model.py 25.6 KB
Newer Older
CSDN-Ada助手's avatar
CSDN-Ada助手 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################

import os, math, gc
import torch
import torch.nn as nn
from torch.nn import functional as F
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only
from pytorch_lightning.strategies import DeepSpeedStrategy
import deepspeed
from deepspeed.ops.adam import DeepSpeedCPUAdam, FusedAdam
U
u010280923 已提交
14
from pathlib import Path
CSDN-Ada助手's avatar
CSDN-Ada助手 已提交
15

U
u010280923 已提交
16 17 18 19 20 21 22
from tqdm import tqdm
from einops import pack
from einops import unpack

from src.rlhf.utils import exists
from src.rlhf.utils import gumbel_sample
from src.rlhf.utils import top_k
U
u010280923 已提交
23
from src.rlhf.utils import eval_decorator
U
u010280923 已提交
24

CSDN-Ada助手's avatar
CSDN-Ada助手 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
# from deepspeed.runtime.fp16.onebit.zoadam import ZeroOneAdam

try:
    print('RWKV_MY_TESTING', os.environ["RWKV_MY_TESTING"])
except:
    os.environ["RWKV_MY_TESTING"] = ''

def __nop(ob):
    return ob


MyModule = nn.Module
MyFunction = __nop
if os.environ["RWKV_JIT_ON"] == "1":
    MyModule = torch.jit.ScriptModule
    MyFunction = torch.jit.script_method


########################################################################################################
# CUDA Kernel
########################################################################################################

T_MAX = int(os.environ["RWKV_T_MAX"])  # TAKES LOTS OF VRAM!
# it's possible to go beyond CUDA limitations if you slice the ctx and pass the hidden state in each slice

from torch.utils.cpp_extension import load

wkv_cuda = load(name=f"wkv_{T_MAX}", sources=["cuda/wkv_op.cpp", "cuda/wkv_cuda.cu"], verbose=True, extra_cuda_cflags=["-res-usage", "--maxrregcount 60", "--use_fast_math", "-O3", "-Xptxas -O3", f"-DTmax={T_MAX}"])


class WKV(torch.autograd.Function):
    @staticmethod
    def forward(ctx, B, T, C, w, u, k, v):
        ctx.B = B
        ctx.T = T
        ctx.C = C
        assert T <= T_MAX
        assert B * C % min(C, 32) == 0
        if "32" in os.environ["RWKV_FLOAT_MODE"]:
            w = -torch.exp(w.contiguous())
            u = u.contiguous()
            k = k.contiguous()
            v = v.contiguous()
        else:
            w = -torch.exp(w.float().contiguous())
            u = u.float().contiguous()
            k = k.float().contiguous()
            v = v.float().contiguous()
        ctx.save_for_backward(w, u, k, v)
        y = torch.empty((B, T, C), device=w.device, memory_format=torch.contiguous_format)
        wkv_cuda.forward(B, T, C, w, u, k, v, y)
        if "32" in os.environ["RWKV_FLOAT_MODE"]:
            return y
        elif os.environ["RWKV_FLOAT_MODE"] == "fp16":
            return y.half()
        elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
            return y.bfloat16()

    @staticmethod
    def backward(ctx, gy):
        B = ctx.B
        T = ctx.T
        C = ctx.C
        assert T <= T_MAX
        assert B * C % min(C, 32) == 0
        w, u, k, v = ctx.saved_tensors
        gw = torch.zeros((B, C), device=gy.device).contiguous()
        gu = torch.zeros((B, C), device=gy.device).contiguous()
        gk = torch.zeros((B, T, C), device=gy.device).contiguous()
        gv = torch.zeros((B, T, C), device=gy.device).contiguous()
        if "32" in os.environ["RWKV_FLOAT_MODE"]:
            wkv_cuda.backward(B, T, C, w, u, k, v, gy.contiguous(), gw, gu, gk, gv)
        else:
            wkv_cuda.backward(B, T, C, w, u, k, v, gy.float().contiguous(), gw, gu, gk, gv)
        gw = torch.sum(gw, dim=0)
        gu = torch.sum(gu, dim=0)
        if "32" in os.environ["RWKV_FLOAT_MODE"]:
            return (None, None, None, gw, gu, gk, gv)
        elif os.environ["RWKV_FLOAT_MODE"] == "fp16":
            return (None, None, None, gw.half(), gu.half(), gk.half(), gv.half())
        elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
            return (None, None, None, gw.bfloat16(), gu.bfloat16(), gk.bfloat16(), gv.bfloat16())


def RUN_CUDA(B, T, C, w, u, k, v):
    return WKV.apply(B, T, C, w, u, k, v)


########################################################################################################
# RWKV: RWKV Time-mix + RWKV Channel-mix
########################################################################################################


class RWKV_TimeMix(MyModule):
    def __init__(self, args, layer_id):
        super().__init__()
        self.args = args
        self.layer_id = layer_id
        self.ctx_len = args.ctx_len
        self.n_embd = args.n_embd

        with torch.no_grad():  # fancy init
            ratio_0_to_1 = layer_id / (args.n_layer - 1)  # 0 to 1
            ratio_1_to_almost0 = 1.0 - (layer_id / args.n_layer)  # 1 to ~0
            ddd = torch.ones(1, 1, args.n_embd)
            for i in range(args.n_embd):
                ddd[0, 0, i] = i / args.n_embd
            
            # fancy time_decay
            decay_speed = torch.ones(args.dim_att)
            for h in range(args.dim_att):
                decay_speed[h] = -5 + 8 * (h / (args.dim_att - 1)) ** (0.7 + 1.3 * ratio_0_to_1)
            self.time_decay = nn.Parameter(decay_speed)
            # print(layer_id, self.time_decay.flatten()[:3].cpu().numpy(), '...', self.time_decay.flatten()[-3:].cpu().numpy())

            # fancy time_first
            zigzag = torch.tensor([(i + 1) % 3 - 1 for i in range(args.dim_att)]) * 0.5
            self.time_first = nn.Parameter(torch.ones(args.dim_att) * math.log(0.3) + zigzag)

            # fancy time_mix
            self.time_mix_k = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
            self.time_mix_v = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0) + 0.3 * ratio_0_to_1)
            self.time_mix_r = nn.Parameter(torch.pow(ddd, 0.5 * ratio_1_to_almost0))

        self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
        self.key = nn.Linear(args.n_embd, args.dim_att, bias=False)
        self.value = nn.Linear(args.n_embd, args.dim_att, bias=False)
        self.receptance = nn.Linear(args.n_embd, args.dim_att, bias=False)
        self.output = nn.Linear(args.dim_att, args.n_embd, bias=False)

        if 'a' in os.environ["RWKV_MY_TESTING"]:
            self.register_buffer("att_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len)))
            d_qkv = args.n_embd // 16
            self.qq = nn.Linear(args.n_embd, d_qkv, bias=False)
            self.kk = nn.Linear(args.n_embd, d_qkv, bias=False)
            self.vv = nn.Linear(args.n_embd, d_qkv, bias=False)
            self.oo = nn.Linear(d_qkv, args.n_embd, bias=False)
            with torch.no_grad():
                self.time_mix_qq = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
                self.time_mix_kk = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
                self.time_mix_vv = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0) + 0.3 * ratio_0_to_1)

    if 'a' not in os.environ["RWKV_MY_TESTING"]:
        @MyFunction
        def jit_func(self, x):
            xx = self.time_shift(x) # Mix x with the previous timestep to produce xk, xv, xr
            xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
            xv = x * self.time_mix_v + xx * (1 - self.time_mix_v)
            xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
            k = self.key(xk)
            v = self.value(xv)
            r = self.receptance(xr)
            sr = torch.sigmoid(r)
            return sr, k, v

        def forward(self, x):
            B, T, C = x.size()  # x = (Batch,Time,Channel)
            sr, k, v = self.jit_func(x)
            rwkv = sr * RUN_CUDA(B, T, self.args.dim_att, self.time_decay, self.time_first, k, v)
            return self.output(rwkv)

    if 'a' in os.environ["RWKV_MY_TESTING"]:
        @MyFunction
        def QKV(self, q, k, v):
            att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
            att = att.masked_fill(self.att_mask == 0, float('-inf'))
            att = F.softmax(att, dim = -1)
            x = att @ v
            return x

        @MyFunction
        def jit_funcQKV(self, x):
            xx = self.time_shift(x) # Mix x with the previous timestep to produce xk, xv, xr
            xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
            xv = x * self.time_mix_v + xx * (1 - self.time_mix_v)
            xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
            xqq = x * self.time_mix_qq + xx * (1 - self.time_mix_qq)
            xkk = x * self.time_mix_kk + xx * (1 - self.time_mix_kk)
            xvv = x * self.time_mix_vv + xx * (1 - self.time_mix_vv)
            k = self.key(xk)
            v = self.value(xv)
            r = self.receptance(xr)
            sr = torch.sigmoid(r)
            qq = self.qq(xqq)
            kk = self.kk(xkk)
            vv = self.vv(xvv)
            return sr, k, v, qq, kk, vv

        def forward(self, x):
            B, T, C = x.size()  # x = (Batch,Time,Channel)
            sr, k, v, qq, kk, vv = self.jit_funcQKV(x)
            rwkv = sr * RUN_CUDA(B, T, self.args.dim_att, self.time_decay, self.time_first, k, v)
            rwkv = self.output(rwkv) + self.oo(self.QKV(qq, kk, vv))
            return rwkv

########################################################################################################

class RWKV_ChannelMix(MyModule):
    def __init__(self, args, layer_id):
        super().__init__()
        self.args = args
        self.layer_id = layer_id
        self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))

        with torch.no_grad():  # fancy init of time_mix
            ratio_1_to_almost0 = 1.0 - (layer_id / args.n_layer)  # 1 to ~0
            ddd = torch.ones(1, 1, args.n_embd)
            for i in range(args.n_embd):
                ddd[0, 0, i] = i / args.n_embd
            self.time_mix_k = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
            self.time_mix_r = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
        
        self.key = nn.Linear(args.n_embd, args.dim_ffn, bias=False)
        self.receptance = nn.Linear(args.n_embd, args.n_embd, bias=False)
        self.value = nn.Linear(args.dim_ffn, args.n_embd, bias=False)

    @MyFunction
    def forward(self, x):
        xx = self.time_shift(x)
        xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
        xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
        k = self.key(xk)
        k = torch.square(torch.relu(k))
        kv = self.value(k)
        return torch.sigmoid(self.receptance(xr)) * kv

class MishGLU(MyModule):
    def __init__(self, args, layer_id):
        super().__init__()
        self.args = args
        self.layer_id = layer_id
        self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))

        with torch.no_grad():
            ratio_1_to_almost0 = 1.0 - (layer_id / args.n_layer)

            x = torch.ones(1, 1, args.n_embd)
            for i in range(args.n_embd):
                x[0, 0, i] = i / args.n_embd

            self.time_mix_k = nn.Parameter(torch.pow(x, ratio_1_to_almost0))
            self.time_mix_r = nn.Parameter(torch.pow(x, ratio_1_to_almost0))
            self.aa = nn.Linear(args.n_embd, args.dim_ffn, bias=False)
            self.bb = nn.Linear(args.n_embd, args.dim_ffn, bias=False)
            self.value = nn.Linear(args.dim_ffn, args.n_embd, bias=False)

    @MyFunction
    def forward(self, x):
        xx = self.time_shift(x)
        xa = x * self.time_mix_k + xx * (1 - self.time_mix_k)
        xb = x * self.time_mix_r + xx * (1 - self.time_mix_r)
        a = self.aa(xa)
        b = self.bb(xb)
        return self.value(a * F.mish(b))

########################################################################################################
# The RWKV Model with our blocks
########################################################################################################


class Block(nn.Module):
    def __init__(self, args, layer_id):
        super().__init__()
        self.args = args
        self.layer_id = layer_id

        self.ln1 = nn.LayerNorm(args.n_embd)
        self.ln2 = nn.LayerNorm(args.n_embd)

        if self.layer_id == 0:
            self.ln0 = nn.LayerNorm(args.n_embd)
            if args.my_pos_emb > 0:
                self.pos_emb_x = nn.Parameter(torch.zeros((1,args.my_pos_emb,args.n_embd)))
                self.pos_emb_y = nn.Parameter(torch.zeros((args.my_pos_emb,1,args.n_embd)))

        if self.layer_id == 0 and self.args.pre_ffn > 0:
            self.ffnPre = RWKV_ChannelMix(args, 0)
        else:
            self.att = RWKV_TimeMix(args, layer_id)

        if 'g' in os.environ["RWKV_MY_TESTING"]:
            self.ffn = MishGLU(args, layer_id)
        else:
            self.ffn = RWKV_ChannelMix(args, layer_id)
        
        if args.tiny_att_dim > 0 and self.layer_id == args.tiny_att_layer:
            self.tiny_ln = nn.LayerNorm(args.n_embd)
            self.tiny_q = nn.Linear(args.n_embd, args.tiny_att_dim, bias=False)
            self.tiny_k = nn.Linear(args.n_embd, args.tiny_att_dim, bias=False)
            self.tiny_v = nn.Linear(args.n_embd, args.n_embd, bias=False)
            self.register_buffer("tiny_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len)))

    def forward(self, x, x_emb=None):
        args = self.args
        B, T, C = x.size()
        if self.layer_id == 0:
            x = self.ln0(x)
            if args.my_pos_emb > 0:
                pos_emb = (self.pos_emb_x + self.pos_emb_y).reshape(T+1, -1)[:-1,:]
                x = x + pos_emb

        if self.layer_id == 0 and args.pre_ffn > 0:
            x = x + self.ffnPre(self.ln1(x))
        else:
            x = x + self.att(self.ln1(x))
        x = x + self.ffn(self.ln2(x))

        if args.tiny_att_dim > 0 and self.layer_id == args.tiny_att_layer:
            xx = self.tiny_ln(x)
            q = self.tiny_q(xx)[:, :T, :]
            k = self.tiny_k(xx)[:, :T, :]
            c = (q @ k.transpose(-2, -1)) * (args.tiny_att_dim ** (-0.5))
            c = c.masked_fill(self.tiny_mask[:T, :T] == 0, 0)
            x = x + c @ self.tiny_v(x_emb)
        return x


class L2Wrap(torch.autograd.Function):
    @staticmethod
    def forward(ctx, loss, y):
        ctx.save_for_backward(y)
        return loss

    @staticmethod
    def backward(ctx, grad_output):
        y = ctx.saved_tensors[0]
        # to encourage the logits to be close to 0
        factor = 1e-4 / (y.shape[0] * y.shape[1])
        maxx, ids = torch.max(y, -1, keepdim=True)
        gy = torch.zeros_like(y)
        gy.scatter_(-1, ids, maxx * factor)
        return (grad_output, gy)


class RWKV(pl.LightningModule):
    def __init__(self, args):
        super().__init__()
        self.args = args
        if not hasattr(args, 'dim_att'):
            args.dim_att = args.n_embd
        if not hasattr(args, 'dim_ffn'):
            args.dim_ffn = args.n_embd * 4
        if not hasattr(args, 'tiny_att_layer'):
            args.tiny_att_layer = -1
        if not hasattr(args, 'tiny_att_dim'):
            args.tiny_att_dim = -1

        self.emb = nn.Embedding(args.vocab_size, args.n_embd)

        self.blocks = nn.ModuleList([Block(args, i) for i in range(args.n_layer)])

        self.ln_out = nn.LayerNorm(args.n_embd)
        self.head = nn.Linear(args.n_embd, args.vocab_size, bias=False)

        if args.head_qk > 0:
            self.head_q = nn.Linear(args.n_embd, args.head_qk, bias=False)
            self.head_k = nn.Linear(args.n_embd, args.head_qk, bias=False)
            self.register_buffer("copy_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len)))

U
u010280923 已提交
384 385 386
    def load(self, path):
        path = Path(path)
        assert path.exists()
U
u010280923 已提交
387
        self.load_state_dict(torch.load(str(path), map_location="cpu"))
U
u010280923 已提交
388

CSDN-Ada助手's avatar
CSDN-Ada助手 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
    def configure_optimizers(self):
        args = self.args
        if args.layerwise_lr > 0:
            lr_1x = set()
            lr_2x = set()
            lr_3x = set()
            for n, p in self.named_parameters():
                if "time_mix" in n:
                    if args.my_pile_stage == 2:
                        lr_2x.add(n)
                    else:
                        lr_1x.add(n)
                elif "time_decay" in n:
                    if args.my_pile_stage == 2:
                        lr_3x.add(n)
                    else:
                        lr_2x.add(n)
                elif "time_first" in n:
                    lr_3x.add(n)
                else:
                    lr_1x.add(n)
            lr_1x = sorted(list(lr_1x))
            lr_2x = sorted(list(lr_2x))
            lr_3x = sorted(list(lr_3x))
            # print('1x', lr_1x)
            # print('2x', lr_2x)
            # print('3x', lr_3x)
            param_dict = {n: p for n, p in self.named_parameters()}
            if args.my_pile_stage == 2:
                optim_groups = [
                    {"params": [param_dict[n] for n in lr_1x], "weight_decay": 0.0, "my_lr_scale": 1.0},
                    {"params": [param_dict[n] for n in lr_2x], "weight_decay": 0.0, "my_lr_scale": 5.0},# test: 2e-3 / args.lr_init},
                    {"params": [param_dict[n] for n in lr_3x], "weight_decay": 0.0, "my_lr_scale": 5.0},# test: 3e-3 / args.lr_init},
                ]
            else:
                optim_groups = [
                    {"params": [param_dict[n] for n in lr_1x], "weight_decay": 0.0, "my_lr_scale": 1.0},
                    {"params": [param_dict[n] for n in lr_2x], "weight_decay": 0.0, "my_lr_scale": 2.0},
                    {"params": [param_dict[n] for n in lr_3x], "weight_decay": 0.0, "my_lr_scale": 3.0},
                ]
        else:
            optim_groups = [
                {"params": [p for n, p in self.named_parameters()], "weight_decay": 0.0},
            ]

        if self.deepspeed_offload:
            return DeepSpeedCPUAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, adamw_mode=False, weight_decay=0, amsgrad=False)
        return FusedAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, adam_w_mode=False, weight_decay=0, amsgrad=False)
        # return ZeroOneAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, weight_decay=0, amsgrad=False, cuda_aware=False)

    @property
    def deepspeed_offload(self) -> bool:
        strategy = self.trainer.strategy
        if isinstance(strategy, DeepSpeedStrategy):
            cfg = strategy.config["zero_optimization"]
            return cfg.get("offload_optimizer") or cfg.get("offload_param")
        return False

U
u010280923 已提交
447
    def forward(self, idx, extra_embed=None, rm_train=False, ppo_train=False):
CSDN-Ada助手's avatar
CSDN-Ada助手 已提交
448 449 450 451 452 453 454
        args = self.args
        B, T = idx.size()
        assert T <= args.ctx_len, "Cannot forward, model ctx_len is exhausted."

        x = self.emb(idx)
        x_emb = x

U
u010280923 已提交
455 456 457 458
        # 给 x 加入额外的 embedding,例如在训练 RM 的时候,区分 prompt 和 response
        if extra_embed is not None:
            x_emb = x_emb + extra_embed

CSDN-Ada助手's avatar
CSDN-Ada助手 已提交
459 460 461 462 463 464 465 466 467 468 469 470 471
        if args.tiny_att_dim > 0:
            for block in self.blocks:
                if args.grad_cp == 1:
                    x = deepspeed.checkpointing.checkpoint(block, x, x_emb)
                else:
                    x = block(x, x_emb)
        else:
            for block in self.blocks:
                if args.grad_cp == 1:
                    x = deepspeed.checkpointing.checkpoint(block, x)
                else:
                    x = block(x)

U
u010280923 已提交
472
        embeds = self.ln_out(x)
CSDN-Ada助手's avatar
CSDN-Ada助手 已提交
473

U
u010280923 已提交
474 475
        # 用于 RM 模型的编码
        if rm_train is True:
U
u010280923 已提交
476
            return embeds
U
u010280923 已提交
477

CSDN-Ada助手's avatar
CSDN-Ada助手 已提交
478
        if args.head_qk > 0:
U
u010280923 已提交
479 480
            q = self.head_q(embeds)[:, :T, :]
            k = self.head_k(embeds)[:, :T, :]
CSDN-Ada助手's avatar
CSDN-Ada助手 已提交
481 482 483 484 485 486 487 488 489 490
            c = (q @ k.transpose(-2, -1)) * (1.0 / args.head_qk)
            c = c.masked_fill(self.copy_mask[:T, :T] == 0, 0)

            if "32" in os.environ["RWKV_FLOAT_MODE"]:
                c = c @ F.one_hot(idx, num_classes=args.vocab_size)
            elif os.environ["RWKV_FLOAT_MODE"] == "fp16":
                c = c @ F.one_hot(idx, num_classes=args.vocab_size).half()
            elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
                c = c @ F.one_hot(idx, num_classes=args.vocab_size).bfloat16()

U
u010280923 已提交
491
            logits = self.head(embeds) + c
CSDN-Ada助手's avatar
CSDN-Ada助手 已提交
492
        else:
U
u010280923 已提交
493 494 495 496 497 498 499 500 501
            logits = self.head(embeds)

        # 用于 PPO 模型
        if ppo_train is True:
            return logits, embeds

        return logits
    
    @torch.no_grad()
U
u010280923 已提交
502
    @eval_decorator
U
u010280923 已提交
503 504 505 506 507 508 509 510 511
    def generate(
        self,
        seq_len,
        prompt = None,
        temperature = 1.,
        filter_logits_fn = top_k,
        filter_thres = 0.9,
        pad_value = 0.,
        eos_token = None,
U
u010280923 已提交
512
        return_seq_without_prompt = True
U
u010280923 已提交
513
    ):
U
u010280923 已提交
514
        ''' 生成 response,用于 ppo 模型的训练
U
u010280923 已提交
515 516 517 518 519 520 521 522
        '''

        prompt, leading_dims = pack([prompt], '* n')

        n, out = prompt.shape[-1], prompt.clone()

        sample_num_times = max(1, seq_len - prompt.shape[-1])

U
u010280923 已提交
523
        for _ in tqdm(range(sample_num_times), desc="gen responses"):
U
u010280923 已提交
524
            pad_idx = torch.tensor([[eos_token] * (self.args.ctx_len - out.shape[-1])])
U
u010280923 已提交
525 526
            query_idx = torch.cat((out, pad_idx), dim=-1)
            logits, embeds = self.forward(query_idx, ppo_train=True)
U
u010280923 已提交
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
            logits, embeds = logits[:, -1], embeds[:, -1]

            if exists(filter_logits_fn):
                logits = filter_logits_fn(logits, thres = filter_thres)

            sample = gumbel_sample(logits, temperature = temperature, dim = -1)
            out, _ = pack([out, sample], 'b *')

            if exists(eos_token):
                is_eos_tokens = (out == eos_token)

                if is_eos_tokens.any(dim = -1).all():
                    # mask out everything after the eos tokens
                    shifted_is_eos_tokens = F.pad(is_eos_tokens, (1, -1))
                    mask = shifted_is_eos_tokens.float().cumsum(dim = -1) >= 1
                    out = out.masked_fill(mask, pad_value)
                    break

        out, = unpack(out, leading_dims, '* n')

        if not return_seq_without_prompt:
            return out

        return out[..., n:]
CSDN-Ada助手's avatar
CSDN-Ada助手 已提交
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653

    def training_step(self, batch, batch_idx):
        args = self.args
        if args.my_qa_mask != 1:
            idx, targets = batch
            logits = self(idx)
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
        else:
            idx, targets, mask = batch
            mask = mask.view(-1)
            sum_mask = torch.sum(mask).item()
            # if sum_mask == 0:
            #     return torch.tensor([0.0], requires_grad=True)

            logits = self(idx)
            if sum_mask == mask.shape[0]:
                loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
                # print('rank', self.global_rank, 'loss', loss.item())
            else:
                loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), reduction='none')
                # loss_raw = loss
                loss = torch.sum(loss * mask) / sum_mask

                # torch.set_printoptions(threshold=10000)
                # if True: #self.global_rank == 1:
                #     tmp = ''
                #     sss = 0
                #     ccc = 0
                #     for i in range(mask.shape[0]):
                #         if mask[i] > 0:
                #             tmp += str(idx.view(-1)[i].item()) + ','
                #             sss += loss_raw.view(-1)[i].float().item()
                #             ccc += 1
                #     print('rank', self.global_rank, 'loss', loss.item(), 'lavg', sss / ccc)#, 'tmp', tmp, 'input', idx)

        return L2Wrap.apply(loss, logits)

    def training_step_end(self, batch_parts):
        all = self.all_gather(batch_parts)
        if self.trainer.is_global_zero:
            self.trainer.my_loss_all = all

    def generate_init_weight(self):
        print(
            f"""
############################################################################
#
# Init model weight (slow for large models)...
#
############################################################################
"""
        )
        m = {}
        for n in self.state_dict():
            p = self.state_dict()[n]
            shape = p.shape

            gain = 1.0
            scale = 1.0
            if "ln_" in n or ".ln" in n or "time_" in n or "_mask" in n or "pos_emb" in n or '.mask.' in n:
                m[n] = p
            else:
                if n == "emb.weight":
                    scale = -1 * self.args.lr_init
                else:
                    if shape[0] > shape[1]:
                        gain = math.sqrt(shape[0] / shape[1])
                    for kk in [".att.key.", ".att.receptance.", ".att.output.", ".att.key.", ".ffn.value.", ".ffn.receptance.", ".ffnPre.value.", ".ffnPre.receptance.", "head_q.", '.oo.', '.rr.']:
                        if kk in n:
                            scale = 0
                    if n == "head.weight":
                        scale = 0.5
                    if "head_k." in n:
                        scale = 0.1
                    if "head_q." in n:
                        scale = 0

                print(f"{str(shape[0]).ljust(5)} {str(shape[1]).ljust(5)} {str(scale).ljust(4)} {n}")

                if self.args.accelerator.upper() == "GPU":
                    m[n] = torch.empty((shape[0], shape[1]), device="cuda")
                else:
                    m[n] = torch.empty((shape[0], shape[1]))

                if scale == 0:
                    nn.init.zeros_(m[n])
                elif scale < 0:
                    nn.init.uniform_(m[n], a=scale, b=-scale)
                else:
                    nn.init.orthogonal_(m[n], gain=gain * scale)

            m[n] = m[n].cpu()
            if os.environ["RWKV_FLOAT_MODE"] == "fp16":
                m[n] = m[n].half()
            elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
                m[n] = m[n].bfloat16()

            # if n == "emb.weight":
            #     print(m[n])

        gc.collect()
        torch.cuda.empty_cache()
        return m