solution.md 2.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
# 测试次数
x星球的居民脾气不太好,但好在他们生气的时候唯一的异常举动是:摔手机。  
各大厂商也就纷纷推出各种耐摔型手机。x星球的质监局规定了手机必须经过耐摔测试,并且评定出一个耐摔指数来,之后才允许上市流通。  

x星球有很多高耸入云的高塔,刚好可以用来做耐摔测试。塔的每一层高度都是一样的,与地球上稍有不同的是,他们的第一层不是地面,而是相当于我们的2楼。  

如果手机从第7层扔下去没摔坏,但第8层摔坏了,则手机耐摔指数=7。  
特别地,如果手机从第1层扔下去就坏了,则耐摔指数=0。  
如果到了塔的最高层第n层扔没摔坏,则耐摔指数=n  

为了减少测试次数,从每个厂家抽样3部手机参加测试。

某次测试的塔高为1000层,如果我们总是采用最佳策略,在最坏的运气下最多需要测试多少次才能确定手机的耐摔指数呢?


## aop
### before
```cpp
#include <iostream>
using namespace std;
int num[5][1010] = {0};
```
### after
```cpp
int main()
{
	cout << dp(3, 1000) << endl;
	return 0;
}
```

## 答案
```cpp
int dp(int k, int n)
{
	int res = 10000;
	if (n == 0)
		return 0;
	if (k == 1)
		return n;
	if (num[k][n])
		return num[k][n];
	for (int i = 1; i <= n; i++)
	{
		res = min(res, max(dp(k - 1, i - 1), dp(k, n - i)) + 1);
	}
	num[k][n] = res;
	return res;
}
```
## 选项

### A
```cpp
int dp(int k, int n)
{
	int res = 10000;
	if (n == 0)
		return 0;
	if (k == 1)
		return n;
	if (num[k][n])
		return num[k][n];
	for (int i = 1; i <= n; i++)
	{
		res = max(res, min(dp(k - 1, i - 1), dp(k, n - 1)) + 1);
	}
	num[k][n] = res;
	return res;
}
```

### B
```cpp
int dp(int k, int n)
{
	int res = 10000;
	if (n == 0)
		return 0;
	if (k == 1)
		return n;
	if (num[k][n])
		return num[k][n];
	for (int i = 1; i <= n; i++)
	{
		res = min(res, max(dp(k + 1, i + 1), dp(k, n - i)) + 1);
	}
	num[k][n] = res;
	return res;
}
```

### C
```cpp
int dp(int k, int n)
{
	int res = 10000;
	if (n == 0)
		return 0;
	if (k == 1)
		return n;
	if (num[k][n])
		return num[k][n];
	for (int i = 1; i <= n; i++)
	{
		res = min(res, max(dp(k - 1, i), dp(k, n - i)) + 1);
	}
	num[k][n] = res;
	return res;
}
```