dnn_backend_tf.c 21.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright (c) 2018 Sergey Lavrushkin
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * DNN tensorflow backend implementation.
 */

#include "dnn_backend_tf.h"
27
#include "dnn_backend_native.h"
28
#include "dnn_backend_native_layer_conv2d.h"
29
#include "dnn_backend_native_layer_depth2space.h"
30
#include "libavformat/avio.h"
31
#include "libavutil/avassert.h"
32
#include "dnn_backend_native_layer_pad.h"
33
#include "dnn_backend_native_layer_maximum.h"
34 35 36 37

#include <tensorflow/c/c_api.h>

typedef struct TFModel{
38 39 40
    TF_Graph *graph;
    TF_Session *session;
    TF_Status *status;
41
    TF_Output input;
42
    TF_Tensor *input_tensor;
43 44 45
    TF_Output *outputs;
    TF_Tensor **output_tensors;
    uint32_t nb_output;
46 47
} TFModel;

48
static void free_buffer(void *data, size_t length)
49 50 51 52
{
    av_freep(&data);
}

53
static TF_Buffer *read_graph(const char *model_filename)
54
{
55 56 57
    TF_Buffer *graph_buf;
    unsigned char *graph_data = NULL;
    AVIOContext *model_file_context;
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
    long size, bytes_read;

    if (avio_open(&model_file_context, model_filename, AVIO_FLAG_READ) < 0){
        return NULL;
    }

    size = avio_size(model_file_context);

    graph_data = av_malloc(size);
    if (!graph_data){
        avio_closep(&model_file_context);
        return NULL;
    }
    bytes_read = avio_read(model_file_context, graph_data, size);
    avio_closep(&model_file_context);
    if (bytes_read != size){
        av_freep(&graph_data);
        return NULL;
    }

    graph_buf = TF_NewBuffer();
79
    graph_buf->data = (void *)graph_data;
80 81 82 83 84 85
    graph_buf->length = size;
    graph_buf->data_deallocator = free_buffer;

    return graph_buf;
}

86
static TF_Tensor *allocate_input_tensor(const DNNData *input)
87
{
88 89
    TF_DataType dt;
    size_t size;
90
    int64_t input_dims[] = {1, input->height, input->width, input->channels};
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    switch (input->dt) {
    case DNN_FLOAT:
        dt = TF_FLOAT;
        size = sizeof(float);
        break;
    case DNN_UINT8:
        dt = TF_UINT8;
        size = sizeof(char);
        break;
    default:
        av_assert0(!"should not reach here");
    }

    return TF_AllocateTensor(dt, input_dims, 4,
                             input_dims[1] * input_dims[2] * input_dims[3] * size);
}

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
static DNNReturnType get_input_tf(void *model, DNNData *input, const char *input_name)
{
    TFModel *tf_model = (TFModel *)model;
    TF_Status *status;
    int64_t dims[4];

    TF_Output tf_output;
    tf_output.oper = TF_GraphOperationByName(tf_model->graph, input_name);
    if (!tf_output.oper)
        return DNN_ERROR;

    tf_output.index = 0;
    input->dt = TF_OperationOutputType(tf_output);

    status = TF_NewStatus();
    TF_GraphGetTensorShape(tf_model->graph, tf_output, dims, 4, status);
    if (TF_GetCode(status) != TF_OK){
        TF_DeleteStatus(status);
        return DNN_ERROR;
    }
    TF_DeleteStatus(status);

    // currently only NHWC is supported
    av_assert0(dims[0] == 1);
    input->height = dims[1];
    input->width = dims[2];
    input->channels = dims[3];

    return DNN_SUCCESS;
}

139
static DNNReturnType set_input_output_tf(void *model, DNNData *input, const char *input_name, const char **output_names, uint32_t nb_output)
140 141
{
    TFModel *tf_model = (TFModel *)model;
142 143
    TF_SessionOptions *sess_opts;
    const TF_Operation *init_op = TF_GraphOperationByName(tf_model->graph, "init");
144

145 146
    // Input operation
    tf_model->input.oper = TF_GraphOperationByName(tf_model->graph, input_name);
147 148 149 150 151 152 153
    if (!tf_model->input.oper){
        return DNN_ERROR;
    }
    tf_model->input.index = 0;
    if (tf_model->input_tensor){
        TF_DeleteTensor(tf_model->input_tensor);
    }
154
    tf_model->input_tensor = allocate_input_tensor(input);
155 156 157
    if (!tf_model->input_tensor){
        return DNN_ERROR;
    }
158
    input->data = (float *)TF_TensorData(tf_model->input_tensor);
159

160
    // Output operation
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    if (nb_output == 0)
        return DNN_ERROR;

    av_freep(&tf_model->outputs);
    tf_model->outputs = av_malloc_array(nb_output, sizeof(*tf_model->outputs));
    if (!tf_model->outputs)
        return DNN_ERROR;
    for (int i = 0; i < nb_output; ++i) {
        tf_model->outputs[i].oper = TF_GraphOperationByName(tf_model->graph, output_names[i]);
        if (!tf_model->outputs[i].oper){
            av_freep(&tf_model->outputs);
            return DNN_ERROR;
        }
        tf_model->outputs[i].index = 0;
    }

    if (tf_model->output_tensors) {
        for (uint32_t i = 0; i < tf_model->nb_output; ++i) {
            if (tf_model->output_tensors[i]) {
                TF_DeleteTensor(tf_model->output_tensors[i]);
                tf_model->output_tensors[i] = NULL;
            }
        }
    }
    av_freep(&tf_model->output_tensors);
    tf_model->output_tensors = av_mallocz_array(nb_output, sizeof(*tf_model->output_tensors));
    if (!tf_model->output_tensors) {
        av_freep(&tf_model->outputs);
189 190
        return DNN_ERROR;
    }
191 192

    tf_model->nb_output = nb_output;
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

    if (tf_model->session){
        TF_CloseSession(tf_model->session, tf_model->status);
        TF_DeleteSession(tf_model->session, tf_model->status);
    }

    sess_opts = TF_NewSessionOptions();
    tf_model->session = TF_NewSession(tf_model->graph, sess_opts, tf_model->status);
    TF_DeleteSessionOptions(sess_opts);
    if (TF_GetCode(tf_model->status) != TF_OK)
    {
        return DNN_ERROR;
    }

    // Run initialization operation with name "init" if it is present in graph
    if (init_op){
        TF_SessionRun(tf_model->session, NULL,
                      NULL, NULL, 0,
                      NULL, NULL, 0,
                      &init_op, 1, NULL, tf_model->status);
        if (TF_GetCode(tf_model->status) != TF_OK)
        {
            return DNN_ERROR;
        }
    }

    return DNN_SUCCESS;
}

222
static DNNReturnType load_tf_model(TFModel *tf_model, const char *model_filename)
223
{
224 225
    TF_Buffer *graph_def;
    TF_ImportGraphDefOptions *graph_opts;
226 227 228

    graph_def = read_graph(model_filename);
    if (!graph_def){
229
        return DNN_ERROR;
230 231 232 233 234 235 236 237 238 239
    }
    tf_model->graph = TF_NewGraph();
    tf_model->status = TF_NewStatus();
    graph_opts = TF_NewImportGraphDefOptions();
    TF_GraphImportGraphDef(tf_model->graph, graph_def, graph_opts, tf_model->status);
    TF_DeleteImportGraphDefOptions(graph_opts);
    TF_DeleteBuffer(graph_def);
    if (TF_GetCode(tf_model->status) != TF_OK){
        TF_DeleteGraph(tf_model->graph);
        TF_DeleteStatus(tf_model->status);
240
        return DNN_ERROR;
241 242
    }

243 244
    return DNN_SUCCESS;
}
245

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
#define NAME_BUFFER_SIZE 256

static DNNReturnType add_conv_layer(TFModel *tf_model, TF_Operation *transpose_op, TF_Operation **cur_op,
                                    ConvolutionalParams* params, const int layer)
{
    TF_Operation *op;
    TF_OperationDescription *op_desc;
    TF_Output input;
    int64_t strides[] = {1, 1, 1, 1};
    TF_Tensor *tensor;
    int64_t dims[4];
    int dims_len;
    char name_buffer[NAME_BUFFER_SIZE];
    int32_t size;

    size = params->input_num * params->output_num * params->kernel_size * params->kernel_size;
    input.index = 0;

    snprintf(name_buffer, NAME_BUFFER_SIZE, "conv_kernel%d", layer);
    op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer);
    TF_SetAttrType(op_desc, "dtype", TF_FLOAT);
    dims[0] = params->output_num;
    dims[1] = params->kernel_size;
    dims[2] = params->kernel_size;
    dims[3] = params->input_num;
    dims_len = 4;
    tensor = TF_AllocateTensor(TF_FLOAT, dims, dims_len, size * sizeof(float));
    memcpy(TF_TensorData(tensor), params->kernel, size * sizeof(float));
    TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status);
    if (TF_GetCode(tf_model->status) != TF_OK){
        return DNN_ERROR;
    }
    op = TF_FinishOperation(op_desc, tf_model->status);
    if (TF_GetCode(tf_model->status) != TF_OK){
        return DNN_ERROR;
    }

    snprintf(name_buffer, NAME_BUFFER_SIZE, "transpose%d", layer);
    op_desc = TF_NewOperation(tf_model->graph, "Transpose", name_buffer);
    input.oper = op;
    TF_AddInput(op_desc, input);
    input.oper = transpose_op;
    TF_AddInput(op_desc, input);
    TF_SetAttrType(op_desc, "T", TF_FLOAT);
    TF_SetAttrType(op_desc, "Tperm", TF_INT32);
    op = TF_FinishOperation(op_desc, tf_model->status);
    if (TF_GetCode(tf_model->status) != TF_OK){
        return DNN_ERROR;
    }

    snprintf(name_buffer, NAME_BUFFER_SIZE, "conv2d%d", layer);
    op_desc = TF_NewOperation(tf_model->graph, "Conv2D", name_buffer);
    input.oper = *cur_op;
    TF_AddInput(op_desc, input);
    input.oper = op;
    TF_AddInput(op_desc, input);
    TF_SetAttrType(op_desc, "T", TF_FLOAT);
    TF_SetAttrIntList(op_desc, "strides", strides, 4);
    TF_SetAttrString(op_desc, "padding", "VALID", 5);
    *cur_op = TF_FinishOperation(op_desc, tf_model->status);
    if (TF_GetCode(tf_model->status) != TF_OK){
        return DNN_ERROR;
    }

    snprintf(name_buffer, NAME_BUFFER_SIZE, "conv_biases%d", layer);
    op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer);
    TF_SetAttrType(op_desc, "dtype", TF_FLOAT);
    dims[0] = params->output_num;
    dims_len = 1;
    tensor = TF_AllocateTensor(TF_FLOAT, dims, dims_len, params->output_num * sizeof(float));
    memcpy(TF_TensorData(tensor), params->biases, params->output_num * sizeof(float));
    TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status);
    if (TF_GetCode(tf_model->status) != TF_OK){
        return DNN_ERROR;
    }
    op = TF_FinishOperation(op_desc, tf_model->status);
    if (TF_GetCode(tf_model->status) != TF_OK){
        return DNN_ERROR;
    }

    snprintf(name_buffer, NAME_BUFFER_SIZE, "bias_add%d", layer);
    op_desc = TF_NewOperation(tf_model->graph, "BiasAdd", name_buffer);
    input.oper = *cur_op;
    TF_AddInput(op_desc, input);
    input.oper = op;
    TF_AddInput(op_desc, input);
    TF_SetAttrType(op_desc, "T", TF_FLOAT);
    *cur_op = TF_FinishOperation(op_desc, tf_model->status);
    if (TF_GetCode(tf_model->status) != TF_OK){
        return DNN_ERROR;
    }

    snprintf(name_buffer, NAME_BUFFER_SIZE, "activation%d", layer);
    switch (params->activation){
    case RELU:
        op_desc = TF_NewOperation(tf_model->graph, "Relu", name_buffer);
        break;
    case TANH:
        op_desc = TF_NewOperation(tf_model->graph, "Tanh", name_buffer);
        break;
    case SIGMOID:
        op_desc = TF_NewOperation(tf_model->graph, "Sigmoid", name_buffer);
        break;
    default:
        return DNN_ERROR;
    }
    input.oper = *cur_op;
    TF_AddInput(op_desc, input);
    TF_SetAttrType(op_desc, "T", TF_FLOAT);
    *cur_op = TF_FinishOperation(op_desc, tf_model->status);
    if (TF_GetCode(tf_model->status) != TF_OK){
        return DNN_ERROR;
    }

    return DNN_SUCCESS;
361 362
}

363 364
static DNNReturnType add_depth_to_space_layer(TFModel *tf_model, TF_Operation **cur_op,
                                              DepthToSpaceParams *params, const int layer)
365
{
366
    TF_OperationDescription *op_desc;
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
    TF_Output input;
    char name_buffer[NAME_BUFFER_SIZE];

    snprintf(name_buffer, NAME_BUFFER_SIZE, "depth_to_space%d", layer);
    op_desc = TF_NewOperation(tf_model->graph, "DepthToSpace", name_buffer);
    input.oper = *cur_op;
    input.index = 0;
    TF_AddInput(op_desc, input);
    TF_SetAttrType(op_desc, "T", TF_FLOAT);
    TF_SetAttrInt(op_desc, "block_size", params->block_size);
    *cur_op = TF_FinishOperation(op_desc, tf_model->status);
    if (TF_GetCode(tf_model->status) != TF_OK){
        return DNN_ERROR;
    }

    return DNN_SUCCESS;
}

385 386
static DNNReturnType add_pad_layer(TFModel *tf_model, TF_Operation **cur_op,
                                              LayerPadParams *params, const int layer)
387
{
388 389
    TF_Operation *op;
    TF_Tensor *tensor;
390
    TF_OperationDescription *op_desc;
391
    TF_Output input;
392
    int32_t *pads;
393 394
    int64_t pads_shape[] = {4, 2};

395 396
    char name_buffer[NAME_BUFFER_SIZE];
    snprintf(name_buffer, NAME_BUFFER_SIZE, "pad%d", layer);
397

398
    op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer);
399 400
    TF_SetAttrType(op_desc, "dtype", TF_INT32);
    tensor = TF_AllocateTensor(TF_INT32, pads_shape, 2, 4 * 2 * sizeof(int32_t));
401
    pads = (int32_t *)TF_TensorData(tensor);
402 403 404 405 406 407 408 409
    pads[0] = params->paddings[0][0];
    pads[1] = params->paddings[0][1];
    pads[2] = params->paddings[1][0];
    pads[3] = params->paddings[1][1];
    pads[4] = params->paddings[2][0];
    pads[5] = params->paddings[2][1];
    pads[6] = params->paddings[3][0];
    pads[7] = params->paddings[3][1];
410 411
    TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status);
    if (TF_GetCode(tf_model->status) != TF_OK){
412
        return DNN_ERROR;
413 414 415
    }
    op = TF_FinishOperation(op_desc, tf_model->status);
    if (TF_GetCode(tf_model->status) != TF_OK){
416
        return DNN_ERROR;
417
    }
418

419
    op_desc = TF_NewOperation(tf_model->graph, "MirrorPad", "mirror_pad");
420
    input.oper = *cur_op;
421
    input.index = 0;
422 423 424 425 426 427
    TF_AddInput(op_desc, input);
    input.oper = op;
    TF_AddInput(op_desc, input);
    TF_SetAttrType(op_desc, "T", TF_FLOAT);
    TF_SetAttrType(op_desc, "Tpaddings", TF_INT32);
    TF_SetAttrString(op_desc, "mode", "SYMMETRIC", 9);
428
    *cur_op = TF_FinishOperation(op_desc, tf_model->status);
429
    if (TF_GetCode(tf_model->status) != TF_OK){
430
        return DNN_ERROR;
431 432
    }

433
    return DNN_SUCCESS;
434 435
}

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
static DNNReturnType add_maximum_layer(TFModel *tf_model, TF_Operation **cur_op,
                                       DnnLayerMaximumParams *params, const int layer)
{
    TF_Operation *op;
    TF_Tensor *tensor;
    TF_OperationDescription *op_desc;
    TF_Output input;
    float *y;

    char name_buffer[NAME_BUFFER_SIZE];
    snprintf(name_buffer, NAME_BUFFER_SIZE, "maximum/y%d", layer);

    op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer);
    TF_SetAttrType(op_desc, "dtype", TF_FLOAT);
    tensor = TF_AllocateTensor(TF_FLOAT, NULL, 0, TF_DataTypeSize(TF_FLOAT));
    y = (float *)TF_TensorData(tensor);
    *y = params->val.y;
    TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status);
    if (TF_GetCode(tf_model->status) != TF_OK){
        return DNN_ERROR;
    }
    op = TF_FinishOperation(op_desc, tf_model->status);
    if (TF_GetCode(tf_model->status) != TF_OK){
        return DNN_ERROR;
    }

    snprintf(name_buffer, NAME_BUFFER_SIZE, "maximum%d", layer);
    op_desc = TF_NewOperation(tf_model->graph, "Maximum", name_buffer);
    input.oper = *cur_op;
    input.index = 0;
    TF_AddInput(op_desc, input);
    input.oper = op;
    TF_AddInput(op_desc, input);
    TF_SetAttrType(op_desc, "T", TF_FLOAT);
    *cur_op = TF_FinishOperation(op_desc, tf_model->status);
    if (TF_GetCode(tf_model->status) != TF_OK){
        return DNN_ERROR;
    }

    return DNN_SUCCESS;
}

478
static DNNReturnType load_native_model(TFModel *tf_model, const char *model_filename)
479
{
480
    int32_t layer;
481
    TF_OperationDescription *op_desc;
482 483
    TF_Operation *op;
    TF_Operation *transpose_op;
484
    TF_Tensor *tensor;
485 486 487 488 489 490 491 492 493 494 495 496
    TF_Output input;
    int32_t *transpose_perm;
    int64_t transpose_perm_shape[] = {4};
    int64_t input_shape[] = {1, -1, -1, -1};
    DNNReturnType layer_add_res;
    DNNModel *native_model = NULL;
    ConvolutionalNetwork *conv_network;

    native_model = ff_dnn_load_model_native(model_filename);
    if (!native_model){
        return DNN_ERROR;
    }
497

498 499 500 501 502 503 504 505 506
    conv_network = (ConvolutionalNetwork *)native_model->model;
    tf_model->graph = TF_NewGraph();
    tf_model->status = TF_NewStatus();

#define CLEANUP_ON_ERROR(tf_model) \
    { \
        TF_DeleteGraph(tf_model->graph); \
        TF_DeleteStatus(tf_model->status); \
        return DNN_ERROR; \
507
    }
508 509 510 511 512

    op_desc = TF_NewOperation(tf_model->graph, "Placeholder", "x");
    TF_SetAttrType(op_desc, "dtype", TF_FLOAT);
    TF_SetAttrShape(op_desc, "shape", input_shape, 4);
    op = TF_FinishOperation(op_desc, tf_model->status);
513
    if (TF_GetCode(tf_model->status) != TF_OK){
514
        CLEANUP_ON_ERROR(tf_model);
515 516 517 518 519
    }

    op_desc = TF_NewOperation(tf_model->graph, "Const", "transpose_perm");
    TF_SetAttrType(op_desc, "dtype", TF_INT32);
    tensor = TF_AllocateTensor(TF_INT32, transpose_perm_shape, 1, 4 * sizeof(int32_t));
520
    transpose_perm = (int32_t *)TF_TensorData(tensor);
521 522 523 524 525 526
    transpose_perm[0] = 1;
    transpose_perm[1] = 2;
    transpose_perm[2] = 3;
    transpose_perm[3] = 0;
    TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status);
    if (TF_GetCode(tf_model->status) != TF_OK){
527
        CLEANUP_ON_ERROR(tf_model);
528 529 530
    }
    transpose_op = TF_FinishOperation(op_desc, tf_model->status);

531 532
    for (layer = 0; layer < conv_network->layers_num; ++layer){
        switch (conv_network->layers[layer].type){
533
        case DLT_INPUT:
534
            layer_add_res = DNN_SUCCESS;
535
            break;
536
        case DLT_CONV2D:
537 538 539
            layer_add_res = add_conv_layer(tf_model, transpose_op, &op,
                                           (ConvolutionalParams *)conv_network->layers[layer].params, layer);
            break;
540
        case DLT_DEPTH_TO_SPACE:
541 542 543
            layer_add_res = add_depth_to_space_layer(tf_model, &op,
                                                     (DepthToSpaceParams *)conv_network->layers[layer].params, layer);
            break;
544
        case DLT_MIRROR_PAD:
545 546 547
            layer_add_res = add_pad_layer(tf_model, &op,
                                          (LayerPadParams *)conv_network->layers[layer].params, layer);
            break;
548
        case DLT_MAXIMUM:
549 550 551
            layer_add_res = add_maximum_layer(tf_model, &op,
                                          (DnnLayerMaximumParams *)conv_network->layers[layer].params, layer);
            break;
552 553
        default:
            CLEANUP_ON_ERROR(tf_model);
554 555
        }

556 557
        if (layer_add_res != DNN_SUCCESS){
            CLEANUP_ON_ERROR(tf_model);
558
        }
559
    }
560

561 562
    op_desc = TF_NewOperation(tf_model->graph, "Identity", "y");
    input.oper = op;
563
    input.index = 0;
564 565 566 567
    TF_AddInput(op_desc, input);
    TF_FinishOperation(op_desc, tf_model->status);
    if (TF_GetCode(tf_model->status) != TF_OK){
        CLEANUP_ON_ERROR(tf_model);
568 569
    }

570 571 572
    ff_dnn_free_model_native(&native_model);

    return DNN_SUCCESS;
573 574
}

575
DNNModel *ff_dnn_load_model_tf(const char *model_filename)
576
{
577 578
    DNNModel *model = NULL;
    TFModel *tf_model = NULL;
579

580 581 582 583 584
    model = av_malloc(sizeof(DNNModel));
    if (!model){
        return NULL;
    }

585
    tf_model = av_mallocz(sizeof(TFModel));
586 587 588 589 590
    if (!tf_model){
        av_freep(&model);
        return NULL;
    }

591 592 593 594
    if (load_tf_model(tf_model, model_filename) != DNN_SUCCESS){
        if (load_native_model(tf_model, model_filename) != DNN_SUCCESS){
            av_freep(&tf_model);
            av_freep(&model);
595

596
            return NULL;
597
        }
598 599
    }

600
    model->model = (void *)tf_model;
601
    model->set_input_output = &set_input_output_tf;
602
    model->get_input = &get_input_tf;
603 604 605 606

    return model;
}

607 608


609
DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, DNNData *outputs, uint32_t nb_output)
610
{
611
    TFModel *tf_model = (TFModel *)model->model;
612 613 614 615 616 617 618 619 620 621 622
    uint32_t nb = FFMIN(nb_output, tf_model->nb_output);
    if (nb == 0)
        return DNN_ERROR;

    av_assert0(tf_model->output_tensors);
    for (uint32_t i = 0; i < tf_model->nb_output; ++i) {
        if (tf_model->output_tensors[i]) {
            TF_DeleteTensor(tf_model->output_tensors[i]);
            tf_model->output_tensors[i] = NULL;
        }
    }
623 624 625

    TF_SessionRun(tf_model->session, NULL,
                  &tf_model->input, &tf_model->input_tensor, 1,
626
                  tf_model->outputs, tf_model->output_tensors, nb,
627 628 629 630 631 632
                  NULL, 0, NULL, tf_model->status);

    if (TF_GetCode(tf_model->status) != TF_OK){
        return DNN_ERROR;
    }

633 634 635 636 637
    for (uint32_t i = 0; i < nb; ++i) {
        outputs[i].height = TF_Dim(tf_model->output_tensors[i], 1);
        outputs[i].width = TF_Dim(tf_model->output_tensors[i], 2);
        outputs[i].channels = TF_Dim(tf_model->output_tensors[i], 3);
        outputs[i].data = TF_TensorData(tf_model->output_tensors[i]);
638
        outputs[i].dt = TF_TensorType(tf_model->output_tensors[i]);
639
    }
640 641

    return DNN_SUCCESS;
642 643
}

644
void ff_dnn_free_model_tf(DNNModel **model)
645
{
646
    TFModel *tf_model;
647 648

    if (*model){
649
        tf_model = (TFModel *)(*model)->model;
650 651 652 653 654 655 656 657 658 659 660 661 662
        if (tf_model->graph){
            TF_DeleteGraph(tf_model->graph);
        }
        if (tf_model->session){
            TF_CloseSession(tf_model->session, tf_model->status);
            TF_DeleteSession(tf_model->session, tf_model->status);
        }
        if (tf_model->status){
            TF_DeleteStatus(tf_model->status);
        }
        if (tf_model->input_tensor){
            TF_DeleteTensor(tf_model->input_tensor);
        }
663 664 665 666 667 668 669
        if (tf_model->output_tensors) {
            for (uint32_t i = 0; i < tf_model->nb_output; ++i) {
                if (tf_model->output_tensors[i]) {
                    TF_DeleteTensor(tf_model->output_tensors[i]);
                    tf_model->output_tensors[i] = NULL;
                }
            }
670
        }
671 672
        av_freep(&tf_model->outputs);
        av_freep(&tf_model->output_tensors);
673 674 675 676
        av_freep(&tf_model);
        av_freep(model);
    }
}