wma.c 12.1 KB
Newer Older
M
Michael Niedermayer 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
/*
 * WMA compatible codec
 * Copyright (c) 2002-2007 The FFmpeg Project.
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include "avcodec.h"
#include "wma.h"
#include "wmadata.h"

#undef NDEBUG
#include <assert.h>

/* XXX: use same run/length optimization as mpeg decoders */
//FIXME maybe split decode / encode or pass flag
static void init_coef_vlc(VLC *vlc,
                          uint16_t **prun_table, uint16_t **plevel_table, uint16_t **pint_table,
                          const CoefVLCTable *vlc_table)
{
    int n = vlc_table->n;
    const uint8_t *table_bits = vlc_table->huffbits;
    const uint32_t *table_codes = vlc_table->huffcodes;
    const uint16_t *levels_table = vlc_table->levels;
    uint16_t *run_table, *level_table, *int_table;
    int i, l, j, k, level;

    init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4, 0);

    run_table = av_malloc(n * sizeof(uint16_t));
    level_table = av_malloc(n * sizeof(uint16_t));
    int_table = av_malloc(n * sizeof(uint16_t));
    i = 2;
    level = 1;
    k = 0;
    while (i < n) {
        int_table[k]= i;
        l = levels_table[k++];
        for(j=0;j<l;j++) {
            run_table[i] = j;
            level_table[i] = level;
            i++;
        }
        level++;
    }
    *prun_table = run_table;
    *plevel_table = level_table;
    *pint_table= int_table;
}

int ff_wma_init(AVCodecContext * avctx, int flags2)
{
    WMADecodeContext *s = avctx->priv_data;
    int i;
    float *window;
    float bps1, high_freq;
    volatile float bps;
    int sample_rate1;
    int coef_vlc_table;

    s->sample_rate = avctx->sample_rate;
    s->nb_channels = avctx->channels;
    s->bit_rate = avctx->bit_rate;
    s->block_align = avctx->block_align;

    dsputil_init(&s->dsp, avctx);

    if (avctx->codec->id == CODEC_ID_WMAV1) {
        s->version = 1;
    } else {
        s->version = 2;
    }

    /* compute MDCT block size */
    if (s->sample_rate <= 16000) {
        s->frame_len_bits = 9;
    } else if (s->sample_rate <= 22050 ||
               (s->sample_rate <= 32000 && s->version == 1)) {
        s->frame_len_bits = 10;
    } else {
        s->frame_len_bits = 11;
    }
    s->frame_len = 1 << s->frame_len_bits;
    if (s->use_variable_block_len) {
        int nb_max, nb;
        nb = ((flags2 >> 3) & 3) + 1;
        if ((s->bit_rate / s->nb_channels) >= 32000)
            nb += 2;
        nb_max = s->frame_len_bits - BLOCK_MIN_BITS;
        if (nb > nb_max)
            nb = nb_max;
        s->nb_block_sizes = nb + 1;
    } else {
        s->nb_block_sizes = 1;
    }

111
    /* init rate dependent parameters */
M
Michael Niedermayer 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
    s->use_noise_coding = 1;
    high_freq = s->sample_rate * 0.5;

    /* if version 2, then the rates are normalized */
    sample_rate1 = s->sample_rate;
    if (s->version == 2) {
        if (sample_rate1 >= 44100)
            sample_rate1 = 44100;
        else if (sample_rate1 >= 22050)
            sample_rate1 = 22050;
        else if (sample_rate1 >= 16000)
            sample_rate1 = 16000;
        else if (sample_rate1 >= 11025)
            sample_rate1 = 11025;
        else if (sample_rate1 >= 8000)
            sample_rate1 = 8000;
    }

    bps = (float)s->bit_rate / (float)(s->nb_channels * s->sample_rate);
    s->byte_offset_bits = av_log2((int)(bps * s->frame_len / 8.0 + 0.5)) + 2;

    /* compute high frequency value and choose if noise coding should
       be activated */
    bps1 = bps;
    if (s->nb_channels == 2)
        bps1 = bps * 1.6;
    if (sample_rate1 == 44100) {
        if (bps1 >= 0.61)
            s->use_noise_coding = 0;
        else
            high_freq = high_freq * 0.4;
    } else if (sample_rate1 == 22050) {
        if (bps1 >= 1.16)
            s->use_noise_coding = 0;
        else if (bps1 >= 0.72)
            high_freq = high_freq * 0.7;
        else
            high_freq = high_freq * 0.6;
    } else if (sample_rate1 == 16000) {
        if (bps > 0.5)
            high_freq = high_freq * 0.5;
        else
            high_freq = high_freq * 0.3;
    } else if (sample_rate1 == 11025) {
        high_freq = high_freq * 0.7;
    } else if (sample_rate1 == 8000) {
        if (bps <= 0.625) {
            high_freq = high_freq * 0.5;
        } else if (bps > 0.75) {
            s->use_noise_coding = 0;
        } else {
            high_freq = high_freq * 0.65;
        }
    } else {
        if (bps >= 0.8) {
            high_freq = high_freq * 0.75;
        } else if (bps >= 0.6) {
            high_freq = high_freq * 0.6;
        } else {
            high_freq = high_freq * 0.5;
        }
    }
    dprintf("flags1=0x%x flags2=0x%x\n", flags1, flags2);
    dprintf("version=%d channels=%d sample_rate=%d bitrate=%d block_align=%d\n",
           s->version, s->nb_channels, s->sample_rate, s->bit_rate,
           s->block_align);
    dprintf("bps=%f bps1=%f high_freq=%f bitoffset=%d\n",
           bps, bps1, high_freq, s->byte_offset_bits);
    dprintf("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
           s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes);

    /* compute the scale factor band sizes for each MDCT block size */
    {
        int a, b, pos, lpos, k, block_len, i, j, n;
        const uint8_t *table;

        if (s->version == 1) {
            s->coefs_start = 3;
        } else {
            s->coefs_start = 0;
        }
        for(k = 0; k < s->nb_block_sizes; k++) {
            block_len = s->frame_len >> k;

            if (s->version == 1) {
                lpos = 0;
                for(i=0;i<25;i++) {
                    a = wma_critical_freqs[i];
                    b = s->sample_rate;
                    pos = ((block_len * 2 * a)  + (b >> 1)) / b;
                    if (pos > block_len)
                        pos = block_len;
                    s->exponent_bands[0][i] = pos - lpos;
                    if (pos >= block_len) {
                        i++;
                        break;
                    }
                    lpos = pos;
                }
                s->exponent_sizes[0] = i;
            } else {
                /* hardcoded tables */
                table = NULL;
                a = s->frame_len_bits - BLOCK_MIN_BITS - k;
                if (a < 3) {
                    if (s->sample_rate >= 44100)
                        table = exponent_band_44100[a];
                    else if (s->sample_rate >= 32000)
                        table = exponent_band_32000[a];
                    else if (s->sample_rate >= 22050)
                        table = exponent_band_22050[a];
                }
                if (table) {
                    n = *table++;
                    for(i=0;i<n;i++)
                        s->exponent_bands[k][i] = table[i];
                    s->exponent_sizes[k] = n;
                } else {
                    j = 0;
                    lpos = 0;
                    for(i=0;i<25;i++) {
                        a = wma_critical_freqs[i];
                        b = s->sample_rate;
                        pos = ((block_len * 2 * a)  + (b << 1)) / (4 * b);
                        pos <<= 2;
                        if (pos > block_len)
                            pos = block_len;
                        if (pos > lpos)
                            s->exponent_bands[k][j++] = pos - lpos;
                        if (pos >= block_len)
                            break;
                        lpos = pos;
                    }
                    s->exponent_sizes[k] = j;
                }
            }

            /* max number of coefs */
            s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
            /* high freq computation */
            s->high_band_start[k] = (int)((block_len * 2 * high_freq) /
                                          s->sample_rate + 0.5);
            n = s->exponent_sizes[k];
            j = 0;
            pos = 0;
            for(i=0;i<n;i++) {
                int start, end;
                start = pos;
                pos += s->exponent_bands[k][i];
                end = pos;
                if (start < s->high_band_start[k])
                    start = s->high_band_start[k];
                if (end > s->coefs_end[k])
                    end = s->coefs_end[k];
                if (end > start)
                    s->exponent_high_bands[k][j++] = end - start;
            }
            s->exponent_high_sizes[k] = j;
#if 0
            tprintf("%5d: coefs_end=%d high_band_start=%d nb_high_bands=%d: ",
                  s->frame_len >> k,
                  s->coefs_end[k],
                  s->high_band_start[k],
                  s->exponent_high_sizes[k]);
            for(j=0;j<s->exponent_high_sizes[k];j++)
                tprintf(" %d", s->exponent_high_bands[k][j]);
            tprintf("\n");
#endif
        }
    }

#ifdef TRACE
    {
        int i, j;
        for(i = 0; i < s->nb_block_sizes; i++) {
            tprintf("%5d: n=%2d:",
                   s->frame_len >> i,
                   s->exponent_sizes[i]);
            for(j=0;j<s->exponent_sizes[i];j++)
                tprintf(" %d", s->exponent_bands[i][j]);
            tprintf("\n");
        }
    }
#endif

    /* init MDCT windows : simple sinus window */
    for(i = 0; i < s->nb_block_sizes; i++) {
        int n, j;
        float alpha;
        n = 1 << (s->frame_len_bits - i);
        window = av_malloc(sizeof(float) * n);
        alpha = M_PI / (2.0 * n);
        for(j=0;j<n;j++) {
            window[n - j - 1] = sin((j + 0.5) * alpha);
        }
        s->windows[i] = window;
    }

    s->reset_block_lengths = 1;

    if (s->use_noise_coding) {

        /* init the noise generator */
        if (s->use_exp_vlc)
            s->noise_mult = 0.02;
        else
            s->noise_mult = 0.04;

#ifdef TRACE
        for(i=0;i<NOISE_TAB_SIZE;i++)
            s->noise_table[i] = 1.0 * s->noise_mult;
#else
        {
            unsigned int seed;
            float norm;
            seed = 1;
            norm = (1.0 / (float)(1LL << 31)) * sqrt(3) * s->noise_mult;
            for(i=0;i<NOISE_TAB_SIZE;i++) {
                seed = seed * 314159 + 1;
                s->noise_table[i] = (float)((int)seed) * norm;
            }
        }
#endif
    }

    /* choose the VLC tables for the coefficients */
    coef_vlc_table = 2;
    if (s->sample_rate >= 32000) {
        if (bps1 < 0.72)
            coef_vlc_table = 0;
        else if (bps1 < 1.16)
            coef_vlc_table = 1;
    }
    s->coef_vlcs[0]= &coef_vlcs[coef_vlc_table * 2    ];
    s->coef_vlcs[1]= &coef_vlcs[coef_vlc_table * 2 + 1];
    init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0], &s->int_table[0],
                  s->coef_vlcs[0]);
    init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1], &s->int_table[1],
                  s->coef_vlcs[1]);

    return 0;
}

int ff_wma_total_gain_to_bits(int total_gain){
         if (total_gain < 15) return 13;
    else if (total_gain < 32) return 12;
    else if (total_gain < 40) return 11;
    else if (total_gain < 45) return 10;
    else                      return  9;
}

int ff_wma_end(AVCodecContext *avctx)
{
    WMADecodeContext *s = avctx->priv_data;
    int i;

    for(i = 0; i < s->nb_block_sizes; i++)
        ff_mdct_end(&s->mdct_ctx[i]);
    for(i = 0; i < s->nb_block_sizes; i++)
        av_free(s->windows[i]);

    if (s->use_exp_vlc) {
        free_vlc(&s->exp_vlc);
    }
    if (s->use_noise_coding) {
        free_vlc(&s->hgain_vlc);
    }
    for(i = 0;i < 2; i++) {
        free_vlc(&s->coef_vlc[i]);
        av_free(s->run_table[i]);
        av_free(s->level_table[i]);
    }

    return 0;
}