train_ppo.py 15.7 KB
Newer Older
U
u010280923 已提交
1 2 3 4 5 6 7 8
'''
@File    :   train_rlhf.py
@Time    :   2023/03/08 15:23:19
@Author  :   Lu Xin 
@Contact :   luxin@csdn.net
'''

# here put the import lib
U
u010280923 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################

if __name__ == "__main__":
    from argparse import ArgumentParser
    from pytorch_lightning import Trainer
    from pytorch_lightning.utilities import rank_zero_info, rank_zero_only

    rank_zero_info("########## work in progress ##########")

    ########################################################################################################
    #
    # example: train a simple L12-D768 RWKV on dummy data
    #
    # python train.py --load_model "" --wandb "" --proj_dir "out" \
    # --data_file "" --data_type "dummy" --vocab_size 0 \
    # --ctx_len 128 --epoch_steps 1000 --epoch_count 20 --epoch_begin 0 --epoch_save 10 \
    # --micro_bsz 16 --n_layer 12 --n_embd 768 --pre_ffn 0 --head_qk 0 \
    # --lr_init 6e-4 --lr_final 1e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.99 --adam_eps 1e-8 \
    # --accelerator gpu --devices 1 --precision bf16 --strategy ddp_find_unused_parameters_false --grad_cp 0

    # example: train a simple L6-D512 RWKV from scratch on enwik8
    #
    # python train.py --load_model "" --wandb "" --proj_dir "out" \
    # --data_file "../data/enwik8" --data_type "utf-8" --vocab_size 0 \
    # --ctx_len 512 --epoch_steps 5000 --epoch_count 500 --epoch_begin 0 --epoch_save 5 \
    # --micro_bsz 12 --n_layer 6 --n_embd 512 --pre_ffn 0 --head_qk 0 \
    # --lr_init 8e-4 --lr_final 1e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.99 --adam_eps 1e-8 \
    # --accelerator gpu --devices 1 --precision bf16 --strategy ddp_find_unused_parameters_false --grad_cp 0

    # example: fine-tune RWKV 1.5B using 8xA100 40G = 1.76it/s = 115k token/s, VRAM 37477M
    #
    # python train.py --load_model "/fsx/BlinkDL/CODE/FP16/out_1b2/all-8040.pth" --wandb "" --proj_dir "out" \
    # --data_file "../data/train.npy" --data_type "numpy" --vocab_size 50277 \
    # --ctx_len 1024 --epoch_steps 1000 --epoch_count 1000 --epoch_begin 0 --epoch_save 5 \
    # --micro_bsz 8 --n_layer 24 --n_embd 2048 --pre_ffn 0 --head_qk 0 \
    # --lr_init 1e-5 --lr_final 1e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.999 --adam_eps 1e-8 \
    # --accelerator gpu --devices 8 --precision bf16 --strategy deepspeed_stage_2 --grad_cp 0

    # example: fine-tune RWKV 1.5B using 1 GPU fp16 (VRAM 16G) NOTE: fp16 might overflow
    #
    # python train.py --load_model "/fsx/BlinkDL/CODE/FP16/out_1b2/all-8040.pth" --wandb "" --proj_dir "out" \
    # --data_file "../data/train.npy" --data_type "numpy" --vocab_size 50277 \
    # --ctx_len 1024 --epoch_steps 200 --epoch_count 1000 --epoch_begin 0 --epoch_save 1 \
    # --micro_bsz 11 --n_layer 24 --n_embd 2048 --pre_ffn 0 --head_qk 0 \
    # --lr_init 1e-5 --lr_final 1e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.999 --adam_eps 1e-8 \
    # --accelerator gpu --devices 1 --precision fp16 --strategy deepspeed_stage_2_offload --grad_cp 1

    parser = ArgumentParser()

U
u010280923 已提交
60
    parser.add_argument("--load_sft_model", default="", type=str)  # full path, with .pth
U
u010280923 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
    parser.add_argument("--load_rm_model", default="", type=str)  # full path, with .pth
    parser.add_argument("--wandb", default="", type=str)  # wandb project name. if "" then don't use wandb
    parser.add_argument("--proj_dir", default="out", type=str)
    parser.add_argument("--random_seed", default="-1", type=int)

    parser.add_argument("--data_file", default="", type=str)
    parser.add_argument("--data_type", default="utf-8", type=str)
    parser.add_argument("--vocab_size", default=0, type=int)  # vocab_size = 0 means auto (for char-level LM and .txt data)

    parser.add_argument("--ctx_len", default=1024, type=int)
    parser.add_argument("--epoch_steps", default=1000, type=int)  # a mini "epoch" has [epoch_steps] steps
    parser.add_argument("--epoch_count", default=500, type=int)  # train for this many "epochs". will continue afterwards with lr = lr_final
    parser.add_argument("--epoch_begin", default=0, type=int)  # if you load a model trained for x "epochs", set epoch_begin = x
    parser.add_argument("--epoch_save", default=5, type=int)  # save the model every [epoch_save] "epochs"

    parser.add_argument("--micro_bsz", default=12, type=int)  # micro batch size (batch size per GPU)
    parser.add_argument("--n_layer", default=6, type=int)
    parser.add_argument("--n_embd", default=512, type=int)
    parser.add_argument("--dim_att", default=0, type=int)
    parser.add_argument("--dim_ffn", default=0, type=int)
    parser.add_argument("--pre_ffn", default=0, type=int)  # replace first att layer by ffn (sometimes better)
    parser.add_argument("--head_qk", default=0, type=int)  # my headQK trick
    parser.add_argument("--tiny_att_dim", default=0, type=int)  # tiny attention dim
    parser.add_argument("--tiny_att_layer", default=-999, type=int)  # tiny attention @ which layer

    parser.add_argument("--lr_init", default=6e-4, type=float)  # 6e-4 for L12-D768, 4e-4 for L24-D1024, 3e-4 for L24-D2048
    parser.add_argument("--lr_final", default=1e-5, type=float)
    parser.add_argument("--warmup_steps", default=0, type=int)  # try 50 if you load a model
    parser.add_argument("--beta1", default=0.9, type=float)
    parser.add_argument("--beta2", default=0.99, type=float)  # use 0.999 when your model is close to convergence
    parser.add_argument("--adam_eps", default=1e-8, type=float)

    parser.add_argument("--grad_cp", default=0, type=int)  # gradient checkpt: saves VRAM, but slower
    parser.add_argument("--my_pile_stage", default=0, type=int)  # my special pile mode
    parser.add_argument("--my_pile_shift", default=-1, type=int)  # my special pile mode - text shift
    parser.add_argument("--my_pile_edecay", default=0, type=int)
    parser.add_argument("--layerwise_lr", default=1, type=int)  # layerwise lr for faster convergence (but slower it/s)
    parser.add_argument("--ds_bucket_mb", default=200, type=int)  # deepspeed bucket size in MB. 200 seems enough
    # parser.add_argument("--cuda_cleanup", default=0, type=int)  # extra cuda cleanup (sometimes helpful)

    parser.add_argument("--my_img_version", default=0, type=str)
    parser.add_argument("--my_img_size", default=0, type=int)
    parser.add_argument("--my_img_bit", default=0, type=int)
    parser.add_argument("--my_img_clip", default='x', type=str)
    parser.add_argument("--my_img_clip_scale", default=1, type=float)
    parser.add_argument("--my_img_l1_scale", default=0, type=float)
    parser.add_argument("--my_img_encoder", default='x', type=str)
    # parser.add_argument("--my_img_noise_scale", default=0, type=float)
    parser.add_argument("--my_sample_len", default=0, type=int)
    parser.add_argument("--my_ffn_shift", default=1, type=int)
    parser.add_argument("--my_att_shift", default=1, type=int)
    parser.add_argument("--my_pos_emb", default=0, type=int)
    parser.add_argument("--load_partial", default=0, type=int)
    parser.add_argument("--magic_prime", default=0, type=int)
    parser.add_argument("--my_qa_mask", default=0, type=int)
    parser.add_argument("--my_testing", default='', type=str)

    # PPO model parameters
    parser.add_argument("--critic_pooled_values", default=True, type=bool)

    parser.add_argument("--max_norm", default=None, type=float)
    parser.add_argument("--kl_div_loss_weight", default=0.1, type=float) # between old action probs and new action probs - not sure what the right value is

    parser.add_argument("--eps_clip", default=0.2, type=float)
    parser.add_argument("--value_clip", default=0.4, type=float)
    parser.add_argument("--beta_s", default=0.01, type=float)

    parser.add_argument("--actor_lr", default=1e-4, type=float)
    parser.add_argument("--critic_lr", default=1e-4, type=float)
    parser.add_argument("--actor_wd", default=0., type=float)
    parser.add_argument("--critic_wd", default=0., type=float)
    parser.add_argument("--actor_adam_eps", default=1e-7, type=float)
    parser.add_argument("--critic_adam_eps", default=1e-7, type=float)
    parser.add_argument("--pad_value", default=1, type=float)  # token pad value
    parser.add_argument("--use_lion", default=False, type=bool)


    parser.add_argument("--num_episodes", default=50000, type=int)
    parser.add_argument("--max_timesteps", default=500, type=int)
    parser.add_argument("--update_timesteps", default=5000, type=int)

    
    parser = Trainer.add_argparse_args(parser)
    args = parser.parse_args()

    ########################################################################################################

    import os, warnings, math, datetime, sys, time
    import numpy as np
    import torch
    from torch.utils.data import DataLoader
    import deepspeed
    import pytorch_lightning as pl
    from pytorch_lightning import seed_everything

    if args.random_seed >= 0:
        print(f"########## WARNING: GLOBAL SEED {args.random_seed} THIS WILL AFFECT MULTIGPU SAMPLING ##########\n" * 3)
        seed_everything(args.random_seed)

    np.set_printoptions(precision=4, suppress=True, linewidth=200)
    warnings.filterwarnings("ignore", ".*Consider increasing the value of the `num_workers` argument*")
    warnings.filterwarnings("ignore", ".*The progress bar already tracks a metric with the*")
    # os.environ["WDS_SHOW_SEED"] = "1"
    os.environ["TOKENIZERS_PARALLELISM"] = "false"

    args.my_timestamp = datetime.datetime.today().strftime("%Y-%m-%d-%H-%M-%S")
    args.enable_checkpointing = False
    args.replace_sampler_ddp = False
    args.logger = False
    args.gradient_clip_val = 1.0
    args.num_sanity_val_steps = 0
    args.check_val_every_n_epoch = int(1e20)
    args.log_every_n_steps = int(1e20)
    args.max_epochs = -1  # continue forever
    args.betas = (args.beta1, args.beta2)
    args.real_bsz = int(args.num_nodes) * int(args.devices) * args.micro_bsz
    os.environ["RWKV_T_MAX"] = str(args.ctx_len)
    os.environ["RWKV_MY_TESTING"] = args.my_testing
    if args.dim_att <= 0:
        args.dim_att = args.n_embd
    if args.dim_ffn <= 0:
        args.dim_ffn = args.n_embd * 4

    args.run_name = f"{args.vocab_size} ctx{args.ctx_len} L{args.n_layer} D{args.n_embd}"
    if not os.path.exists(args.proj_dir):
        os.makedirs(args.proj_dir)

    samples_per_epoch = args.epoch_steps * args.real_bsz
    tokens_per_epoch = samples_per_epoch * args.ctx_len
    rank_zero_info(
        f"""
############################################################################
#
# RWKV-4 {args.precision.upper()} on {args.num_nodes}x{args.devices} {args.accelerator.upper()}, bsz {args.num_nodes}x{args.devices}x{args.micro_bsz}={args.real_bsz}, {args.strategy} {'with grad_cp' if args.grad_cp > 0 else ''}
#
# Data = {args.data_file} ({args.data_type}), ProjDir = {args.proj_dir}
#
# Epoch = {args.epoch_begin} to {args.epoch_begin + args.epoch_count - 1} (will continue afterwards), save every {args.epoch_save} epoch
#
# Each "epoch" = {args.epoch_steps} steps, {samples_per_epoch} samples, {tokens_per_epoch} tokens
#
# Model = {args.n_layer} n_layer, {args.n_embd} n_embd, {args.ctx_len} ctx_len
#
# Adam = lr {args.lr_init} to {args.lr_final}, warmup {args.warmup_steps} steps, beta {args.betas}, eps {args.adam_eps}
#
# Found torch {torch.__version__}, recommend 1.12.1+cu116 or newer
# Found deepspeed {deepspeed.__version__}, recommend 0.7.0 (faster than newer versions)
# Found pytorch_lightning {pl.__version__}, recommend 1.7.4 or newer
#
############################################################################
"""
    )
    rank_zero_info(str(vars(args)) + "\n")

    assert args.data_type in ["utf-8", "utf-16le", "numpy", "binidx", "dummy", "wds_img", "uint16"]

    if args.lr_final == 0 or args.lr_init == 0:
        rank_zero_info("\n\nNote: lr_final = 0 or lr_init = 0. Using linear LR schedule instead.\n\n")

    assert args.precision in ["fp32", "tf32", "fp16", "bf16"]
    os.environ["RWKV_FLOAT_MODE"] = args.precision
    if args.precision == "fp32":
        rank_zero_info("\n\nNote: you are using fp32 (very slow). Try bf16 / tf32 for faster training.\n\n")
    if args.precision == "fp16":
        rank_zero_info("\n\nNote: you are using fp16 (might overflow). Try bf16 / tf32 for stable training.\n\n")

    os.environ["RWKV_JIT_ON"] = "1"
    if "deepspeed_stage_3" in args.strategy:
        os.environ["RWKV_JIT_ON"] = "0"

    torch.backends.cudnn.benchmark = True
    torch.backends.cudnn.enabled = True
    if args.precision == "fp32":
        torch.backends.cudnn.allow_tf32 = False
        torch.backends.cuda.matmul.allow_tf32 = False
    else:
        torch.backends.cudnn.allow_tf32 = True
        torch.backends.cuda.matmul.allow_tf32 = True

    if "32" in args.precision:
        args.precision = 32
    elif args.precision == "fp16":
        args.precision = 16
    else:
        args.precision = "bf16"

    ########################################################################################################
    from tqdm import tqdm
    from collections import deque, namedtuple
    from einops import rearrange

    from src.dataset import PPODataset, load_prompt_data_4_ppo
    from src.rlhf.ppo import RLHF
    from src.trainer import rlhf_train_callback
U
u010280923 已提交
255 256
    from src.model import RWKV
    from src.rlhf.reward import RewardModel
U
u010280923 已提交
257 258 259 260 261 262 263

    # 用于 PPO 训练的数据,需要与 environment 交互获得
    memory = []

    # 读入训练数据集
    prompts = load_prompt_data_4_ppo(args)

U
u010280923 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
    # 加载 RWKV 模型
    rwkv = RWKV(args)

    if len(args.load_sft_model) == 0:
        rank_zero_info(f"SFT must load model, please input ")
        exit(1)

    rank_zero_info(f"########## Loading {args.load_sft_model}... ##########")
    try:
        load_dict = torch.load(args.load_sft_model, map_location="cpu")
    except:
        rank_zero_info(f"Bad checkpoint {args.load_sft_model}")
        exit(1)

    if args.load_partial == 1:
        load_keys = load_dict.keys()
        for k in rwkv.state_dict():
            if k not in load_keys:
                load_dict[k] = rwkv.state_dict()[k]
    rwkv.load_state_dict(load_dict)

    # 加载 reward_model
每日一练社区's avatar
fix bug  
每日一练社区 已提交
286
    reward_model = RewardModel(args, rwkv)
U
u010280923 已提交
287 288
    reward_model.load(args.load_rm_model)

U
u010280923 已提交
289
    # PPO 模型
U
u010280923 已提交
290
    rlhf_model = RLHF(args, rwkv, reward_model)
U
u010280923 已提交
291 292 293 294 295 296 297 298

    # 模型训练
    # trainer
    trainer = Trainer.from_argparse_args(
        args,
        callbacks=[rlhf_train_callback(args)],
    )

U
u010280923 已提交
299 300 301 302
    if trainer.global_rank == 0:
        for n in rlhf_model.state_dict():
            shape = rlhf_model.state_dict()[n].shape
            if len(shape) > 1:
U
u010280923 已提交
303
                shape = [i for i in shape if i != 1]
U
u010280923 已提交
304 305 306 307 308 309 310 311
                print(f"{str(shape[0]).ljust(5)} {str(shape[1]).ljust(5)} {n}")
            else:
                print(f"{str(shape[0]).ljust(5)}       {n}")

    if "deepspeed" in args.strategy:
        trainer.strategy.config["zero_optimization"]["allgather_bucket_size"] = args.ds_bucket_mb * 1000 * 1000
        trainer.strategy.config["zero_optimization"]["reduce_bucket_size"] = args.ds_bucket_mb * 1000 * 1000

U
u010280923 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
    time_cnt = 0
    for eps in tqdm(range(args.num_episodes), desc = 'episodes'):
        for timestep in range(args.max_timesteps):
            time_cnt += 1

            # 生成 ppo 模型的训练数据
            experience_data = rlhf_model.make_experience(prompts, eos_token=0)
            memory.append(experience_data)

            # learn from the stored memories
            if time_cnt % args.update_timesteps == 0:
                train_data = PPODataset(memory)
                data_loader = DataLoader(train_data, shuffle=False, pin_memory=True, batch_size=args.micro_bsz, num_workers=1, persistent_workers=False, drop_last=True)

                trainer.fit(rlhf_model, data_loader)

    print('rlhf training complete')