solution.md 3.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
# 波动数列
#### 问题描述
观察这个数列:  
1 3 0 2 -1 1 -2 ...  
这个数列中后一项总是比前一项增加2或者减少3。  
栋栋对这种数列很好奇,他想知道长度为 ```n``` 和为 ```s``` 而且后一项总是比前一项增加a或者减少b的整数数列可能有多少种呢?  
#### 输入格式
  输入的第一行包含四个整数``` n s a b```,含义如前面说述。
#### 输出格式
  输出一行,包含一个整数,表示满足条件的方案数。由于这个数很大,请输出方案数除以100000007的余数。
#### 样例输入
```4 10 2 3```
#### 样例输出
```2```
#### 样例说明
这两个数列分别是```2 4 1 3```和```7 4 1 -2```。
#### 数据规模和约定
对于10%的数据,1<=n<=5,0<=s<=5,1<=a,b<=5;  
对于30%的数据,1<=n<=30,0<=s<=30,1<=a,b<=30;  
对于50%的数据,1<=n<=50,0<=s<=50,1<=a,b<=50;  
对于70%的数据,1<=n<=100,0<=s<=500,1<=a, b<=50;  
对于100%的数据,1<=n<=1000,-1,000,000,000<=s<=1,000,000,000,1<=a, b<=1,000,000。  


## aop
### before
```cpp
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll;
const int N = 1e3 + 5;
const int mod = 100000007;
int n, s, a, b, up;
ll v;
int dp[2][N * (N + 1) / 2], now;
int ans;
```
### after
```cpp

```

## 答案
```cpp
int main()
{
	scanf("%d%d%d%d", &n, &s, &a, &b);
	dp[now][0] = 1;
	for (int i = 1; i < n; ++i) 
	{
		now = !now;
		up = i * (i + 1) / 2;
		for (int j = 0; j <= up; ++j) 
		{
			dp[now][j] = dp[!now][j];
			if (j >= i)
				dp[now][j] = (dp[now][j] + dp[!now][j - i]) % mod;
		}
	}
	for (int i = 0; i <= up; ++i) 
	{
		v = 1ll * s - 1ll * i * a + 1ll * (up - i) * b;
		if (v % n == 0)
			ans = (ans + dp[now][i]) % mod;
	}
	printf("%d\n", ans);
	return 0;
}
```
## 选项

### A
```cpp
int main()
{
	scanf("%d%d%d%d", &n, &s, &a, &b);
	dp[now][0] = 1;
	for (int i = 1; i < n; ++i) 
	{
		now = !now;
		up = i * (i + 1) / 2;
		for (int j = 0; j <= up; ++j) 
		{
			dp[now][j] = dp[now][j];
			if (j >= i)
				dp[now][j] = (dp[now][j] + dp[!now][j - i]) % mod;
		}
	}
	for (int i = 0; i <= up; ++i) 
	{
		v = 1ll * s - 1ll * i * a + 1ll * (up - i) * b;
		if (v % n == 0)
			ans = (ans + dp[now][i]) % mod;
	}
	printf("%d\n", ans);
	return 0;
}
```

### B
```cpp
int main()
{
	scanf("%d%d%d%d", &n, &s, &a, &b);
	dp[now][0] = 1;
	for (int i = 1; i < n; ++i) 
	{
		up = i * (i + 1) / 2;
		for (int j = 0; j <= up; ++j) 
		{
			dp[now][j] = dp[!now][j];
			if (j >= i)
				dp[now][j] = (dp[now][j] + dp[now][j - i]) % mod;
		}
	}
	for (int i = 0; i <= up; ++i) 
	{
		v = 1ll * s - 1ll * i * a + 1ll * (up - i) * b;
		if (v % n == 0)
			ans = (ans + dp[now][i]) % mod;
	}
	printf("%d\n", ans);
	return 0;
}
```

### C
```cpp
int main()
{
	scanf("%d%d%d%d", &n, &s, &a, &b);
	dp[now][0] = 1;
	for (int i = 1; i < n; ++i) 
	{
		up = i * (i + 1) / 2;
		for (int j = 0; j <= up; ++j) 
		{
			dp[now][j] = dp[!now][j];
			if (j >= i)
				dp[now][j] = (dp[!now][j] + dp[!now][j - i]) % mod;
		}
	}
	for (int i = 0; i <= up; ++i) 
	{
		v = 1ll * s - 1ll * i * a + 1ll * (up - i) * b;
		if (v % n == 0)
			ans = (ans + dp[now][i]) % mod;
	}
	printf("%d\n", ans);
	return 0;
}
```