connect.md 2.8 KB
Newer Older
F
feilong 已提交
1 2 3 4
# 框住水鸭子

OpenCV 里的连通区域分析可以将具有相同像素值且位置相邻的前景像素点组成的图像区域识别出来。有两种像素相邻的定义:

F
fix png  
feilong 已提交
5
![](data/1.OpenCV初阶/2.二值图像处理/4.连通区域分析/pixel_region.jpg)
F
feilong 已提交
6 7 8

通过OpenCV的连通区域分析算法,我们可以将下图的水鸭子的外框框出来:

F
fix png  
feilong 已提交
9
![](data/1.OpenCV初阶/2.二值图像处理/4.连通区域分析/duck_box.png)
F
feilong 已提交
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

框架代码如下:

```python
import cv2
import numpy as np
import matplotlib.pyplot as plt

def close_op(img):
    kernel = np.ones((3, 3), np.uint8)
    img1 = cv2.dilate(img, kernel, iterations=1)
    img2 = cv2.erode(img1, kernel, iterations=1)
    return img2

def show_images(images):
    i = 0
    for title in images:
        plt.subplot(2, 3, i+1), plt.imshow(images[title], 'gray')
        plt.title(title)
        plt.xticks([]), plt.yticks([])
        i += 1
    plt.show()

if __name__ == '__main__':
    duck_origin = cv2.imread('duck.jpeg', -1)

    duck_box = duck_origin.copy()
    duck_gray = cv2.cvtColor(duck_box, cv2.COLOR_BGR2GRAY)
    duck_gray_with_closed = close_op(duck_gray)
    ret, duck_binary = cv2.threshold(duck_gray_with_closed, 127, 255, cv2.THRESH_BINARY)

    # TODO(You): 请实现识别鸭子区域并用框出来的代码

    images = {
        'duck_origin': duck_origin,
        'duck_gray': duck_gray,
        'duck_gray_with_closed_op': duck_gray_with_closed,
        'duck_binary': duck_binary,
        'duck_box': duck_box
    }
    show_images(images)
```

以下代码实现正确的是?

## 答案

```python
ret, labels, stats, centroid = cv2.connectedComponentsWithStats(duck_binary)
duck_area = sorted(stats, key=lambda s: s[-1], reverse=False)[-2]
cv2.rectangle(
    duck_box,
    (duck_area[0], duck_area[1]),
    (duck_area[0] + duck_area[2], duck_area[1] + duck_area[3]),
    (255, 0, 0),
    3
)
```

## 选项

### 排序后取错位置

```python
ret, labels, stats, centroid = cv2.connectedComponentsWithStats(duck_binary)
duck_area = sorted(stats, key=lambda s: s[-1], reverse=False)[-1]
cv2.rectangle(
    duck_box,
    (duck_area[0], duck_area[1]),
    (duck_area[0] + duck_area[2], duck_area[1] + duck_area[3]),
    (255, 0, 0),
    3
)
```

### 连通分析传入了灰度图

```python
ret, labels, stats, centroid = cv2.connectedComponentsWithStats(duck_gray)
duck_area = sorted(stats, key=lambda s: s[-1], reverse=False)[-1]
cv2.rectangle(
    duck_box,
    (duck_area[0], duck_area[1]),
    (duck_area[0] + duck_area[2], duck_area[1] + duck_area[3]),
    (255, 0, 0),
    3
)
```

### 矩形框画错

```python
ret, labels, stats, centroid = cv2.connectedComponentsWithStats(duck_binary)
duck_area = sorted(stats, key=lambda s: s[-1], reverse=False)[-1]
cv2.rectangle(
    duck_box,
    (duck_area[0], duck_area[1]),
    (duck_area[2], duck_area[3]),
    (255, 0, 0),
    3
)
```