compressor-filter.c 14.6 KB
Newer Older
1 2 3 4 5 6
#include <stdint.h>
#include <inttypes.h>
#include <math.h>

#include <obs-module.h>
#include <media-io/audio-math.h>
7 8 9
#include <util/platform.h>
#include <util/circlebuf.h>
#include <util/threading.h>
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

/* -------------------------------------------------------- */

#define do_log(level, format, ...) \
	blog(level, "[compressor: '%s'] " format, \
			obs_source_get_name(cd->context), ##__VA_ARGS__)

#define warn(format, ...)  do_log(LOG_WARNING, format, ##__VA_ARGS__)
#define info(format, ...)  do_log(LOG_INFO,    format, ##__VA_ARGS__)

#ifdef _DEBUG
#define debug(format, ...) do_log(LOG_DEBUG,   format, ##__VA_ARGS__)
#else
#define debug(format, ...)
#endif

/* -------------------------------------------------------- */

#define S_RATIO                         "ratio"
#define S_THRESHOLD                     "threshold"
#define S_ATTACK_TIME                   "attack_time"
#define S_RELEASE_TIME                  "release_time"
#define S_OUTPUT_GAIN                   "output_gain"
33
#define S_SIDECHAIN_SOURCE              "sidechain_source"
34 35 36 37 38 39 40

#define MT_ obs_module_text
#define TEXT_RATIO                      MT_("Compressor.Ratio")
#define TEXT_THRESHOLD                  MT_("Compressor.Threshold")
#define TEXT_ATTACK_TIME                MT_("Compressor.AttackTime")
#define TEXT_RELEASE_TIME               MT_("Compressor.ReleaseTime")
#define TEXT_OUTPUT_GAIN                MT_("Compressor.OutputGain")
41
#define TEXT_SIDECHAIN_SOURCE           MT_("Compressor.SidechainSource")
42 43 44 45 46 47 48 49

#define MIN_RATIO                       1.0f
#define MAX_RATIO                       32.0f
#define MIN_THRESHOLD_DB                -60.0f
#define MAX_THRESHOLD_DB                0.0f
#define MIN_OUTPUT_GAIN_DB              -32.0f
#define MAX_OUTPUT_GAIN_DB              32.0f
#define MIN_ATK_RLS_MS                  1
50 51
#define MAX_RLS_MS                      1000
#define MAX_ATK_MS                      500
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
#define DEFAULT_AUDIO_BUF_MS            10

#define MS_IN_S                         1000
#define MS_IN_S_F                       ((float)MS_IN_S)

/* -------------------------------------------------------- */

struct compressor_data {
	obs_source_t *context;
	float *envelope_buf;
	size_t envelope_buf_len;

	float ratio;
	float threshold;
	float attack_gain;
	float release_gain;
	float output_gain;

	size_t num_channels;
71
	size_t sample_rate;
72 73
	float envelope;
	float slope;
74

75 76
	pthread_mutex_t sidechain_update_mutex;
	uint64_t sidechain_check_time;
77
	obs_weak_source_t *weak_sidechain;
78 79
	char *sidechain_name;

80 81 82 83
	pthread_mutex_t sidechain_mutex;
	struct circlebuf sidechain_data[MAX_AUDIO_CHANNELS];
	float *sidechain_buf[MAX_AUDIO_CHANNELS];
	size_t max_sidechain_frames;
84 85 86 87
};

/* -------------------------------------------------------- */

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
static inline obs_source_t *get_sidechain(struct compressor_data *cd)
{
	if (cd->weak_sidechain)
		return obs_weak_source_get_source(cd->weak_sidechain);
	return NULL;
}

static inline void get_sidechain_data(struct compressor_data *cd,
		const uint32_t num_samples)
{
	size_t data_size = cd->envelope_buf_len * sizeof(float);
	if (!data_size)
		return;

	pthread_mutex_lock(&cd->sidechain_mutex);
	if (cd->max_sidechain_frames < num_samples)
		cd->max_sidechain_frames = num_samples;

	if (cd->sidechain_data[0].size < data_size) {
		pthread_mutex_unlock(&cd->sidechain_mutex);
		goto clear;
	}

	for (size_t i = 0; i < cd->num_channels; i++)
		circlebuf_pop_front(&cd->sidechain_data[i],
				cd->sidechain_buf[i], data_size);

	pthread_mutex_unlock(&cd->sidechain_mutex);
	return;

clear:
	for (size_t i = 0; i < cd->num_channels; i++)
		memset(cd->sidechain_buf[i], 0, data_size);
}

static void resize_env_buffer(struct compressor_data *cd, size_t len)
124 125 126
{
	cd->envelope_buf_len = len;
	cd->envelope_buf = brealloc(cd->envelope_buf, len * sizeof(float));
127 128 129 130

	for (size_t i = 0; i < cd->num_channels; i++)
		cd->sidechain_buf[i] = brealloc(cd->sidechain_buf[i],
				len * sizeof(float));
131 132 133 134 135 136 137 138 139 140 141 142 143
}

static inline float gain_coefficient(uint32_t sample_rate, float time)
{
	return (float)exp(-1.0f / (sample_rate * time));
}

static const char *compressor_name(void *unused)
{
	UNUSED_PARAMETER(unused);
	return obs_module_text("Compressor");
}

144 145 146 147 148
static void sidechain_capture(void *param, obs_source_t *source,
		const struct audio_data *audio_data, bool muted)
{
	struct compressor_data *cd = param;

J
jp9000 已提交
149 150
	UNUSED_PARAMETER(source);

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
	pthread_mutex_lock(&cd->sidechain_mutex);

	if (cd->max_sidechain_frames < audio_data->frames)
		cd->max_sidechain_frames = audio_data->frames;

	size_t expected_size = cd->max_sidechain_frames * sizeof(float);

	if (!expected_size)
		goto unlock;

	if (cd->sidechain_data[0].size > expected_size * 2) {
		for (size_t i = 0; i < cd->num_channels; i++) {
			circlebuf_pop_front(&cd->sidechain_data[i], NULL,
					expected_size);
		}
	}

	if (muted) {
		for (size_t i = 0; i < cd->num_channels; i++) {
			circlebuf_push_back_zero(&cd->sidechain_data[i],
					audio_data->frames * sizeof(float));
		}
	} else {
		for (size_t i = 0; i < cd->num_channels; i++) {
			circlebuf_push_back(&cd->sidechain_data[i],
					audio_data->data[i],
					audio_data->frames * sizeof(float));
		}
	}

unlock:
	pthread_mutex_unlock(&cd->sidechain_mutex);
}

185 186 187 188 189 190 191 192 193 194 195 196 197 198
static void compressor_update(void *data, obs_data_t *s)
{
	struct compressor_data *cd = data;

	const uint32_t sample_rate =
		audio_output_get_sample_rate(obs_get_audio());
	const size_t num_channels =
		audio_output_get_channels(obs_get_audio());
	const float attack_time_ms =
		(float)obs_data_get_int(s, S_ATTACK_TIME);
	const float release_time_ms =
		(float)obs_data_get_int(s, S_RELEASE_TIME);
	const float output_gain_db =
		(float)obs_data_get_double(s, S_OUTPUT_GAIN);
199 200
	const char *sidechain_name =
		obs_data_get_string(s, S_SIDECHAIN_SOURCE);
201 202 203 204 205 206 207 208 209

	cd->ratio = (float)obs_data_get_double(s, S_RATIO);
	cd->threshold = (float)obs_data_get_double(s, S_THRESHOLD);
	cd->attack_gain = gain_coefficient(sample_rate,
			attack_time_ms / MS_IN_S_F);
	cd->release_gain = gain_coefficient(sample_rate,
			release_time_ms / MS_IN_S_F);
	cd->output_gain = db_to_mul(output_gain_db);
	cd->num_channels = num_channels;
210
	cd->sample_rate = sample_rate;
211
	cd->slope = 1.0f - (1.0f / cd->ratio);
212 213 214

	bool valid_sidechain =
		*sidechain_name && strcmp(sidechain_name, "none") != 0;
215
	obs_weak_source_t *old_weak_sidechain = NULL;
216

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
	pthread_mutex_lock(&cd->sidechain_update_mutex);

	if (!valid_sidechain) {
		if (cd->weak_sidechain) {
			old_weak_sidechain = cd->weak_sidechain;
			cd->weak_sidechain = NULL;
		}

		bfree(cd->sidechain_name);
		cd->sidechain_name = NULL;

	} else {
		if (!cd->sidechain_name ||
		    strcmp(cd->sidechain_name, sidechain_name) != 0) {
			if (cd->weak_sidechain) {
				old_weak_sidechain = cd->weak_sidechain;
				cd->weak_sidechain = NULL;
			}

			bfree(cd->sidechain_name);
			cd->sidechain_name = bstrdup(sidechain_name);
			cd->sidechain_check_time = os_gettime_ns() - 3000000000;
		}
	}

	pthread_mutex_unlock(&cd->sidechain_update_mutex);

	if (old_weak_sidechain) {
		obs_source_t *old_sidechain =
			obs_weak_source_get_source(old_weak_sidechain);

		if (old_sidechain) {
			obs_source_remove_audio_capture_callback(old_sidechain,
					sidechain_capture, cd);
			obs_source_release(old_sidechain);
		}

		obs_weak_source_release(old_weak_sidechain);
	}
256 257 258 259

	size_t sample_len = sample_rate * DEFAULT_AUDIO_BUF_MS / MS_IN_S;
	if (cd->envelope_buf_len == 0)
		resize_env_buffer(cd, sample_len);
260 261 262 263 264 265
}

static void *compressor_create(obs_data_t *settings, obs_source_t *filter)
{
	struct compressor_data *cd = bzalloc(sizeof(struct compressor_data));
	cd->context = filter;
266 267 268 269 270 271 272

	if (pthread_mutex_init(&cd->sidechain_mutex, NULL) != 0) {
		blog(LOG_ERROR, "Failed to create mutex");
		bfree(cd);
		return NULL;
	}

273 274 275 276 277 278 279
	if (pthread_mutex_init(&cd->sidechain_update_mutex, NULL) != 0) {
		pthread_mutex_destroy(&cd->sidechain_mutex);
		blog(LOG_ERROR, "Failed to create mutex");
		bfree(cd);
		return NULL;
	}

280 281 282 283 284 285 286
	compressor_update(cd, settings);
	return cd;
}

static void compressor_destroy(void *data)
{
	struct compressor_data *cd = data;
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

	if (cd->weak_sidechain) {
		obs_source_t *sidechain = get_sidechain(cd);
		if (sidechain) {
			obs_source_remove_audio_capture_callback(sidechain,
					sidechain_capture, cd);
			obs_source_release(sidechain);
		}

		obs_weak_source_release(cd->weak_sidechain);
	}

	for (size_t i = 0; i < MAX_AUDIO_CHANNELS; i++) {
		circlebuf_free(&cd->sidechain_data[i]);
		bfree(cd->sidechain_buf[i]);
	}
	pthread_mutex_destroy(&cd->sidechain_mutex);
304
	pthread_mutex_destroy(&cd->sidechain_update_mutex);
305 306

	bfree(cd->sidechain_name);
307 308 309 310
	bfree(cd->envelope_buf);
	bfree(cd);
}

311
static void analyze_envelope(struct compressor_data *cd,
312
	float **samples, const uint32_t num_samples)
313 314 315 316 317
{
	if (cd->envelope_buf_len < num_samples) {
		resize_env_buffer(cd, num_samples);
	}

318 319 320
	const float attack_gain = cd->attack_gain;
	const float release_gain = cd->release_gain;

321 322
	memset(cd->envelope_buf, 0, num_samples * sizeof(cd->envelope_buf[0]));
	for (size_t chan = 0; chan < cd->num_channels; ++chan) {
323 324 325 326 327 328 329 330 331 332 333
		if (!samples[chan])
			continue;

		float *envelope_buf = cd->envelope_buf;
		float env = cd->envelope;
		for (uint32_t i = 0; i < num_samples; ++i) {
			const float env_in = fabsf(samples[chan][i]);
			if (env < env_in) {
				env = env_in + attack_gain * (env - env_in);
			} else {
				env = env_in + release_gain * (env - env_in);
334
			}
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
			envelope_buf[i] = fmaxf(envelope_buf[i], env);
		}
	}
	cd->envelope = cd->envelope_buf[num_samples - 1];
}

static void analyze_sidechain(struct compressor_data *cd,
	const uint32_t num_samples)
{
	if (cd->envelope_buf_len < num_samples) {
		resize_env_buffer(cd, num_samples);
	}

	get_sidechain_data(cd, num_samples);

	const float attack_gain = cd->attack_gain;
	const float release_gain = cd->release_gain;
	float **sidechain_buf = cd->sidechain_buf;

	memset(cd->envelope_buf, 0, num_samples * sizeof(cd->envelope_buf[0]));
	for (size_t chan = 0; chan < cd->num_channels; ++chan) {
		if (!sidechain_buf[chan])
			continue;

		float *envelope_buf = cd->envelope_buf;
		float env = cd->envelope;
		for (uint32_t i = 0; i < num_samples; ++i) {
			const float env_in  = fabsf(sidechain_buf[chan][i]);

			if (env < env_in) {
				env = env_in + attack_gain * (env - env_in);
			} else {
				env = env_in + release_gain * (env - env_in);
			}
			envelope_buf[i] = fmaxf(envelope_buf[i], env);
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
		}
	}
	cd->envelope = cd->envelope_buf[num_samples - 1];
}

static inline void process_compression(const struct compressor_data *cd,
	float **samples, uint32_t num_samples)
{
	for (size_t i = 0; i < num_samples; ++i) {
		const float env_db = mul_to_db(cd->envelope_buf[i]);
		float gain = cd->slope * (cd->threshold - env_db);
		gain = db_to_mul(fminf(0, gain));

		for (size_t c = 0; c < cd->num_channels; ++c) {
			if (samples[c]) {
				samples[c][i] *= gain * cd->output_gain;
			}
		}
	}
}

391
static void compressor_tick(void *data, float seconds)
392 393
{
	struct compressor_data *cd = data;
394
	char *new_name = NULL;
395

396
	pthread_mutex_lock(&cd->sidechain_update_mutex);
397

398 399 400 401
	if (cd->sidechain_name && !cd->weak_sidechain) {
		uint64_t t = os_gettime_ns();

		if (t - cd->sidechain_check_time > 3000000000) {
402
			new_name = bstrdup(cd->sidechain_name);
403 404
			cd->sidechain_check_time = t;
		}
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
	}

	pthread_mutex_unlock(&cd->sidechain_update_mutex);

	if (new_name) {
		obs_source_t *sidechain = new_name && *new_name ?
			obs_get_source_by_name(new_name) : NULL;
		obs_weak_source_t *weak_sidechain = sidechain ?
			obs_source_get_weak_source(sidechain) : NULL;

		pthread_mutex_lock(&cd->sidechain_update_mutex);

		if (cd->sidechain_name &&
		    strcmp(cd->sidechain_name, new_name) == 0) {
			cd->weak_sidechain = weak_sidechain;
			weak_sidechain = NULL;
		}
422

423 424 425 426 427 428 429 430 431 432 433
		pthread_mutex_unlock(&cd->sidechain_update_mutex);

		if (sidechain) {
			obs_source_add_audio_capture_callback(sidechain,
					sidechain_capture, cd);

			obs_weak_source_release(weak_sidechain);
			obs_source_release(sidechain);
		}

		bfree(new_name);
434
	}
435
}
436

437 438 439 440 441 442 443 444 445 446 447 448 449
static struct obs_audio_data *compressor_filter_audio(void *data,
	struct obs_audio_data *audio)
{
	struct compressor_data *cd = data;

	const uint32_t num_samples = audio->frames;
	float **samples = (float**)audio->data;

	pthread_mutex_lock(&cd->sidechain_update_mutex);
	obs_weak_source_t *weak_sidechain = cd->weak_sidechain;
	pthread_mutex_unlock(&cd->sidechain_update_mutex);

	if (weak_sidechain)
450 451 452 453 454
		analyze_sidechain(cd, num_samples);
	else
		analyze_envelope(cd, samples, num_samples);

	process_compression(cd, samples, num_samples);
455 456 457 458 459 460 461 462 463 464
	return audio;
}

static void compressor_defaults(obs_data_t *s)
{
	obs_data_set_default_double(s, S_RATIO, 10.0f);
	obs_data_set_default_double(s, S_THRESHOLD, -18.0f);
	obs_data_set_default_int(s, S_ATTACK_TIME, 6);
	obs_data_set_default_int(s, S_RELEASE_TIME, 60);
	obs_data_set_default_double(s, S_OUTPUT_GAIN, 0.0f);
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
	obs_data_set_default_string(s, S_SIDECHAIN_SOURCE, "none");
}

struct sidechain_prop_info {
	obs_property_t *sources;
	obs_source_t *parent;
};

static bool add_sources(void *data, obs_source_t *source)
{
	struct sidechain_prop_info *info = data;
	uint32_t caps = obs_source_get_output_flags(source);

	if (source == info->parent)
		return true;
	if ((caps & OBS_SOURCE_AUDIO) == 0)
		return true;

	const char *name = obs_source_get_name(source);
	obs_property_list_add_string(info->sources, name, name);
	return true;
486 487 488 489
}

static obs_properties_t *compressor_properties(void *data)
{
490
	struct compressor_data *cd = data;
491
	obs_properties_t *props = obs_properties_create();
492 493 494 495
	obs_source_t *parent = NULL;

	if (cd)
		parent = obs_filter_get_parent(cd->context);
496 497 498 499 500 501

	obs_properties_add_float_slider(props, S_RATIO,
		TEXT_RATIO, MIN_RATIO, MAX_RATIO, 0.5f);
	obs_properties_add_float_slider(props, S_THRESHOLD,
		TEXT_THRESHOLD, MIN_THRESHOLD_DB, MAX_THRESHOLD_DB, 0.1f);
	obs_properties_add_int_slider(props, S_ATTACK_TIME,
502
		TEXT_ATTACK_TIME, MIN_ATK_RLS_MS, MAX_ATK_MS, 1);
503
	obs_properties_add_int_slider(props, S_RELEASE_TIME,
504
		TEXT_RELEASE_TIME, MIN_ATK_RLS_MS, MAX_RLS_MS, 1);
505 506 507
	obs_properties_add_float_slider(props, S_OUTPUT_GAIN,
		TEXT_OUTPUT_GAIN, MIN_OUTPUT_GAIN_DB, MAX_OUTPUT_GAIN_DB, 0.1f);

508 509 510 511 512 513 514 515 516
	obs_property_t *sources = obs_properties_add_list(props,
			S_SIDECHAIN_SOURCE, TEXT_SIDECHAIN_SOURCE,
			OBS_COMBO_TYPE_LIST, OBS_COMBO_FORMAT_STRING);

	obs_property_list_add_string(sources, obs_module_text("None"), "none");

	struct sidechain_prop_info info = {sources, parent};
	obs_enum_sources(add_sources, &info);

517 518 519 520 521 522 523 524 525 526 527 528 529
	UNUSED_PARAMETER(data);
	return props;
}

struct obs_source_info compressor_filter = {
	.id = "compressor_filter",
	.type = OBS_SOURCE_TYPE_FILTER,
	.output_flags = OBS_SOURCE_AUDIO,
	.get_name = compressor_name,
	.create = compressor_create,
	.destroy = compressor_destroy,
	.update = compressor_update,
	.filter_audio = compressor_filter_audio,
530
	.video_tick = compressor_tick,
531 532 533
	.get_defaults = compressor_defaults,
	.get_properties = compressor_properties,
};