palm.py 15.5 KB
Newer Older
U
u010280923 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
import math
import copy
from pathlib import Path
from collections import namedtuple
from itertools import zip_longest

from tqdm import tqdm
from beartype import beartype
from beartype.typing import Tuple, Optional

import torch
from torch import einsum, nn
import torch.nn.functional as F

from einops import rearrange, repeat, reduce, pack, unpack
from einops.layers.torch import Rearrange, Reduce

from src.rlhf.utils import top_p, top_k, masked_mean, gumbel_sample, eval_decorator
from src.rlhf.lora import LoRA

# functions and decorators

def exists(val):
    return val is not None

def default(val, d):
    return val if exists(val) else d

def identity(t, *args, **kwargs):
    return t

def l2norm(t):
    return F.normalize(t, dim = -1)

# normalization
# they use layernorm without bias, something that pytorch does not offer

class LayerNorm(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.gamma = nn.Parameter(torch.ones(dim))
        self.register_buffer("beta", torch.zeros(dim))

    def forward(self, x):
        return F.layer_norm(x, x.shape[-1:], self.gamma, self.beta)

# residual


class Residual(nn.Module):
    def __init__(self, fn):
        super().__init__()
        self.fn = fn

    def forward(self, x, **kwargs):
        y = self.fn(x, **kwargs)

        if not any([t.requires_grad for t in (x, y)]):
            return x.add_(y)

        return y + x

# rotary positional embedding w/ xpos
# https://arxiv.org/abs/2104.09864
# https://arxiv.org/abs/2212.10554v1

class RotaryEmbedding(nn.Module):
    def __init__(self, dim, scale_base = 512, use_xpos = True):
        super().__init__()
        inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
        self.register_buffer("inv_freq", inv_freq)

        self.use_xpos = use_xpos
        self.scale_base = scale_base
        scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
        self.register_buffer('scale', scale)

    def forward(self, seq_len, device):
        t = torch.arange(seq_len, device = device).type_as(self.inv_freq)
        freqs = torch.einsum('i , j -> i j', t, self.inv_freq)
        freqs = torch.cat((freqs, freqs), dim = -1)

        if not self.use_xpos:
            return freqs, torch.ones(1, device = device)

        power = (t - (seq_len // 2)) / self.scale_base
        scale = self.scale ** rearrange(power, 'n -> n 1')
        scale = torch.cat((scale, scale), dim = -1)

        return freqs, scale

def rotate_half(x):
    x1, x2 = x.chunk(2, dim=-1)
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(pos, t, scale = 1.):
    return (t * pos.cos() * scale) + (rotate_half(t) * pos.sin() * scale)


# classic Noam Shazeer paper, except here they use SwiGLU instead of the more popular GEGLU for gating the feedforward
# https://arxiv.org/abs/2002.05202


class SwiGLU(nn.Module):
    def forward(self, x):
        x, gate = x.chunk(2, dim=-1)
        return F.silu(gate) * x


# parallel attention and feedforward with residual
# discovered by Wang et al + EleutherAI from GPT-J fame


class ParallelTransformerBlock(nn.Module):
    def __init__(
        self,
        dim,
        dim_head = 64,
        causal = True,
        heads = 8,
        qk_rmsnorm = False,
        qk_scale = 8,
        ff_mult = 4,
        attn_dropout = 0.,
        ff_dropout = 0.,
        use_xpos = True,
        xpos_scale_base = 512
    ):
        super().__init__()
        self.norm = LayerNorm(dim)

        attn_inner_dim = dim_head * heads
        ff_inner_dim = dim * ff_mult
        self.fused_dims = (attn_inner_dim, dim_head, dim_head, (ff_inner_dim * 2))

        self.qk_rmsnorm = qk_rmsnorm

        if qk_rmsnorm:
            self.q_scale = nn.Parameter(torch.ones(dim_head))
            self.k_scale = nn.Parameter(torch.ones(dim_head))

        self.heads = heads
        self.scale = (dim_head ** -0.5) if not qk_rmsnorm else qk_scale
        self.causal = causal

        self.rotary_emb = RotaryEmbedding(dim_head, scale_base = xpos_scale_base, use_xpos = use_xpos and causal)

        self.fused_attn_ff_proj = nn.Linear(dim, sum(self.fused_dims), bias=False)

        self.attn_out = nn.Linear(attn_inner_dim, dim, bias=False)
        self.attn_dropout = nn.Dropout(attn_dropout)

        # parallel feedforward tail

        self.ff_out = nn.Sequential(
            SwiGLU(),
            nn.Dropout(ff_dropout),
            nn.Linear(ff_inner_dim, dim, bias=False)
        )

        # for caching causal mask and rotary embeddings

        self.register_buffer("mask", None, persistent=False)
        self.register_buffer("pos_emb", None, persistent=False)
        self.register_buffer("pos_emb_scale", None, persistent=False)

    def get_mask(self, n, device):
        if exists(self.mask) and self.mask.shape[-1] >= n:
            return self.mask[:n, :n]

        mask = torch.ones((n, n), device=device, dtype=torch.bool).triu(1)
        self.register_buffer("mask", mask, persistent=False)
        return mask

    def get_rotary_embedding(self, n, device):
        if exists(self.pos_emb) and self.pos_emb.shape[-2] >= n:
            return self.pos_emb[:n], self.pos_emb_scale[:n]

        pos_emb, scale = self.rotary_emb(n, device=device)
        self.register_buffer("pos_emb", pos_emb, persistent=False)
        self.register_buffer("pos_emb_scale", scale, persistent=False)
        return pos_emb, scale

    def forward(
        self,
        x,
        mask = None,
        finetune_modules = None
    ):
        """
        einstein notation
        b - batch
        h - heads
        n, i, j - sequence length (base sequence length, source, target)
        d - feature dimension
        """

        n, device, h = x.shape[1], x.device, self.heads

        # pre layernorm

        x = self.norm(x)

        # attention queries, keys, values, and feedforward inner

        q, k, v, ff = self.fused_attn_ff_proj(x).split(self.fused_dims, dim=-1)

        # finetune loras

        lora_q = lora_k = lora_v = lora_o = None

        if exists(finetune_modules):
            lora_q, lora_k, lora_v, lora_o = finetune_modules
            q = q + lora_q(x)
            k = k + lora_k(x)
            v = v + lora_v(x)

        # split heads
        # they use multi-query single-key-value attention, yet another Noam Shazeer paper
        # they found no performance loss past a certain scale, and more efficient decoding obviously
        # https://arxiv.org/abs/1911.02150

        q = rearrange(q, "b n (h d) -> b h n d", h=h)

        # qk rmsnorm

        if self.qk_rmsnorm:
            q, k = map(l2norm, (q, k))
            q = q * self.q_scale
            k = k * self.k_scale

        # rotary embeddings with xpos decay for better length extrapolation

        positions, scale = self.get_rotary_embedding(n, device)

        q = apply_rotary_pos_emb(positions, q, scale)
        k = apply_rotary_pos_emb(positions, k, scale ** -1)

        # similarity

        sim = einsum("b h i d, b j d -> b h i j", q, k) * self.scale

        # key padding mask

        if exists(mask):
            mask = rearrange(mask, 'b j -> b 1 1 j')
            sim = sim.masked_fill(~mask, -torch.finfo(sim.dtype).max)

        # causal mask

        if self.causal:
            causal_mask = self.get_mask(n, device)
            sim = sim.masked_fill(causal_mask, -torch.finfo(sim.dtype).max)

        # attention

        attn = sim.softmax(dim=-1)
        attn = self.attn_dropout(attn)

        # aggregate values

        out = einsum("b h i j, b j d -> b h i d", attn, v)

        # merge heads

        out = rearrange(out, "b h n d -> b n (h d)")

        attn_out = self.attn_out(out)

        ff_out = self.ff_out(ff)

        if exists(lora_o):
            attn_out = attn_out + lora_o(out)

        return attn_out + ff_out

# transformer

@beartype
class PaLM(nn.Module):
    def __init__(
        self,
        *,
        dim,
        num_tokens,
        depth,
        causal = True,
        dim_head = 64,
        heads = 8,
        ff_mult = 4,
        attn_dropout = 0.,
        ff_dropout = 0.,
        qk_rmsnorm = False,
        lora_r = 8,
        rotary_xpos_scale_base = 512,
        finetune_scopes = tuple(),
        cross_entropy_ignore_index = 0
    ):
        super().__init__()
        self.dim = dim
        self.dim_head = dim_head
        self.heads = heads
        self.causal = causal
        self.num_tokens = num_tokens

        self.token_emb = nn.Embedding(num_tokens, dim)
        self.layers = nn.ModuleList([])

        for _ in range(depth):
            block = Residual(ParallelTransformerBlock(
                dim = dim,
                causal = causal,
                dim_head = dim_head,
                heads = heads,
                qk_rmsnorm = qk_rmsnorm,
                ff_mult = ff_mult,
                attn_dropout = attn_dropout,
                ff_dropout = ff_dropout,
                xpos_scale_base = rotary_xpos_scale_base
            ))

            self.layers.append(block)

        self.norm = LayerNorm(dim)
        self.to_logits = nn.Linear(dim, num_tokens, bias=False)
        
        self.to_logits.weight = self.token_emb.weight

        nn.init.normal_(self.token_emb.weight, std=0.02)

        # fine tuning related

        self.lora_r = lora_r
        self.finetune_modules = nn.ModuleDict({})

        for scope in finetune_scopes:
            self.add_finetune_params(scope)

        # loss related

        self.cross_entropy_ignore_index = cross_entropy_ignore_index

    @property
    def device(self):
        return next(self.parameters()).device

    def load(self, path):
        path = Path(path)
        assert path.exists()
        self.load_state_dict(torch.load(str(path)))

    def set_dropout(self, dropout):
        for module in self.layers.modules():
            if isinstance(module, nn.Dropout):
                module.p = dropout
        return self

    def add_finetune_params(self, scope, lora_r = None):
        assert scope not in self.finetune_modules, f'finetune scope {scope} already found'
        dim, dim_head, heads, r, device = self.dim, self.dim_head, self.heads, default(lora_r, self.lora_r), self.device

        q_inner_dim = heads * dim_head
        kv_inner_dim = dim_head

        lora_modules = nn.ModuleList([])

        for _ in range(len(self.layers)):
            lora_modules.append(nn.ModuleList([
                LoRA(dim, q_inner_dim, r = r),   # queries
                LoRA(dim, kv_inner_dim, r = r),  # keys
                LoRA(dim, kv_inner_dim, r = r),  # values
                LoRA(q_inner_dim, dim, r = r)    # wo
            ]))

        self.finetune_modules[scope] = lora_modules.to(device)

    def remove_finetune_params(self, scope):
        assert scope in self.finetune_modules, f'finetune scope {scope} not found'
        return self.finetune_modules.pop(scope)

    @torch.no_grad()
    def merge_finetune_params(self, scope):
        """ in the case one wants to merge the fine-tuned actor LORA parameters and do multiple rounds of fine tuning off different reward models """

        assert scope in self.finetune_modules, f'finetune scope {scope} not found'

        lora_modules = self.finetune_modules.pop(scope)

        for layer, (lora_q, lora_k, lora_v, lora_o) in zip(self.layers, lora_modules):
            block = layer.fn

            fused_attn_ff_weight = block.fused_attn_ff_proj.weight
            attn_out_weight = block.attn_out.weight

            fused_proj_out_dim = fused_attn_ff_weight.shape[0]

            lora_qkv_weight, _ = pack([lora_q.weight, lora_k.weight, lora_v.weight], 'i *')
            lora_qkv_weight = F.pad(lora_qkv_weight, (0, fused_proj_out_dim - lora_qkv_weight.shape[1]))

            lora_qkv_weight = rearrange(lora_qkv_weight, 'i o -> o i')
            lora_o_weight = rearrange(lora_o.weight, 'i o -> o i')

            fused_attn_ff_weight.add_(lora_qkv_weight)
            attn_out_weight.add_(lora_o_weight)

    # researcher train palm parameters first
    # before finetuning

    def palm_parameters(self):
        return set(self.parameters()) - set(self.finetune_modules.parameters())

    def finetune_parameters(self, scope = 'default'):
        assert scope in self.finetune_modules, f'finetune parameters of scope {scope} not found'
        return self.finetune_modules[scope].parameters()

    # generate function

    @torch.no_grad()
    @eval_decorator
    def generate(
        self,
        seq_len,
        prompt = None,
        temperature = 1.,
        filter_logits_fn = top_k,
        filter_thres = 0.9,
        pad_value = 0.,
        eos_token = None,
        return_seq_without_prompt = True,
        use_tqdm = False,
        **kwargs
    ):
        if not exists(prompt):
            prompt = torch.randint(0, self.num_tokens, (1, 1))
            prompt = prompt.to(self.device)
            return_seq_without_prompt = False

        prompt, leading_dims = pack([prompt], '* n')

        n, out = prompt.shape[-1], prompt.clone()

        wrapper_fn = identity if not use_tqdm else tqdm
        sample_num_times = max(1, seq_len - prompt.shape[-1])

        for _ in wrapper_fn(range(sample_num_times)):
            logits, embeds = self.forward(out, return_logits_with_embedding = True, **kwargs)
            logits, embeds = logits[:, -1], embeds[:, -1]

            if exists(filter_logits_fn):
                logits = filter_logits_fn(logits, thres = filter_thres)

            sample = gumbel_sample(logits, temperature = temperature, dim = -1)
            out, _ = pack([out, sample], 'b *')

            if exists(eos_token):
                is_eos_tokens = (out == eos_token)

                if is_eos_tokens.any(dim = -1).all():
                    # mask out everything after the eos tokens
                    shifted_is_eos_tokens = F.pad(is_eos_tokens, (1, -1))
                    mask = shifted_is_eos_tokens.float().cumsum(dim = -1) >= 1
                    out = out.masked_fill(mask, pad_value)
                    break

        out, = unpack(out, leading_dims, '* n')

        if not return_seq_without_prompt:
            return out

        return out[..., n:]

    def forward(
        self,
        x,
        return_loss = False,
        disable_lora = False,
        finetune_scope = None,
        extra_embed = None,
        return_only_embedding = False,
        return_logits_with_embedding = False
    ):
        if return_loss:
            x, labels = x[:, :-1], x[:, 1:]

        # mask if encoder
        # treat any token ids that are negative as tokens to mask out - only needed if not autoregressive

        if not self.causal:
            mask = x >= 0
            x = x.masked_fill(~mask, 0)
        else:
            mask = None

        # get token embedding
        x = self.token_emb(x)

        if exists(extra_embed):
            x = x + extra_embed

        # finetune modules

        finetune_modules = tuple()
        if exists(finetune_scope) and not disable_lora:
            assert finetune_scope in self.finetune_modules
            finetune_modules = self.finetune_modules[finetune_scope]

        # parallel attention / ff blocks, passing in finetuning loras

        for layer, finetune_modules in zip_longest(self.layers, finetune_modules):
            x = layer(x, mask = mask, finetune_modules = finetune_modules)

        # final norm

        embeds = self.norm(x)

        if return_only_embedding:
            return embeds

        # to logits

        logits = self.to_logits(x)

        ret = (logits, embeds) if return_logits_with_embedding else logits

        if not return_loss:
            return ret

        logits = rearrange(logits, 'b n c -> b c n')
        return F.cross_entropy(logits, labels, ignore_index = self.cross_entropy_ignore_index)