You need to sign in or sign up before continuing.
提交 33d88ece 编写于 作者: HansBug's avatar HansBug 😆

doc(hansbug): add doc for any, zeros, zeros_like

上级 007d22dd
......@@ -30,12 +30,54 @@ func_treelize = post_process(post_process(args_mapping(
@doc_from(torch.zeros)
@func_treelize()
def zeros(*args, **kwargs):
"""
In ``treetensor``, you can use ``zeros`` to create a tree of tensors with all zeros.
Example::
>>> import torch
>>> import treetensor.torch as ttorch
>>> ttorch.zeros(2, 3) # the same as torch.zeros(2, 3)
torch.tensor([[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0]])
>>> ttorch.zeros({
>>> 'a': (2, 3),
>>> 'b': (4, ),
>>> })
ttorch.tensor({
'a': torch.tensor([[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0]]),
'b': torch.tensor([0.0, 0.0, 0.0, 0.0]),
})
"""
return torch.zeros(*args, **kwargs)
@doc_from(torch.zeros_like)
@func_treelize()
def zeros_like(input_, *args, **kwargs):
"""
In ``treetensor``, you can use ``zeros_like`` to create a tree of tensors with all zeros like another tree.
Example::
>>> import torch
>>> import treetensor.torch as ttorch
>>> ttorch.zeros_like(torch.randn(2, 3)) # the same as torch.zeros_like(torch.randn(2, 3))
torch.tensor([[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0]])
>>> ttorch.zeros_like({
>>> 'a': torch.randn(2, 3),
>>> 'b': torch.randn(4, ),
>>> })
ttorch.tensor({
'a': torch.tensor([[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0]]),
'b': torch.tensor([0.0, 0.0, 0.0, 0.0]),
})
"""
return torch.zeros_like(input_, *args, **kwargs)
......@@ -110,21 +152,36 @@ def all(input_, *args, **kwargs):
>>> import torch
>>> import treetensor.torch as ttorch
>>> all(torch.tensor([True, True])) # the same as torch.all
>>> ttorch.all(torch.tensor([True, True])) # the same as torch.all
torch.tensor(True)
>>> all(ttorch.tensor({
>>> ttorch.all(ttorch.tensor({
>>> 'a': [True, True],
>>> 'b': [True, True],
>>> }))
torch.tensor(True)
>>> all(Tensor({
>>> ttorch.all(ttorch.tensor({
>>> 'a': [True, True],
>>> 'b': [True, False],
>>> }))
torch.tensor(False)
.. note::
In this ``all`` function, the return value should be a tensor with single boolean value.
If what you need is a tree of boolean tensors, you should do like this
>>> ttorch.tensor({
>>> 'a': [True, True],
>>> 'b': [True, False],
>>> }).map(torch.all)
ttorch.tensor({
'a': torch.tensor(True),
'b': torch.tensor(False),
})
"""
return torch.all(input_, *args, **kwargs)
......@@ -133,6 +190,44 @@ def all(input_, *args, **kwargs):
@tireduce(torch.any)
@func_treelize(return_type=TreeObject)
def any(input_, *args, **kwargs):
"""
In ``treetensor``, you can get the ``any`` result of a whole tree with this function.
Example::
>>> import torch
>>> import treetensor.torch as ttorch
>>> ttorch.any(torch.tensor([False, False])) # the same as torch.any
torch.tensor(False)
>>> ttorch.any(ttorch.tensor({
>>> 'a': [True, False],
>>> 'b': [False, False],
>>> }))
torch.tensor(True)
>>> ttorch.any(ttorch.tensor({
>>> 'a': [False, False],
>>> 'b': [False, False],
>>> }))
torch.tensor(False)
.. note::
In this ``any`` function, the return value should be a tensor with single boolean value.
If what you need is a tree of boolean tensors, you should do like this
>>> ttorch.tensor({
>>> 'a': [True, False],
>>> 'b': [False, False],
>>> }).map(torch.any)
ttorch.tensor({
'a': torch.tensor(True),
'b': torch.tensor(False),
})
"""
return torch.any(input_, *args, **kwargs)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册