trainer.py 8.2 KB
Newer Older
CSDN-Ada助手's avatar
CSDN-Ada助手 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
import os, math, time, datetime, subprocess
import torch
from torch.utils.data import DataLoader
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only

def my_save(dd, ff):
    if '14b-run1' not in ff:
        torch.save(dd, ff)
    else:
        fn = ff.split('/')[-1]
        fff = '/dev/shm/' + fn
        torch.save(dd, fff)
        subprocess.Popen(f" aws s3 mv {fff} s3://rwkv-14b/{fn} --quiet", shell=True)

class train_callback(pl.Callback):
    def __init__(self, args):
        super().__init__()
        self.args = args

    def on_train_batch_start(self, trainer, pl_module, batch, batch_idx):
        args = self.args
        # if args.cuda_cleanup > 0:
        #     torch.cuda.empty_cache()
        real_step = trainer.global_step + args.epoch_begin * args.epoch_steps

        # LR schedule
        w_step = args.warmup_steps
        if args.lr_final == args.lr_init or args.epoch_count == 0:
            lr = args.lr_init
        else:
            decay_step = real_step - args.my_pile_edecay * args.epoch_steps
            decay_total = (args.epoch_count - args.my_pile_edecay) * args.epoch_steps
            progress = (decay_step - w_step + 1) / (decay_total - w_step)
            progress = min(1, max(0, progress))

            if args.lr_final == 0 or args.lr_init == 0:  # linear decay
                lr = args.lr_init + (args.lr_final - args.lr_init) * progress
            else:  # exp decay
                lr = args.lr_init * math.exp(math.log(args.lr_final / args.lr_init) * pow(progress, 1))

            if trainer.global_step < w_step:
                lr = lr * (0.2 + 0.8 * trainer.global_step / w_step)
            # if trainer.is_global_zero:
            #     print(trainer.global_step, decay_step, decay_total, w_step, progress, lr)

        for param_group in trainer.optimizers[0].param_groups:
            if args.layerwise_lr > 0:
                param_group["lr"] = lr * param_group["my_lr_scale"]
                # print(param_group["lr"], param_group["my_lr_scale"])
            else:
                param_group["lr"] = lr

        trainer.my_lr = lr
        # rank_zero_info(f"{real_step} {lr}")

        if trainer.global_step == 0:
            if trainer.is_global_zero:  # logging
                trainer.my_loss_sum = 0
                trainer.my_loss_count = 0
                trainer.my_log = open(args.proj_dir + "/train_log.txt", "a")
                trainer.my_log.write(f"NEW RUN {args.my_timestamp}\n{vars(self.args)}\n")
                try:
                    print(f"\n{trainer.strategy.config}\n")
                    trainer.my_log.write(f"{trainer.strategy.config}\n")
                except:
                    pass
                trainer.my_log.flush()
                if len(args.wandb) > 0:
                    print("Login to wandb...")
                    import wandb
                    wandb.init(
                        project=args.wandb,
                        name=args.run_name + " " + args.my_timestamp,
                        config=args,
                        save_code=False,
                    )
                    trainer.my_wandb = wandb

    def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
        args = self.args
        if trainer.is_global_zero:  # logging
            t_now = time.time_ns()
            token_per_step = args.ctx_len * args.real_bsz
            real_step = trainer.global_step + args.epoch_begin * args.epoch_steps
            kt_s = 0
            try:
                t_cost = (t_now - trainer.my_time_ns) / 1e9
                kt_s = token_per_step / t_cost / 1000
                self.log("REAL it/s", 1.0 / t_cost, prog_bar=True, on_step=True)
                self.log("Kt/s", kt_s, prog_bar=True, on_step=True)
            except:
                pass
            trainer.my_time_ns = t_now
            trainer.my_loss = trainer.my_loss_all.float().mean().item()
            trainer.my_loss_sum += trainer.my_loss
            trainer.my_loss_count += 1
            trainer.my_epoch_loss = trainer.my_loss_sum / trainer.my_loss_count
            self.log("lr", trainer.my_lr, prog_bar=True, on_step=True)
            self.log("loss", trainer.my_epoch_loss, prog_bar=True, on_step=True)
            # self.log("s", real_step, prog_bar=True, on_step=True)

            if len(args.wandb) > 0:
                lll = {"loss": trainer.my_loss, "lr": trainer.my_lr, "Gtokens": real_step * token_per_step / 1e9}
                if kt_s > 0:
                    lll["kt/s"] = kt_s
                trainer.my_wandb.log(lll, step=int(real_step))
            if args.magic_prime > 0:
                if int(real_step) == int(args.magic_prime * (1 + args.my_qa_mask) // args.real_bsz) - 1:
                    to_save_dict = pl_module.state_dict()
                    my_save(
                        to_save_dict,
                        f"{args.proj_dir}/rwkv-final.pth",
                    )
                

    def on_train_epoch_start(self, trainer, pl_module):
        args = self.args
        dataset = trainer.train_dataloader.dataset.datasets
U
u010280923 已提交
120 121 122
        assert "MyDataset" in str(dataset) \
            or "S2SDataset" in str(dataset) \
            or "RMDataset" in str(dataset)
CSDN-Ada助手's avatar
CSDN-Ada助手 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
        dataset.global_rank = trainer.global_rank
        dataset.real_epoch = int(args.epoch_begin + trainer.current_epoch)
        dataset.world_size = trainer.world_size
        # print(f'########## world_size {dataset.world_size} global_rank {dataset.global_rank} real_epoch {dataset.real_epoch} ##########')

    def on_train_epoch_end(self, trainer, pl_module):
        args = self.args
        if trainer.is_global_zero:  # logging & save state_dict
            if (args.epoch_save > 0 and trainer.current_epoch % args.epoch_save == 0) or trainer.current_epoch == args.epoch_count - 1:
                if args.data_type == 'wds_img':
                    raw_dict = pl_module.state_dict()
                    to_save_dict = {}
                    for k in raw_dict:
                        if k.startswith('encoder.') or k.startswith('decoder.'):
                            to_save_dict[k] = raw_dict[k]
                else:
                    to_save_dict = pl_module.state_dict()
                try:
                    my_save(
                        to_save_dict,
                        f"{args.proj_dir}/rwkv-{args.epoch_begin + trainer.current_epoch}.pth",
                    )
                except Exception as e:
                    print('Error\n\n', e, '\n\n')
            trainer.my_log.write(f"{args.epoch_begin + trainer.current_epoch} {trainer.my_epoch_loss:.6f} {math.exp(trainer.my_epoch_loss):.4f} {trainer.my_lr:.8f} {datetime.datetime.now()} {trainer.current_epoch}\n")
            trainer.my_log.flush()

            trainer.my_loss_sum = 0
            trainer.my_loss_count = 0


@rank_zero_only
def generate_init_weight(model, init_weight_name):
    mm = model.generate_init_weight()

    if model.args.my_pile_stage == 1:
        if len(model.args.load_model) > 0:
            print(f"Combine weights from {model.args.load_model}...")
            load_dict = torch.load(model.args.load_model, map_location="cpu")
            for k in load_dict:
                assert k in mm
                src = load_dict[k]
                try:
                    mm[k] = src.reshape(mm[k].shape)
                except:
                    tmp = mm[k].squeeze().clone()
                    print(k, src.shape, '-->', mm[k].shape)
                    ss = src.shape[0]
                    dd = tmp.shape[0]
                    for i in range(dd):
                        pos = i / dd * ss
                        if pos >= ss - 1:
                            tmp[i] = src[ss-1]
                        else:
                            p0 = int(math.floor(pos))
                            ii = pos - p0
                            tmp[i] = src[p0] * (1-ii) + src[p0+1] * (ii)
                    mm[k] = tmp.reshape(mm[k].shape)
                    sss = src.squeeze().float().cpu().numpy()
                    print(sss[:10], '...', sss[-10:])
                    mmm = mm[k].squeeze().float().cpu().numpy()
                    print(mmm[:10], '...', mmm[-10:])

    print(f"Save to {init_weight_name}...")
    torch.save(mm, init_weight_name)

    if model.args.my_pile_stage == 1:
        print("Done. Now go for stage 2.")
        exit(0)