dst memory
    // primitive size. So would we request less memory that is there and it
    // triggers an
    // assertion.  So as there is no 'any' format here we can leave default size
    // of Tensor as computed in ComputeInferShape
    OT* ptr = output->mutable_data<OT>(this->place_);
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->dst_desc(), ptr);
230 231 232 233
  }

 private:
  struct MatMulDims {
234 235
    const memory::dims x_dims, y_dims, out_dims, x_strides, y_strides,
        out_strides;
236 237
  };

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
  phi::DDim GetDimForInput(const ExecutionContext& ctx,
                           std::string input_name) {
    auto shape = ctx.Attr<std::vector<int>>("fused_reshape_" + input_name);
    auto axis = ctx.Attr<std::vector<int>>("fused_transpose_" + input_name);
    auto input_dims = ctx.Input<Tensor>(input_name)->dims();
    if (!shape.empty() && !axis.empty()) {
      auto it_zero = std::find(shape.begin(), shape.end(), 0);
      if (it_zero != shape.end()) {
        for (uint64_t i = 0; i < shape.size(); i++) {
          if (shape[i] == 0) {
            PADDLE_ENFORCE_LT(
                i, input_dims.size(),
                paddle::platform::errors::InvalidArgument(
                    "The index of 0 in fused_reshape_%s ",
                    "should be less than output dim size, ",
                    "but the index is %d and output dim size is %d", input_name,
                    i, input_dims.size()));
            shape[i] = input_dims.at(i);
          }
        }
      }

      return input_dims.reshape(shape).transpose(axis);
    }
    return input_dims;
  }

265
  std::pair<phi::funcs::MatDescriptor, memory::dims> GetInputDimsAndStrides(
266
      const ExecutionContext& ctx, std::string input_name) {
267 268 269 270 271
    auto shape = ctx.Attr<std::vector<int>>("fused_reshape_" + input_name);
    auto axis = ctx.Attr<std::vector<int>>("fused_transpose_" + input_name);
    auto input_dims = ctx.Input<Tensor>(input_name)->dims();
    auto new_dims = input_dims;
    if (!shape.empty() && !axis.empty()) {
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
      auto it_zero = std::find(shape.begin(), shape.end(), 0);
      if (it_zero != shape.end()) {
        for (uint64_t i = 0; i < shape.size(); i++) {
          if (shape[i] == 0) {
            PADDLE_ENFORCE_LT(
                i, input_dims.size(),
                paddle::platform::errors::InvalidArgument(
                    "The index of 0 in fused_reshape_%s ",
                    "should be less than output dim size, ",
                    "but the index is %d and output dim size is %d", input_name,
                    i, input_dims.size()));
            shape[i] = input_dims.at(i);
          }
        }
      }

288 289 290 291 292
      new_dims = input_dims.reshape(shape).transpose(axis);
    }

    auto& MatrixDimsFromVector = input_name == "X" ? RowMatrixDimsFromVector
                                                   : ColumnMatrixDimsFromVector;
293
    phi::funcs::MatDescriptor mat_dim = phi::funcs::CreateMatrixDescriptor(
294 295
        MatrixDimsFromVector(new_dims), 0,
        ctx.Attr<bool>("transpose_" + input_name));
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314

    memory::dims strides;
    if (!shape.empty()) {
      auto shape2 = input_dims.reshape(shape);
      strides.push_back(1);
      for (auto i = shape2.size() - 1; i > 0; --i) {
        strides.insert(strides.begin(), strides.front() * shape2[i]);
      }
      strides = Transpose(strides, axis);
      if (shape.size() == 4)
        strides.erase(strides.begin());
      else if (shape.size() == 2)
        strides.insert(strides.begin(), shape[0] * shape[1]);
      mat_dim.stride_ = strides[0];
      if (mat_dim.trans_) std::swap(*strides.rbegin(), *(++strides.rbegin()));
    }
    return std::make_pair(mat_dim, strides);
  }

315 316 317 318 319 320 321 322 323
  float ComputeOutputScale(const ExecutionContext& ctx) {
    float scale_x = ctx.Attr<float>("Scale_x");
    float scale_y = ctx.Attr<float>("Scale_y");
    bool force_fp32_out = ctx.Attr<bool>("force_fp32_output");
    float scale_out = force_fp32_out ? 1.f : ctx.Attr<float>("Scale_out");
    float alpha = ctx.Attr<float>("alpha");
    return alpha * scale_out / (scale_x * scale_y);
  }

324 325 326 327 328
  bool IsInputFused(const ExecutionContext& ctx) const {
    return !(ctx.Attr<std::vector<int>>("fused_reshape_X").empty() &&
             ctx.Attr<std::vector<int>>("fused_reshape_Y").empty());
  }

329 330 331 332 333 334 335
  bool IsOutputFused(const ExecutionContext& ctx) const {
    auto& fused_reshape_Out = ctx.Attr<std::vector<int>>("fused_reshape_Out");
    auto& fused_transpose_Out =
        ctx.Attr<std::vector<int>>("fused_transpose_Out");
    return !fused_reshape_Out.empty() && !fused_transpose_Out.empty();
  }

336
  MatMulDims GetMatmulDims(const ExecutionContext& ctx) {
337
    phi::funcs::MatDescriptor mat_dim_x;
338 339
    memory::dims strides_x;
    std::tie(mat_dim_x, strides_x) = GetInputDimsAndStrides(ctx, "X");
340
    phi::funcs::MatDescriptor mat_dim_y;
341 342
    memory::dims strides_y;
    std::tie(mat_dim_y, strides_y) = GetInputDimsAndStrides(ctx, "Y");
343

344 345
    auto x_bs = mat_dim_x.batch_size_;
    auto y_bs = mat_dim_y.batch_size_;
346
    PADDLE_ENFORCE_EQ(x_bs > 0 && y_bs > 0 && x_bs != y_bs, false,
347
                      paddle::platform::errors::InvalidArgument(
348 349 350
                          "If batch sizes of X and Y are positive,"
                          "they have to be equal."));

351
    memory::dim out_bs = x_bs || y_bs ? std::max(x_bs, y_bs) : 1;
352 353 354
    const memory::dim M = mat_dim_x.height_;
    const memory::dim N = mat_dim_y.width_;
    const memory::dim K = mat_dim_x.width_;
355 356

    batch_size_ = 1;
357
    if (out_bs > 1 && (IsOutputFused(ctx) || IsInputFused(ctx))) {
358 359
      auto x_dims = GetDimForInput(ctx, "X");
      auto y_dims = GetDimForInput(ctx, "Y");
360
      batch_size_ = x_bs > y_bs ? x_dims[0] : y_dims[0];
361 362 363
      x_bs /= batch_size_;
      y_bs /= batch_size_;
      out_bs /= batch_size_;
364
    }
365 366 367
    memory::dims x_dims = {x_bs > 0 ? x_bs : 1, M, K};
    memory::dims y_dims = {y_bs > 0 ? y_bs : 1, K, N};
    memory::dims out_dims = {out_bs, M, N};
368

369 370 371
    x_offset_ = x_bs * M * K * sizeof(XT);
    y_offset_ = y_bs * K * N * sizeof(YT);
    out_offset_ = out_bs * M * N * sizeof(OT);
372 373

    // Translate transA and transB
374 375 376 377 378 379
    if (strides_x.empty())
      strides_x = !ctx.Attr<bool>("transpose_X") ? memory::dims{M * K, K, 1}
                                                 : memory::dims{M * K, 1, M};
    if (strides_y.empty())
      strides_y = !ctx.Attr<bool>("transpose_Y") ? memory::dims{N * K, N, 1}
                                                 : memory::dims{N * K, 1, K};
380 381
    memory::dims out_strides = memory::dims{M * N, N, 1};

382
    CorrectStridesWhenFloatOutputFused(ctx, N, out_bs, &out_strides);
383 384

    return {x_dims, y_dims, out_dims, strides_x, strides_y, out_strides};
385 386
  }

387 388 389 390
  std::vector<int64_t> Transpose(const std::vector<int64_t>& x,
                                 const std::vector<int>& axis) {
    size_t in_rank = x.size();
    size_t axis_size = axis.size();
391

392 393 394 395
    auto axis_set = std::set<int>(axis.begin(), axis.end());
    PADDLE_ENFORCE_EQ(axis_set.size(), axis_size,
                      paddle::platform::errors::InvalidArgument(
                          "In an axis array, elements must be unique."));
396

397 398 399 400 401 402 403
    PADDLE_ENFORCE_EQ(in_rank, axis_size,
                      paddle::platform::errors::InvalidArgument(
                          "The input dimension's size "
                          "should be equal to the axis's size. "
                          "But received dimension is %d, "
                          "axis's size is %d",
                          in_rank, axis_size));
404

405 406 407
    PADDLE_ENFORCE_LT(*std::max_element(axis.begin(), axis.end()), axis_size,
                      paddle::platform::errors::InvalidArgument(
                          "Axis values must be ranging from 0 to (dims - 1)."));
408

409 410 411 412 413
    std::vector<int64_t> new_x(x.size());
    for (size_t i = 0; i < x.size(); i++) {
      new_x[i] = x[axis[i]];
    }
    return new_x;
414 415
  }

416 417 418 419 420
  void CorrectStridesWhenFloatOutputFused(const ExecutionContext& ctx,
                                          const memory::dim N, memory::dim b,
                                          memory::dims* out_strides) const {
    if (!IsInt8<OT>() && !IsBfloat16<OT>() && IsOutputFused(ctx)) {
      *out_strides = {N, b * N, 1};
421
    }
422 423
  }

424
  uint16_t GetBatchSize(void) const { return batch_size_; }
425

426 427
  std::tuple<uint32_t, uint32_t, uint32_t> GetOffsets() const {
    return std::make_tuple(x_offset_, y_offset_, out_offset_);
428 429 430
  }

 private:
431 432 433 434
  uint32_t x_offset_;
  uint32_t y_offset_;
  uint32_t out_offset_;
  uint16_t batch_size_;
435 436
};

437 438 439 440 441 442 443
/**
 * Reshape a tensor to 3-D or 2-D tensor by matrix descriptor.
 *
 * The shape would be [BatchSize, H, W] or [H, W].
 * If transposed, `H,W` will be swapped.
 */
static void ReshapeTensorToMatrixSequence(
444
    Tensor* x, const phi::funcs::MatDescriptor& descriptor) {
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
  int64_t h, w;
  h = descriptor.height_;
  w = descriptor.width_;
  if (descriptor.trans_) {
    std::swap(w, h);
  }
  if (descriptor.batch_size_) {
    x->Resize({descriptor.batch_size_, h, w});
  } else {
    x->Resize({h, w});
  }
}

/**
 * Reshape the x,y,out tensor to 3-D or 2-D tensor by matrix descriptor
 * Out = matmul(x, y)
 *
 * This method will first calculate X,Y matrix sequence, and then calculate
 * the out shape.
 *
 * Assume X = [BatchSize, H1, W1], Y = [BatchSize, H2, W2]
 * The out = [BatchSize, H1, W2]
 *
 * If there is no batch size in `X` and `Y`, the out will be [H1, W2]
 * If any of `X` and `Y` has batch size BatchSize, the out will have the
 * BatchSize.
 */
static void ReshapeXYOutToMatrixSequence(Tensor* x, Tensor* y, Tensor* out,
                                         bool trans_x, bool trans_y) {
  auto x_dim = RowMatrixDimsFromVector(x->dims());
  auto y_dim = ColumnMatrixDimsFromVector(y->dims());
476 477
  auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(x_dim, 0, trans_x);
  auto mat_dim_y = phi::funcs::CreateMatrixDescriptor(y_dim, 0, trans_y);
478 479 480 481 482
  if (mat_dim_x.batch_size_ == 0 && mat_dim_y.batch_size_ == 0) {
    out->Resize({mat_dim_x.height_, mat_dim_y.width_});
  } else {
    out->Resize({std::max(mat_dim_x.batch_size_, mat_dim_y.batch_size_),
                 mat_dim_x.height_, mat_dim_y.width_});
483 484
  }

485 486
  ReshapeTensorToMatrixSequence(x, mat_dim_x);
  ReshapeTensorToMatrixSequence(y, mat_dim_y);
487 488
}

489
// Choose appropriate Handler instances based on inferred
490 491 492 493
// output type (uint8, int8 or float).
template <typename XT, typename YT>
static void ExecuteMatMul(const ExecutionContext& ctx) {
  constexpr bool is_int8 = IsInt8<XT>();
494
  constexpr bool is_bfloat16 = IsBfloat16<XT>();
495 496
  const bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
  constexpr bool fuse_relu = false;  // TODO(intel): Enable eltwise fuses
497 498 499 500 501 502 503
  auto* x = ctx.Input<Tensor>("X");
  auto* y = ctx.Input<Tensor>("Y");
  auto* out = ctx.Output<Tensor>("Out");
  float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;
  const auto& dev_ctx =
      ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();

504
  if (force_fp32_output || ((!is_int8) && (!is_bfloat16))) {
505 506
    MatMulMKLDNNHandler<XT, YT, float>(dev_ctx.GetEngine(), ctx, alpha)
        .Execute(x, y, out);
507
  } else if (is_bfloat16) {
508 509 510
    MatMulMKLDNNHandler<XT, YT, paddle::platform::bfloat16>(dev_ctx.GetEngine(),
                                                            ctx, alpha)
        .Execute(x, y, out);
511
  } else if (fuse_relu) {
512 513
    MatMulMKLDNNHandler<XT, YT, uint8_t>(dev_ctx.GetEngine(), ctx, alpha)
        .Execute(x, y, out);
514
  } else {
515 516
    MatMulMKLDNNHandler<XT, YT, int8_t>(dev_ctx.GetEngine(), ctx, alpha)
        .Execute(x, y, out);
517 518 519 520
  }
}

template <typename T>
521
class MatMulMKLDNNKernel : public paddle::framework::OpKernel<T> {
522
 public:
523
  void Compute(const ExecutionContext& ctx) const override {
524
    if (ctx.HasAttr("head_number")) {
525 526
      PADDLE_ENFORCE_EQ(
          ctx.Attr<int>("head_number"), 1,
527
          paddle::platform::errors::Unimplemented(
528
              "oneDNN matmul doesn't support multiple heads. Expected "
529 530
              "head_number=1. But received `head_number` is %d",
              ctx.Attr<int>("head_number")));
531 532 533 534
    }
    ExecuteMatMul<T, T>(ctx);
  }
};
535

536 537 538 539 540
}  // anonymous namespace

namespace paddle {
namespace operators {

541
template <typename T>
542 543 544 545 546
void MatMulGradMKLDNNKernel<T>::Compute(const ExecutionContext& ctx) const {
  if (ctx.HasAttr("head_number")) {
    PADDLE_ENFORCE_EQ(
        ctx.Attr<int>("head_number"), 1,
        platform::errors::Unimplemented(
547
            "oneDNN matmul doesn't support multiple heads. Expected "
548 549
            "head_number=1. But received `head_number` is %d",
            ctx.Attr<int>("head_number")));
550
  }
551 552
  RunKernel(ctx);
}
553

554 555 556
template <typename T>
void MatMulGradMKLDNNKernel<T>::ExecuteMatMulGrad(
    const ExecutionContext& ctx, const MKLDNNDeviceContext& dev_ctx,
557
    const dnnl::engine& engine, Tensor* x, bool trans_x,
558
    bool is_fold_init_dims_x, Tensor* y, bool trans_y, bool is_fold_init_dims_y,
559
    Tensor* out) const {
560 561 562 563 564 565 566 567 568 569 570 571 572 573
  // gradient is calculated in a different way when broadcasting is used
  bool need_combine = (x->dims().size() == 3 || y->dims().size() == 3) &&
                      out->dims().size() == 2;

  Tensor x_combined, y_combined;
  if (!need_combine) {
    x_combined = *x;
    y_combined = *y;
  } else {
    x_combined = is_fold_init_dims_x ? FoldOuterDims(*x)
                                     : FoldFirstAndLastDims<T>(dev_ctx, x);
    y_combined = is_fold_init_dims_y ? FoldOuterDims(*y)
                                     : FoldFirstAndLastDims<T>(dev_ctx, y);
  }
574

575
  float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;
576

577 578 579
  MatMulMKLDNNHandler<T, T, T> handler(engine, ctx.GetPlace(), &x_combined,
                                       trans_x, &y_combined, trans_y, out,
                                       alpha);
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624

  const auto src_memory_p = handler.AcquireSrcMemory(&x_combined);
  const auto weights_memory_p = handler.AcquireWeightsMemory(&y_combined);
  const auto dst_memory_p = handler.AcquireDstMemory(out);

  auto matmul_p = handler.AcquireForwardPrimitive();

  std::unordered_map<int, dnnl::memory> matmul_args = {
      {DNNL_ARG_SRC, *src_memory_p},
      {DNNL_ARG_WEIGHTS, *weights_memory_p},
      {DNNL_ARG_DST, *dst_memory_p}};

  auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
  matmul_p->execute(astream, matmul_args);
  astream.wait();

  out->set_layout(framework::DataLayout::kMKLDNN);
  out->set_format(platform::GetMKLDNNFormat(
      dst_memory_p->get_desc().reshape(vectorize<int64_t>(out->dims()))));
}

template <typename T>
void MatMulGradMKLDNNKernel<T>::RunKernel(const ExecutionContext& ctx) const {
  const auto& dev_ctx =
      ctx.template device_context<platform::MKLDNNDeviceContext>();
  const auto& onednn_engine = dev_ctx.GetEngine();

  auto x = *ctx.Input<Tensor>("X");
  auto y = *ctx.Input<Tensor>("Y");
  auto dout = *ctx.Input<Tensor>(framework::GradVarName("Out"));
  auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
  auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));

  bool transpose_x = ctx.HasAttr("transpose_X") ? ctx.Attr<bool>("transpose_X")
                                                : ctx.Attr<bool>("trans_x");
  bool transpose_y = ctx.HasAttr("transpose_Y") ? ctx.Attr<bool>("transpose_Y")
                                                : ctx.Attr<bool>("trans_y");

  ReshapeXYOutToMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);

  framework::DDim dx_dims;
  if (dx) {
    dx_dims = dx->dims();
    if (dx_dims != x.dims()) {
      dx->Resize(x.dims());
625
    }
626
  }
627

628 629 630 631 632
  framework::DDim dy_dims;
  if (dy) {
    dy_dims = dy->dims();
    if (dy_dims != y.dims()) {
      dy->Resize(y.dims());
633
    }
634
  }
635

636 637
  if (transpose_x && transpose_y) {
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &y, true, true, &dout,
638
                            true, false, dx);
639
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &dout, true, true, &x,
640
                            true, false, dy);
641 642
  } else if (transpose_x) {
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &y, false, false,
643
                            &dout, true, false, dx);
644
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &x, false, false,
645
                            &dout, false, true, dy);
646 647
  } else if (transpose_y) {
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &dout, false, false,
648
                            &y, false, true, dx);
649
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &dout, true, true, &x,
650
                            false, true, dy);
651 652
  } else {
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &dout, false, false,
653
                            &y, true, false, dx);
654
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &x, true, true, &dout,
655
                            false, true, dy);
656 657 658 659 660 661
  }

  if (dx) {
    if (dx_dims != x.dims()) {
      dx->Resize(dx_dims);
      dx->set_format(x.format());
662
    }
663 664 665 666 667
  }
  if (dy) {
    if (dy_dims != y.dims()) {
      dy->Resize(dy_dims);
      dy->set_format(y.format());
668 669
    }
  }
670 671 672 673
}

template class MatMulGradMKLDNNKernel<float>;
template class MatMulGradMKLDNNKernel<paddle::platform::bfloat16>;
674

675 676 677 678 679
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

REGISTER_OP_KERNEL(matmul, MKLDNN, ::paddle::platform::CPUPlace,
680 681 682
                   MatMulMKLDNNKernel<float>,
                   MatMulMKLDNNKernel<paddle::platform::bfloat16>,
                   MatMulMKLDNNKernel<int8_t>, MatMulMKLDNNKernel<uint8_t>);
683 684 685 686

REGISTER_OP_KERNEL(matmul_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::MatMulGradMKLDNNKernel<float>,
                   ops::MatMulGradMKLDNNKernel<paddle::platform::bfloat16>);